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We introduce two classes of spatial optical breathers in strongly nonlocal nonlinear media: multiringed
breathers and rotating breathers, which can be created as results of the superposition of off-waist input
Laguerre-Gaussian beams. Their width “breathes” sinusoidally during propagation under the off-waist incident
condition, whatever the input power is. Only when the beam is inputted at the waist and the input power equals
the critical power simultaneously would the multiringed �rotating� breather reduce to a multiringed �rotating�
soliton. For a rotating breather, the azimuthal orientation of the intensity pattern is determined by the indices
of the constituent beams and varies periodically in propagation. This property together with the breath of the
beam width yields novel trajectories which the points within the beam cross section undergo.
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I. INTRODUCTION

The nonlocal nonlinearity, which is featured by many
physical systems such as plasmas �1�, Bose-Einstein conden-
sates �2�, and some optical materials �3–8�, has attracted con-
siderable interest in recent years. The nonlocality plays an
important role in the nonlinear evolution of waves. It has
been shown that there are some particular properties induced
by the nonlocality, such as the suppression of collapse �9�
and the support of vortex solitons �10,11� and multipole soli-
tons �12�. In nonlinear optics especially, the nonlocality was
found in materials such as nematic liquid crystal �3,4� and
lead glass �5,6�. In these materials, the characteristic length
of the material response function can be much larger than the
beam width; and they are called strongly nonlocal nonlinear
�SNN� media �or equivalently, highly nonlocal nonlinear me-
dia�. In the SNN condition, the governing equation, i.e., the
nonlocal nonlinear Schrödinger equation, can be simplified
to a linearized equation tantamount to the equation for the
two-dimensional harmonic oscillator �called the Snyder-
Mitchell model �SMM� here� �13�:

2ik�zA + ��xx + �yy�A − k2�2P0r2A = 0, �1�

where k is the wave vector in a linear medium, � is a mate-
rial constant, and P0=��A�2d2r is the input power, with
r= �x ,y�.

Quite different from the conventional standard local Kerr-
type material which supports only �1+1�D spatial or tempo-
ral solitons, the SNN media support not only �2+1�D spatial
solitons, but also �2+1�D spatial breathers, whose pattern
shape remains invariant and whose width “breathes” sinusoi-
dally during propagation. In fact, since Snyder and Mitchell
�13� introduced the SMM to investigate the propagation in
SNN media and found that it supports the so-called acces-
sible solitons �13�, various structures of solitons and breath-
ers �10–23�, such as multivortex solitons �11�, multipole soli-

tons �12�, azimuthons �16�, and ellipticons �21�, have been
theoretically predicted. Some of them have been observed
experimentally �3–7�.

We note that the solitons and breathers in above-
mentioned papers are theoretically predicted under the as-
sumption that the beams are inputted at the beam waist. In
contrast the off-waist input case remains unexplored. In this
paper, we introduce two classes of SNN spatial optical
breathers under the off-waist incident condition: multiringed
breathers and rotating breathers. It is revealed that the propa-
gation of the off-waist incident multiringed beams in SNN
media yields multiringed breathers, and the combination of
two off-waist incident multiringed breathers with different
indices yields SNN rotating breathers. The beam width and
phase distribution of multiringed breathers and rotating
breathers vary periodically during propagation, whatever the
input power is. Only when the beams are inputted at the
waist and the input power equals the critical power simulta-
neously would multiringed breathers and rotating breathers
reduce to multiringed solitons and rotating solitons, respec-
tively. For rotating breathers, every point within the beam
cross section undergoes novel trajectory, because the breath
of the beam width is dependent on the periodically varied
azimuthal orientation of the intensity pattern.

II. MULTIRINGED BREATHERS UNDER
THE OFF-WAIST INCIDENT CONDITION

A. Analytical solution

We consider the SNN propagation of multiringed shape-
invariant beam which is transmitted from free space into
SNN media under the off-waist incident condition. The en-
trance plane is supposed to be situated at z=0, and the beam
waist is assumed to be located at z=zs.

In free space, a shape-invariant multiringed beam can be
formed by superposition of an even and an odd Laguerre-
Gaussian beam with identical parameters except for a �� /2
phase difference between them, i.e.,*huwei@scnu.edu.cn
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 �3�

wf�z�=w0�1+ �z−zs�2 /z0
2�1/2, Rf�z�= �z−zs��1+z0

2 / �z−zs�2�,
� f�z�= �2p+ �l�+1�arctan��z−zs� /z0�, z0=kw0

2, � is the azi-
muthal angle, p , �l�=0,1 ,2 , . . ., and Lp

�l��·� represents the
generalized Laguerre polynomial.

The evolution of multiringed beams in SNN media can be
obtained by solving the SMM, i.e., Eq. �1�. In our previous
work �24�, we have introduced a one-to-one correspondence
between the beam solution of free propagation and that of
SNN propagation based on the relationship between Eq. �1�
and the diffraction equation which governs the free propaga-
tion:

A�r,z� = F1F2��F1r,F3� , �4�

where

F1�z� = �− 1�a�1 + tan2� z

zp0
��1/2

,

F2�r,z� = exp−
ikF1�z�2r2

2zp0�tan� z

zp0
� + 1/tan� z

zp0
��� ,

F3�z� = zp0tan� z

zp0
� ,

a�z� =
1

�
	 z

zp0
− arctan�tan� z

zp0
��
 ,

zp0 = ��2P0�−1/2. �5�

A and � represent the beam solution of free propagation and
that of SNN propagation, respectively.

Substituting Eq. �2� into Eq. �4� yields the solution of the
off-waist input multiringed beam in SNN media:

Apl�r,�,z� = A0
w0

w
� �− 1�ar

w
��l�

Lp
�l�� r2

w2�
�exp�−

r2

w2�exp� ikr2

2R
− i��z� + il�� , �6�

where
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w0	1 + � zp0
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�2
1/2
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Rc�z� =
1

1 + tan2� z

zp0

�
1

1

�zp0 tan� z

zp0
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z0

tan� z

zp0

� −
zs

z0

�2
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,

��z� = �2p + �l� + 1�	a� + arctan� zp0

z0
tan� z

zp0
� −

zs

z0
�
 . �7�

It is noted that zp0 is determined by the input power P0 and
plays an important role in the evolution of the field in SNN
media.

As shown in Eq. �6�, during SNN propagation the multi-
ringed beams are shape invariant and the beam width as well
as the phase distribution varies periodically with the period
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�z=�zp0 �Fig. 1�. Thus we call these beams the multiringed
breathers. For a multiringed breather with the indices �p , l�,
there are �l� circular nodal lines in the pattern, and the num-
ber of rings is �l�+1. In �r ,�� plane, the phase clockwise
�anticlockwise� increases by 2�l�� in an azimuthal circuit if
l	0 �l
0�.

B. Evolution of the beam width

In propagation, the parameter w in Eq. �7� represents the
second-order moment width of the �0,0� mode breather, and
that of a higher-order multiringed breather is �2p+ l+1w�z�.
As shown in Eq. �7�, the width of the multiringed breathers
varies periodically with the period �zp0 in propagation.

When the width reaches its maximum or minimum, we
have

�zw
2�z� =

2zszp0 + cos� 2z

zp0
� + �z0

2 − zp0
2 + zs

2�sin� 2z

zp0
�

z0
2zp0

= 0,

�8�

the solution of which is

zm
�n� =

zp0

2 �n�� + arctan� 2zp0zs

− z0
2 + zp0

2 − zs
2�� , �9�

where zm
�n� represents the nth cross sections at which the

width reaches its maximum or minimum, n�=n �n�=n−1� if
zs
0 �zs	0�. Equation �9� shows that zm

�n� is proportional to
zp0, and the spacing between zm

�n� and zm
�n+1� is �zp0 /2. In the

following, for convenience of discussion, we describe these
cross sections with a normalized parameter Zm

�n�, which is
defined as

Zm
�n� =

zm
�n�

zp0
=

1

2�n�� + arctan� 2zp0zs

− z0
2 + zp0

2 − zs
2�� . �10�

In propagation, the beam alternately focuses and diffracts.
The focusing �diffracting� can be determined through the in-
equation �zw

2	0 ��zw
2
0�. For convenience of discussion,

we introduce the critical power Pc, which is defined as

Pc = �z0��−2.

When the beam is inputted at the beam waist, it can present
itself as breather or soliton �Fig. 2�b��. If the input power
P0	 Pc �P0
 Pc�, the beam width increases �decreases� first
because the focus is weaker �stronger� than the diffraction;
then it increases and decreases alternately in propagation. If
P0= Pc, the diffraction is balanced by the focusing. Thus the
beam width is kept invariant during propagation and the
breather reduces to a soliton.

On the other hand if the beam is inputted under the off-
waist condition, i.e., zs�0, it is impossible for the breather to
reduce to a soliton �Figs. 2�a� and 2�c��. When zs	0
�zs
0�, due to the convex �concave� cophasal surfaces at the
entrance plane, the beam width first increases �decreases�
until it reaches its maximum �minimum�, and then it in-
creases and decreases alternately, whatever the input power
is.

If the off-waist distance zs is fixed and the input power is
changed �Fig. 2�, �i� the average beam width decreases with
the input power, because a higher input power provides a
stronger self-focusing effect; and �ii� every Zm

�n� varies with
the input power. When zs
0 �zs	0�, every Zm

�n� increases
�decreases� with the input power. If the power is high enough
so that zp0�z0, the first normalized minimum-width plane
would approach � /2.

FIG. 1. �Color online� Evolutions of intensity distribution �rows
1, 3, and 5� and phase distribution �rows 2, 4, and 6� of the �1,1�
mode multiringed breather for different off-waist distances. The off-
waist distances are zs=−z0 /2 �rows 1 and 2�, 0 �rows 3 and 4�, and
z0 /2 �rows 5 and 6�; P0= Pc.
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FIG. 2. �Color online� �a� Evolutions of the beam width for different input powers when zs=−z0; the input powers are P0=4Pc �solid
line�, Pc �dashed line�, and 0.25Pc �dash-dotted line�. �b� The same as �a� except zs=0. �c� The same as �a� except zs=z0.
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If the input power is fixed and the off-waist distance zs is
changed �Fig. 3�, �i� the average beam width increases with
�zs�; �ii� the average beam width for zs is the same as that for
−zs, because w�z� �zs=+�zs�

=w�−z� �zs=−�zs�
, as shown in Eq. �7�;

and �iii� if P0� Pc �or equivalently, z0�zp0�, Zm
�n� monotoni-

cally increases with zs �Fig. 3�a��. On the other hand if P0

 Pc �or equivalently, z0
zp0�, the variation in Zm

�n� with zs is
not monotonic. It decreases with zs if

− �z0
2 − zp0

2 �1/2 	 zs 	 �z0
2 − zp0

2 �1/2

�Fig. 3�c��; otherwise it increases with zs �Fig. 3�b��. �iv�
Although the beam widths at the entrance plane are different
for different off-waist shifts, they are equal to each other at
the planes z= �n+1 /2��zp0. The reason is that the fields at
these planes are the 2n+1 times of Fourier transform �or, in
other words, the angular spectrum� of the fields at the en-
trance planes, which are the same for different off-waist
shifts.

C. Evolution of the phase distribution

The evolution of the phase is composed of three parts: �i�
the azimuthal variation in the phase, il�, which results in

2�l�� anticlockwise �clockwise� increase in the phase in an
azimuthal circuit in �r ,�� plane if l
0 �l	0�; �ii� the Gouy
phase shift i��z�; and �iii� the radial variation in the phase,
ikr2 /2R�z�, which is caused by the variation in the radius of
cophasal surfaces, R�z�. In propagation, the combination of
the above-mentioned three parts would result in a novel evo-
lution of the phase distribution, as will be discussed in the
following.

The evolution of the radius of cophasal surfaces, R�z�,
plays an important role in the evolution of the phase distri-
bution of the multiringed breathers. Before studying the evo-
lution of the phase distribution, it is constructive to discover
the relationship between the evolution of the radius of
cophasal surfaces, R�z�, and the beam width w�z�.

Substituting Eq. �9� into the expression for R�z� in Eq. �7�
yields

R�zm
�n�� = �  , �11�

which means that the cophasal surfaces become plane ones
when the beam width reaches its maximum or minimum.

Between a maximum-beam-width plane and the contigu-
ous minimum-beam-width plane, there is a plane zmin R
where �R�z�� reaches its minimum �R�min, which can be ob-
tained from the equation �zR�z�=0, yielding

zmin R = n�zp0 + zp0 arctan	 z0
4 − z0

2�zp0
2 − 2zs

2� + zs
2�zp0

2 + zs
2�

zp0�z0
2zs + zp0

2 zs + zs
2 � z0

�z0
4 − 2z0

2�zp0
2 − zs

2� + �zp0
2 + zs

2�2�
 . �12�

For convenience of discussion, we divide the propagation
from a maximum-beam-width plane to the next one into four
parts �Fig. 4�. �i� In propagation from a maximum-beam-
width plane to the contiguous z=zmin R plane, R monotoni-
cally increases from − to −�R�min. �ii� In propagation from
the z=zmin R plane to the contiguous minimum-beam-width
plane, R monotonically decreases from −�R�min to −. �iii� In
propagation from the minimum-beam-width plane to the
contiguous z=zmin R plane, R monotonically decreases from
+ to +�R�min. �iv� In propagation from the z=zmin R plane to

the contiguous maximum-beam-width plane, R monotoni-
cally increases from +�R�min to +.

Because the cophasal surfaces are curved and the radius
of cophasal surfaces varies in propagation, the phase distri-
bution presents a spiral form �Fig. 4�. In planes where R

0, the cophasal lines spiral outward clockwise �anticlock-
wise� if l
0 �l	0�. On the other hand in planes where R
	0, the cophasal lines spiral outward anticlockwise �clock-
wise� if l
0 �l	0�. In a word, the cophasal lines spiral
outward in the opposite �same� direction as that in which the
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FIG. 3. �Color online� �a� Evolutions of the beam width for different off-waist distances zs when P0=0.5Pc. The off-waist distances are
zs=−0.5z0 �solid line�, 0 �dashed line�, and 0.5z0 �dash-dotted line�. �b� Evolutions of the beam width for different off-waist distances zs when
P0=2Pc. The off-waist distances are zs=0.8z0 �solid line�, 1.5z0 �dashed line�, and 2z0 �dash-dotted line�. �c� The same as �a� except P0

=2Pc.
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phase increases when R
0 �R	0�. In special case that zs
=0, zp0=z0, and the breather is reduced to a soliton, the spiral
cophasal lines are reduced to straight ones �row 4 of Fig. 1�,
because the cophasal surfaces remains planar during
propagation.

In propagation, the phase distribution is not stationary, but
rotates around the propagation axis. The change in the azi-
muthal orientation of the phase distribution in propagation is
determined by the relationship

��z,r� = ��0,r� +
���z� −

kr2

2R�z�� − ���0� −
kr2

2R�0��
l

.

�13�

Thus the angular rotation velocity of the phase distribution is

��p��z,r� =
d��z,r�

dt
=

c

n0

d��z,r�
dz

=
c

n0l kr2R�

2R2 +

�2p + �l� + 1�sec2� z

zp0
�/z0

1 + � zp0

z0
tan� z

zp0
� −

zs

z0
�2 � ,

�14�

where R� represents the derivative of R with respect to z, c is
the light velocity in vacuum, and n0 is the linear part of the
refractive index.

As shown in Eq. �14�, the angular rotation velocity of the
phase distribution is inversely proportional to l. In propaga-
tion, the angular rotation velocity of the phase distribution
varies not only with the propagation distance but also with
the radial location �Fig. 5�. The phase distribution near the
propagation axis rotates anticlockwise �clockwise� if l
0
�l	0�. When R�
0, absolute value of the angular rotation
velocity increases radially, whereas when R�	0 it decreases

radially. If the transverse location is large enough, the phase
distribution at the beam periphery and that near the beam
axis can even rotate in opposite directions.

III. ROTATING BREATHERS UNDER THE OFF-WAIST
INPUT CONDITION

A. Analytical solution

Following the approach of constructing linear azimuthons
in free space �25�, we assume that the field of the off-waist
input rotating breathers at the entrance plane of the SNN
media is

Ap1,l1,p2,l2
�rot� �r,�,0� = A0

�rot��Ap1,l1
�rot� �r,�,0� + bAp2,l2

�rot� �r,�,0�� ,

�15�

where A0
�rot� is related to the input power P0

�rot� through
P0

�rot�=��Ap1,l1,p2,l2
�rot� �r ,� ,0��2d2r, and b is the weight coeffi-

cient. In free space, the combined field presents a rotation of
the beam pattern in propagation if the relation

B =
�2p1 + �l1�� − �2p2 + �l2��

l1 − l2
� 0, �16�

is satisfied. Now that the free propagation is connected with
the SNN propagation through a one-to-one correspondence,
this existence condition is also applicable for the rotating
breathers in SNN media.

In SNN propagation, the combined field induces a wave-
guide via the strongly nonlocal nonlinearity, and the axis of
the waveguide is identical to the propagation axis of the
constituent fields. The combined field in this self-induced
waveguide can be readily obtained as

FIG. 4. �Color online� Evolutions of the radius of cophasal sur-
faces �solid lines�, the beam profile �long-dashed lines�, and phase
distribution �contour maps on the left and bottom� of the �1,1� mode
multiringed breather during propagation. zs=−z0; P0= Pc.
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FIG. 5. �Color online� �a� Evolutions of the radius of cophasal
surfaces �dash-dotted line� and the beam profile �dashed lines� of
the �1,1� mode multiringed breather during propagation. �b� The
longitudinal variations in angular rotation velocity of the phase dis-
tribution at r=0.1w0 �solid line�, 2w0 �dashed line�, and 3.5w0

�dash-dotted line�. In �a� and �b� zs=−z0 and P0= Pc.
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Ap1,l1,p2,l2
�rot� �r,�,z� = A0

�rot��Ap1,l1
�rot� �r,�,z� + bAp2,l2

�rot� �r,�,z�� ,

�17�

where Ap,l
�rot��r ,� ,z� represents the propagated field of the

constituent beams in the nonlinearity-induced waveguide by
the combined field. Ap,l

�rot��r ,� ,z� is the same as Apl�r ,� ,z� in
Eq. �6� except that the input power is not that of itself but
that of the combined field, i.e., P0

�rot�, and the key parameter
zp0 is correspondingly replaced with

zp0
�rot� = �P0

�rot��2�1/2.

As will be discussed in Sec. III B, because the distribution
of the phase difference between the constituent beams rotates
around the axis during propagation, the pattern of the com-
bined field rotates correspondingly. Furthermore, periodic
variation in the width of constituent beams yields synchro-
nous breath of the combined field. Therefore we call this
type of beam the rotating breather.

B. Propagation properties

As shown in Fig. 6, the field of rotating breathers is de-
termined not only by the indices of the constituent beams
�i.e., p1 , l1 , p2 , l2�, but also by the weight coefficient b. The
beam pattern varies with the weight coefficient b. But gen-
erally, due to azimuthal variation in the phase difference be-
tween the constituent beams, the intensity of the combined
field azimuthally varies with the period ��=2� / �l1− l2�. The
weight coefficient b plays an important role in the phase
distribution. For example, for the rotating breather A0,1,0,−2

�rot� ,
the phase in �r ,�� plane clockwise increases by 4� in an
azimuthal circuit if b=1 �row 4�, whereas it anticlockwise
increases by 2� in an azimuthal circuit if b=1 /7 �row 6�.

Furthermore, in propagation, the cophasal lines in the same
cross section spiral outward in opposite directions for these
two values of b.

Because the variation in the width of rotating breathers is
synchronous to that of the constituent beams, it can be
readily obtained from the results in Sec. II B, by replacing
the parameter zp0 with zp0

�rot�. In the rest of the subsection we
focus on the rotation of the intensity distribution during
propagation.

At the waist of the input field, the phase difference be-
tween the two multiringed constituent beams is ��waist
= �l1− l2��, which is independent of the radial position and
varies azimuthally. The azimuthally varied phase difference
results in a rotation-symmetric intensity pattern of the com-
bined field. Due to difference between their Gouy phase
shifts �i.e., � f; readers are referred to �26,27� for detailed
theory on the Gouy phase shift�, the phase difference be-
comes ���0�= �−�1�0�+ l1��− �−�2�0�+ l2�� when the con-
stituent beams are propagated from the waist to the entrance
plane. Therefore the azimuthal orientation of the phase dif-
ference distribution as well as that of the pattern is varied
with the angle

�� f = ����0� − ��waist�/�l1 − l2� . �18�

During SNN propagation, the difference in the SNN Gouy
phase shifts �i.e., �� between the constituent beams results in
more phase difference and yields ���z�= �−�1�z�+ l1��−
�−�2�z�+ l2��. The azimuthal orientation of intensity pattern
is rotated with the angle

��s = ����z� − ���0��/�l1 − l2� . �19�

Therefore, in propagation the azimuthal orientation of the
intensity pattern changes with the propagation distance z
according to

��z� = �0 + �� f + ��s = �0 + aB�

+ B arctan�� zp0
�rot�

z0
�tan� z

zp0
�rot�� −

zs

z0
� , �20�

where �0 represents the azimuthal orientation of the beam
pattern at the waist of the input beam. The angular rotation
velocity of the pattern is

��r��z� =
d��z�

dt
=

c

n0

d��z�

dz

=

cB

n0z0

sec2� z

zp0
�rot��

1 + �� zp0
�rot�

z0
�tan� z

zp0
�rot�� −

zs

z0
�2

. �21�

The beam pattern undergoes clockwise rotation in propaga-
tion when B	0; otherwise it undergoes anticlockwise rota-
tion. It should be noted that the angular rotation velocity of
the rotating breathers, i.e., ��r��z�, is independent of the ra-
dial position, different from the angular rotation velocity of
the phase distribution of the multiringed breathers, i.e.,
��p��z�.

FIG. 6. �Color online� Evolutions of intensity distribution �rows
1, 3, and 5� and phase distribution �rows 2, 4, and 6� of the rotating
breather A0,1,0,−2

�rot� with different off-waist distances zs and different
values of the weight coefficient b. The off-waist distance is zs=0 for
rows 1 and 2 and is zs=z0 /2 for rows 3–6. The value of the weight
coefficient is b=1 for rows 1–4 and is b=1 /7 for rows 5 and 6. The
input power is P0

�rot�= Pc, which ensures zp0
�rot�=z0.
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In a word, the rotation of the intensity pattern results from
two factors: �i� the azimuthally varied phase difference be-
tween the constituent beams, which is determined by l1− l2;
and �ii� the difference between the Gouy phase shifts of the
two constituent beams, i.e., �1−�2, which is determined by
�2p1+ �l1��− �2p2+ �l2��. The two factors all together influence
the rotating through the key parameter B defined in Eq. �16�,
as shown in Eqs. �20� and �21�.

As shown in Eqs. �7� and �21�, both the beam width and
the rotation velocity vary periodically with the period �. In
fact, they are dependent on each other. The comparison be-
tween Eq. �7� and Eq. �21� yields the relationship between
the beam width and the rotation velocity:

��r��z� =
cB

n0z0
� w0

w�z�
�2

. �22�

As shown in Fig. 7, �i� the rotation velocity decreases
�increases� with the broadening �narrowing� of the beam,
complying with the conservation of the orbital angular mo-
mentum. When the beam width reaches its maximum �mini-
mum�, the rotation velocity reaches its minimum �maxi-
mum�. �ii� In special case that the combined beam is inputted
at the waist and the input power equals the critical power so
that zs=0 and zp0

�rot�=z0, both the beam width and the rotation
velocity would remain constant upon propagation, and the
rotating breather is reduced to the rotating soliton. �iii� Since
the field at planes z= �a+1 /2��zp0

�rot� is the Fourier transform
of the input field or the reverse �24�, not only the beam width
w but also the azimuthal orientation ��z� and the rotation
velocity � at these planes are identical for different off-waist
shifts.

If the rotating breather propagates from the entrance plane
to a later plane, an arbitrary point of the beam in the entrance
plane moves to another location in the transverse plane,
keeping its individuality. According to Eqs. �7� and �20�, we
can obtain the trajectory equation of the point in the x-y
plane:

r�z� =

r01 + tan2���z� − �0

B
��

1/2

1 + � z0

zp0
�rot��

2

�tan���z� − �0

B
� +

zs

z0
�

2

�
1/2

, �23�

where �0 and r0 respectively represent the radial position and
azimuthal orientation of the point at the waist of the input
beam.

The motion of the point is determined by �i� the breath
�or, in other words, the periodical variation in the beam
width� of the breather, which results in the variation in radial
position; and �ii� the rotation, which results in the variation
in the azimuthal orientation. The width always breathes pe-
riodically with the period �zp0

�rot�, whatever the input power
and the off-waist distance are. On the other hand the rotation
velocity and the azimuthal orientation of the point are cru-
cially dependent on the azimuthally varied phase difference
in x-y plane as well as the difference in the Gouy phase shift
between the constituent beams, through the parameter B,
which is determined by the indices l1, p1, l2, and p2. There-
fore, as shown in Eq. �23�, the parameter B plays an impor-
tant role in the forming of the trajectory of the point.

Generally, if zs�0 and/or P0
�rot�� Pc, the point undergoes

different trajectories in x-y plane for different values of B
�Figs. 8�b�–8�i��. �i� If B=1, the trajectory shape is elliptical.
In fact, in a new reference frame X=x cos���zm

�0���
+y sin���zm

�0���, Y =y cos���zm
�0���−x sin���zm

�0��� �where x
=r cos � ,y=r sin ��, we get

X2

�r0
w�zm

�0��
w0

�2 +
Y2

�r0
w�zm

�1��
w0

�2 = 1,

which is the standard equation for the ellipse. �ii� If B=2, the
trajectory shape is ringed when zs=0 and P0

�rot�= Pc. With the
increase in �zs� and/or deviation of the P0

�rot� from Pc, it first
looks elliptical �but is not really an ellipse� �Fig. 8�c��, and
then it becomes similar to the profile of an egg �not shown in
Fig. 8�. �iii� If B=3,4 ,5 , . . ., the trajectory spirals outward
and inward alternately �Figs. 8�d�–8�f��. If B is an odd �even�
number, the trajectory spirals outward and inward twice
�once� in a period. The variations in the azimuthal orientation
of the point in a period are the same for B= j and B=2j
�j=3,5 ,7�. �iv� If B=1 /k �k=2,3 ,4 , . . .�, the trajectory
curves outward and inward alternately with the increase in
the azimuthal angle �, which yields a trajectory shape simi-
lar to a k-pointed star �Fig. 8�g��. �v� If B=k1 /k2 �k1 and k2
are relatively prime numbers; k1 ,k2
1�, the trajectory is

Ω
(r

) /(
cB

/n
0z

0
)

0 0.5 1 1.5 20

1

2

(b)

z/(πzp0)

w
/w

0

0 0.5 1 1.5 20.5

1

1.5
(c)

(ϕ
-ϕ

0)
/B

0 0.5 1 1.5 2

0

2

4

6 (a)

FIG. 7. �Color online� Variations in �a� the azimuthal orientation
of the beam pattern, �b� the rotation velocity, and �c� the beam
width with propagation for different off-waist distances. Solid lines:
zs=−z0; dashed lines: zs=0; dash-dotted lines: zs=z0. The input
power is P0

�rot�= Pc, which ensures zp0
�rot�=z0.
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similar to a flower with 2k2 petals. If k1	k2, the trajectory
curves outward and inward alternately �Fig. 8�h��, whereas if
k1
k2, the trajectory always curves inward �Fig. 8�i��.

As shown in Eq. �23� and Fig. 8, in propagation the loca-
tion of the point in x-y plane varies periodically. In a period,
the variation in the azimuthal orientation of the point is

�� = 2n� ,

where n is the minimum of the integers which satisfies n
=n�B /2, with n�=1,2 ,3. . .. The corresponding propagation
distance is

�z =
��

B
zp0

�rot� =
2�n

B
zp0

�rot�.

On the other hand if the beam is inputted at the waist
�zs=0� and the input power P0

�rot�= Pc, which ensures zp0
�rot�

=z0, the breather reduces to a rotating soliton, and the point
undergoes a ringed trajectory �Fig. 8�a��. Under this condi-
tion, the variation in the azimuthal orientation of the point in
a period is ��=2�, whatever B is, and the corresponding
propagation distance is �z=2�zp0

�rot� /B.

IV. CONCLUSION

In conclusion, we have revealed that the off-waist input
multiringed breathers and rotating breathers, which remain
shape invariant and breathe sinusoidally, exist as two classes
of breathers in SNN media. When the beams are inputted at
the waist and the input power equals the critical power si-
multaneously, the multiringed breathers and the rotating
breathers would reduce to multiringed solitons and rotating
solitons, respectively. A multiringed breather can be created
as a result of the superposition of two off-waist input even
and odd Laguerre-Gaussian beams with identical parameters
but a �� /2 phase difference between them. A rotating
breather can be formed by superposition of two multiringed
breathers with different indices; equivalently it can also be
formed by superposition of four corresponding off-waist in-
put Laguerre-Gaussian beams. Due to the dependence be-
tween the breath of the beam width and the periodically var-
ied azimuthal orientation of the intensity pattern, every point
within the beam cross section of a rotating breather under-
goes novel trajectory during propagation.
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