
Optic Tamm states: The Bloch-wave-expansion method

Xiubao Kang, Wei Tan, Zhiguo Wang,* and Hong Chen
Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, People’s Republic of China

�Received 13 January 2009; published 29 April 2009�

Optic Tamm states �OTSs� in one-dimensional photonic crystal �PhC� heterostructures are studied via a
Bloch-wave-expansion method �BWEM�. We show that by considering both the periodicity and the finiteness,
the propagation of electromagnetic wave in a finite one-dimensional PhC can be characterized by three
parameters—two Bloch impedances and the Bloch-wave vector—in the framework of the BWEM. Applying
the BWEM, we give a criterion of optic Tamm states at the interfaces inside finite heterostructures. It is
demonstrated that the criterion is applicable for the OTSs at the interface inside both finite PhC-PhC hetero-
structures and PhC-metal heterostructures. In addition, we also discuss the importance of the number and the
element order of the unit cells in the occurrence of optic Tamm states.
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I. INTRODUCTION

Electromagnetic �EM� surface wave is the wave that is
confined at the interface between two different media �1�.
One of the most well-known surface waves is the surface
plasmons �SPs� which can be excited at the interface of metal
and homogeneous dielectrics �2,3�. The wide applications of
SPs include subwavelength microscopy, agent sensing, en-
hanced light-matter interaction, etc. �4–6�. Due to the special
dispersions of the SPs which lie outside of the light cone,
they can only be excited by near fields. It is needed to seek
help from the attenuated total reflection or other configura-
tions �3�, while these configurations are not always conve-
nient in experiments or device designs. In addition, the ab-
sorption in the metal is another factor that hinders the SPs
from more applications. Recently, optic Tamm states �OTSs�
�7� occurring at the interfaces inside one-dimensional �1D�
photonic crystal �PhC� heterostructures have drawn much at-
tention �7–18�. Unlike the cases of SPs where the EM fields
are confined to the interface by the total internal reflection in
the dielectric, fields of the OTSs decay away from the inter-
face in the PhCs due to the Bragg reflection. The dispersions
of the OTSs are not required to lie outside of the light cone
and thus OTSs can be excited directly by propagating modes.
Furthermore, as the absorption of dielectrics is much lower
than that of metals, OTSs at the interface between two PhCs
will not suffer from severe loss as in SPs. The ease of real-
ization and some intrinsic natures of OTSs bring many po-
tential applications such as the fabrication of polariton lasers
�8�, magnetotunable filters �9�, and thermophotovoltaic de-
vices �10�.

Predictions about the occurrence of OTSs in the PhC het-
erostructures are of special importance. Most of the previous
theoretical studies focus on OTSs in heterostructures com-
posed by two semi-infinite PhCs �6,11–13�. However, real
structures are all finite and the advent of the boundaries
makes the EM fields different from those inside infinite
structures. The predictions made in previous works fit the
results well for cases, where the numbers of unit cells are

large enough, but do not fit well when the numbers are small.
However, in experiments about OTSs, the numbers of the
unit cells in PhCs are small �see, e.g., in �9,10�� and thus the
effect of the boundaries is no longer ignorable. Reference
�18� extended the parameter retrieval method �19� to the de-
scriptions of finite PhCs and analogized the OTSs with the
interface modes at the interface of two single-negative me-
diums �20�. As a homogenization procedure, the parameter
retrieval method characterizes a finite PhC by the parameters
retrieved from the global transmittance and reflectance.
However, the different physics in PhCs and homogeneous
materials limits the method to PhCs with special unit-cell
configurations. Unfortunately, in most studies about OTSs,
the unit cells of the PhCs are of the wavelength scale and are
often asymmetric �6,8–17�. It is known that the parameter
retrieval procedure is however counterproductive for such
structures �19�.

Considering the finiteness of the practical PhCs and tak-
ing advantage of the periodicity, we introduce a Bloch-wave-
expansion method �BWEM� to the study of OTSs in this
paper. In the framework of the BWEM, EM field inside a
finite PhC is expanded as a combination of Bloch waves
propagating in contrary directions. By the introduction of
two Bloch impedances, the global transmission properties of
1D PhCs with any unit-cell configurations can be presented
in a simple way. When applying the BWEM into the study of
EM fields in a PhC heterostructure, analytical predictions
about OTSs can be easily obtained. The derived analytical
occurrence condition of the OTSs is in a quite simple form,
which provides us the great convenience in designing OTSs
or discussing the mechanism involved. In the studies about
intermediate-mode-assisted optical coupler, EM fields in fi-
nite waveguide arrays are calculated by a similar Bloch-
wave-expansion approach �21� and the results have been
compared with those calculated in the framework of the
paraxial approximation �22�. It is shown that the result from
the Bloch-wave approach is accurate. The rest of the paper is
organized as follows. In Sec. II, basing on the Bloch-Floquet
theorem, we present the BWEM for 1D finite PhCs. Apply-
ing the BWEM, in Sec. III, we give a criterion of optic
Tamm states at the interfaces inside finite PhC-PhC hetero-
structures and demonstrate that the criterion is also appli-
cable for the OTSs at the interface inside PhC-metal hetero-*Corresponding author; zgwang@mail.tongji.edu.cn
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structures. Finally, the discussion and conclusion are given in
Sec. IV.

II. BLOCH-WAVE-EXPANSION METHOD

Monochromatic EM waves in infinite periodic structures
obey the Bloch-Floquet theorem and take the forms of Bloch
waves. For 1D PhCs with permittivity periodically modu-
lated along the z direction, the transverse �along x-y plane�
components of electromagnetic fields of a Bloch wave can be
expressed by a two-element column vector as
e�ilkBloch·d+ikxx+ikyy−i�t� E�z�

H�z� � where kBloch is the Bloch-wave
vector, kx and ky are the transverse components of the wave
vector, E�z� and H�z� are periodic functions, respectively, in
dimensions of electric and magnetic fields, and d is the lat-
tice constant. At the position of lth unit-cell surfaces zl, the
column vector �

E�zl�
H�zl� � fulfills �23�

T̂ � �E�zl�
H�zl�

� = e�ikBloch·d�E�zl�
H�zl�

� . �1�

Here, T̂ is the translation operator across one unit cell. For
the case of typical binary unit-cell configuration �AB�, the
translation operator takes the form of a 2�2 matrix T with
elements �19�

T�1,1� = cos kAdA cos kBdB −
�B

�A
sin kAdA sin kBdB,

T�1,2� = i�A sin kAdA cos kBdB + i�B cos kAdA sin kBdB,

T�2,1� = i
1

�A
sin kAdA cos kBdB + i

1

�B
cos kAdA sin kBdB,

T�2,2� = cos kAdA cos kBdB −
�A

�B
sin kAdA sin kBdB. �2�

Here, di�i=A ,B� corresponds to the thickness of layers A or
B, ki=��ik0

2−kx
2−ky

2 is the normalized wave vector in the
corresponding dielectric layers with a permittivity �i, �i

=
��0

ki
is the normalized wave impedance for TE waves and

�i=
ki

��i
for TM waves. One of the most different features

between OTSs and SPs is that OTSs can be excited directly
by normally incident propagating modes; we focus on the
cases of normal incidence in the following.

The dispersion relation of the infinite PhCs can be ob-
tained by solving the trace of the transfer matrix T,

cos kBlochd =
tr�T�

2
. �3�

Equation �1� is an eigenequation and eikBlochd or e−ikBlochd is
the eigenvalue where kBlochd or −kBlochd depicts the phase
change in Bloch waves across one unit cell in positive or
negative direction. The column vector �

E�zl�
H�zl� � is one of the

two eigenvectors of the transfer matrix �24,25�. Extracting
H�zl� from the column vector �

E�zl�
H�zl� � and removing the H�zl�

from both sides of Eq. �1�, we obtain the eigenequation cor-
responding to PhCs with binary unit-cell configuration �AB�
in the following form:

T � ���
Bloch

1
� = e�ikBlochd���

Bloch

1
� , �4�

where the characteristic parameters ��
Bloch, which are the ra-

tios between the electric fields and the magnetic fields of
Bloch wave propagating in, respectively, positive and nega-
tive directions, can be referred as Bloch impedances pertain-
ing to corresponding PhCs. The column vectors

���
Bloch

1
�

are the eigenvectors of the transfer matrix corresponding,
respectively, to the eigenvalues eikBlochd and e−ikBlochd. For fre-
quencies lying in the odd band or the odd gap, the Bloch
impedances in the case of the binary unit-cell configuration
�AB� is

��
Bloch

=
�2�A�B

�1 − cos2 kBlochd − i��A
2 − �B

2�sin kAdA sin kBdB

��B − �A�sin�kAdA − kBdB� + ��B + �A�sin�kAdA + kBdB�
.

�5�

In even band or even gap, the sign “�” should be changed to
“�” on the right-hand side of Eq. �5�.

These two impedances are of vital importance in describ-
ing the transmission properties of the PhCs. An important
point one should notice is that at �AB� interface, EM waves
propagating in opposite directions see different unit-cell con-
figurations ��AB� or �BA��. By exchanging the position of �A
and �B on the right-hand side of Eq. �5�, one can get the

Bloch impedances for �BA� unit cell as ��
Bloch�=−��

Bloch. It is
easy to understand that this conclusion can be extended to
PhCs with arbitrary unit-cell configurations.

In the discussion of the electromagnetic parameter re-
trieval method, Ref. �19� has introduced two impedances in
Eq. �35�. It is obvious that two impedances are the Bloch
impedances of the periodic structures. Comparisons between
impedances of homogeneous materials and the Bloch imped-
ances of periodic structures were made there. However, the
lack of a unique definition of the Bloch impedances limits
the rigorous homogenization procedure to periodic structures
with symmetry unit-cell configurations.

In finite PhCs, the translation symmetry is broken by the
advent of the external boundaries. When EM waves are im-
pinging from one boundary, the two-element column vectors
representing fields at the interfaces of unit cells do not take
the form of a single eigenvector as expressed in Eq. �1� any
more. A finite PhC with the same unit-cell configuration as
the infinite case discussed above is shown in Fig. 1 and the
coordinates of the surfaces of the unit cells are labeled with
z1 ,z2 , . . .zj , . . .zn. As
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��+
Bloch

1
�

and

��−
Bloch

1
�

are eigenvectors belonging to different eigenvalues of the
same matrix, they are linear irrelevant and composing a com-
plete basis set. We can decompose the column vector repre-
senting the fields at the jth unit-cell surface �zj� into

�E�zj�
H�zj�

� = H+��+
Bloch

1
� + H−��−

Bloch

1
� , �6�

where H+ and H− are the complex coefficients in the dimen-
sion of the magnetic field. By the transfer-matrix method
�19,26�, we can achieve the column vector of EM fields at
kth unit-cell surface �zk� from that at jth unit-cell surface,

�E�zk�
H�zk�

� = �T�k−j�E�zj�
H�zj�

� . �7�

Combining Eqs. �6� and �7�, we get

�E�zk�
H�zk�

� = H+�T�k−j��+
Bloch

1
� + H−�T�k−j��−

Bloch

1
� . �8�

Then we insert the eigenequation �4� into Eq. �8�,

�E�zk�
H�zk�

� = H+ei�k−j�kBlochd��+
Bloch

1
� + H−e−i�k−j�kBlochd��−

Bloch

1
� .

�9�

One can find from Eq. �9� that each part at the right-hand
side of Eq. �6� propagates through k-j unit cell in the same
manner as a Bloch wave propagating in one direction. This is
in agreement with the argument that both finite and infinite
periodic structures support the propagation of Bloch waves
�see �27� and references therein�. Now, it is convenient to get
the transmission and reflection properties of a finite PhC by
matching the fields at the two outer boundaries with those in
the substrate.

In the derivation of the transfer matrix for a homogeneous
slab in the traditional transfer-matrix algorithm, fields in the
slab are usually studied by plane-wave-expansion methods
�24�. When the whole space is filled with the same material,

EM waves take the form of plane waves and the ratio be-
tween the electric field and the magnetic field equals to the
impedance of the material. In terms of the column vector
representation, fields of a plane wave inside a homogeneous
material with impedance �h and refractive index n can be
represented by a two-element column vector of

Hheink0z��h

1
�

or

Hhe−ink0z�− �h

1
�

which represents EM plane waves propagating in one direc-
tion, along positive z or negative z direction. Here, k0 is the
wave vector in free space, Hh is the magnetic field, and

��h

1
�

and

�− �h

1
�

are the plane-wave eigenstates of the infinite homogeneous
material. When it comes to the cases of a finite slab, plane
waves experience multireflections due to the advent of the
external boundaries. Fields inside finite slabs do not take the
form of a plane wave propagating in a single direction as
before. In traditional plane-wave-expansion methods, they
are considered as superposition of two contrary propagating
plane waves. The column vectors of fields can be expressed
as

�E�z�
H�z� � = Hh+eink0z��h

1
� + Hh−e−ink0z��h

1
� . �10�

The differences between Eqs. �9� and �10� are �i� functions
on the right-hand sides of these two equations represent, re-
spectively, Bloch and plane waves and �ii� the eigenimped-
ances in BWEM are ��

Bloch while those in-plane-wave expan-
sion method are ��h. For a 1D PhC with symmetric unit cell
configurations, we can assign a �eff=�+

Bloch=−�−
Bloch, which

shows some similarity between 1D symmetric PhC and ho-
mogeneous slabs. Following the name of the plane-wave ex-
pansion methods, we call the expansion of field in the finite
PhCs Bloch-wave-expansion method.

In plane-wave-expansion methods, the transmission prop-
erties of a homogeneous material are characterized by two
parameters ��h and nk0�. The BWEM uses three parameters
��+

Bloch, �−
Bloch, and kBloch� to describe the transmission prop-

erties of 1D PhCs. kBloch /k0 is the effective refractive index.
The need for two impedances ��+

Bloch and �−
Bloch� should be

attributed to the lack of the reversal symmetry for PhCs with
general unit-cell configurations.

III. CRITERION FOR THE OCCURRENCE OF OTSs

Here, we apply the BWEM to the study of the occurrence
of OTSs. A typical heterostructure ��AB�m�CD�n� is demon-

FIG. 1. 1D finite PhC with binary unit-cell configurations. The
shaded �hatched� regions represent A�B� layers. The squares with
dashed border show two units. The positions that labeled with
z1 ,z2 , . . .zj , . . .zn are the �AB� unit-cell surfaces.

OPTIC TAMM STATES: THE BLOCH-WAVE-EXPANSION… PHYSICAL REVIEW A 79, 043832 �2009�

043832-3



strated in Fig. 2. The indexes m and n are, respectively, the
numbers of unit cells in corresponding PhC slabs. The struc-
ture is embedded in free space with impedance �0. For the
sake of clarity, we define the front �left� and the behind
�right� surfaces of the �AB�m��CD�n� slab as � �	� and 
 ���,
respectively. Correspondingly, �i

s �i=�, 
, 	, or �� presents
the surface impedance which is the ratio between the electric
field and magnetic field at surface i,

�i
s =

Ei

Hi
. �11�

As shown in Refs. �6,11,17�, OTSs are characterized by a
resonant tunneling or a perfect transmission. Thus for EM
waves with the frequency of OTSs impinging from left, the
reflection from the embedded heterostructures should be
zero. As a direct consequence of the zero reflection, there
should be ��

s =�0 �� is the incident surface�. At the right-hand
side of the heterostructure, we have ��

s =�0. The EM fields at
the � and � surfaces can be expressed as

H���0

1
� and H���0

1
� , �12�

where H� and H� denote the complex tangential magnetic
fields at corresponding surfaces. The surface impedances on
both sides of the interface �


s and �	
s can be, respectively,

calculated following Eqs. �6�–�9� as

�

s

=
�1+

Blocheimk1
Blochd1��0 − �1−

Bloch� + �1+
Bloche−imk1

Blochd1��1+
Bloch − �0�

eimk1
Blochd1��0 − �1−

Bloch� + e−imk1
Blochd1��1+

Bloch − �0�
,

�13�

�	
s =

�2+
Bloche−ink2

Blochd2��0 − �2−
Bloch� + �2−

Blocheink2
Blochd2��2+

Bloch − �0�

e−ink2
Blochd2��0 − �2−

Bloch� + eink2
Blochd2��2+

Bloch − �0�
,

�14�

where the subscripts “1” and “2” designate, respectively, the
left PhC ��AB�m� and right PhC ��CD�n�, and �i�

Bloch �i=1,2�
are the corresponding Bloch impedances �Eq. �5��. Applying
the boundary condition at the interface, the zero reflection
can be reached when and only when

��

s − �	

s � = 0 �15�

is fulfilled �20�. Here, “�¯ �” means the absolute value or the
modulus of corresponding value. We take Eq. �15� as the
criterion for OTSs in 1D PhC heterostructures. In general,

not all cases satisfying Eq. �15� are OTSs. In the frequency
range lying in the band of both constituting PhCs, there are
also complete transmissions �zero reflections�. As OTS is a
kind of resonant tunneling, it only appears in the gaps of
both constituting PhCs. Once Eq. �15� is fulfilled in such
frequency range, OTS appears.

A comparison between the frequency of the OTS derived
from the surface impedances matching condition and the fre-
quency of the transmission peak of heterostructures
�AB�m�CD�n is shown in Fig. 3. The relative dielectric con-
stants of constituting layers are chosen as �A=�C=1.96 and
�B=�D=4, which can be easily realized in materials such as
porous silicon �28�. The thicknesses of the layers are, respec-
tively, dA=435.5 nm, dB=96 nm, dC=100 nm, and
dD=330 nm. The transmittances are calculated by the
transfer-matrix method �26�. Different from the PhC-PhC
heterostructures studied in Ref. �7�, where the unit cell of one
of the PhCs is two times as thick as that of the other PhC in
the heterostructure, the unit cell �AB� and unit cell �CD�
possess equal optic length, which means that their gaps over-
lap with each other. We plot ��


s −�	
s � and the transmittance as

functions of frequency for heterostructures with n=9 and
m=3,7 ,9 ,12, in the frequency range lying in the first gap of
both PhCs. The solid lines represent ��


s −�	
s � and the dashed

lines are the transmittance of the corresponding heterostruc-
ture. Except for the case of m=3 where no peak appears in
the transmittance and no dip in ��


s −�	
s �, the transmission

peak appears just at the frequency where ��

s −�	

s � is minimum
in anyone of the other three heterostructures.

However, not all of the three transmission peaks for the
three heterostructures reach unity. As one can find in Eqs.
�13� and �14�, the numbers of unit cells in the PhCs play an
important role in determining the corresponding surface im-

FIG. 2. A heterostructure and the surfaces of each constituting
PhC. The surfaces are labeled, respectively, as �, 
, 	, and �.

FIG. 3. �Color online� The matches of surface impedances and
the transmittances for four heterostructures. The solid line in each
subplot is ��	

s −�

s � and the dashed line represents the corresponding

transmittance �t�. The parameters of the corresponding layers are
�A=�C=1.96 and �B=�D=4; dA=435.5 nm, dB=96 nm,
dC=100 nm, and dD=330 nm.
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pedance. For the heterostructure with m=9, n=9, the sur-
face impedances at two sides of the interface match perfectly
with each other, and at the same frequency, there is a perfect
transmission. When m varies, the surface impedance �


s

changes, and the matching condition is no longer fulfilled. As
shown in Fig. 3, the dips in the lines representing ��


s −�	
s � do

not reach exactly 0 for m=7,12. As a result, the amplitude of
the transmission at the peak frequency in each of these two
cases experiences an obvious deviation from unity.

We have demonstrated that the match of the surface im-
pedances �Eq. �15�� can be used as a criterion for the occur-
rence of OTSs for a PhC-PhC heterostructure. Meanwhile,
this criterion is also correct for the occurrence of OTSs in
metal-PhC heterostructures, which can be seen from follow-
ing discussions about the transmittance of a metal-PhC het-
erostructure that has been experimentally explored in Ref.
�17�. The heterostructure is composed with an Au film
�dm=30 nm� and a finite PhC �GaAs /Ga0.1Al0.9As�19
with dGa0.1Al0.9As=59.3 nm and dGaAl=76.2 nm. The relevant
dielectric constant of Au is represented by the Drude
mode involving dispersion and absorption as
�Au=1−�p

2 / ����+ i	�� where �p is the plasma frequency,
and 	 is the plasma collision rate. For Au at room tempera-
ture, we take �p=1.35�1016 Hz and 	=4.096 5�1013 Hz
�17�. The relevant dielectric constants of GaAs and
Ga0.1Al0.9As are taken from Ref. �29�,

� j��� = Aj + 	
i=0,1

Cji

����2 − Eji
2 , �16�

where Aj �j=Ga0.1Al0.9As, GaAs�, Cji �i=0,1� are constants,
�� is the energy of photon, and Ejis are the resonant ener-
gies. As the energy of photons is far from any of the resonant
energies, the dielectrics in PhCs involve slightly the disper-
sion. The surface impedance �Au

s at the metal side of the
interface is calculated by taking �1+

Bloch=−�1−
Bloch=�Au and

eimk1
Bd=eik0��Audm in Eq. �13�. In Fig. 4 we demonstrate

��PhC
s −�Au

s � and the transmittance of the
Au�GaAs /Ga0.1Al0.9As�19 heterostructure. One can find that
a transmission peak or an OTS occurs exactly at the fre-
quency where the surface impedances match best. The low
transmission at the peak frequency is due to the absorption in
the metal. The result is in agreement with the expectancy
from the criterion of OTSs by the match of the surface im-
pedances.

In this section, the surface impedance at each side of the
interface inside a PhC-PhC heterostructure is calculated by
applying the BWEM, and the match of the surface imped-
ances is used to be a criterion of OTSs at PhC-PhC interface
or metal-PhC interface. The criterion is demonstrated to be
valid by comparison between the transmission peaks and the
minimums of the differences of the surface impedances. Al-
though the transmittance can be calculated by the transfer-
matrix method, the transfer matrix of a PhC-PhC heterostruc-
ture which needs to be calculated layer by layer is very
complex and it is difficult to give an analytical criterion for
the occurring of a resonant tunneling. In the criterion for
OTSs by BWEM �Eqs. �13�–�15��, the PhCs lying on each
side of the interface are represented by the parameters de-

rived from a single unit cell �Eqs. �3� and �5�� and the num-
ber of the unit cells. This will provide us a great convenience
in analysis about what kind of finite PhCs can constitute
heterostructures that can sustain OTSs.

IV. DISCUSSION AND CONCLUSION

In Sec. III we got the criterion of OTSs by the match of
surface impedances at the interface inside a PhC heterostruc-
ture. The surface impedance at each side of the interface
takes a simple form in the schematic of BWEM as Eq. �13�
or Eq. �14� which can be written, respectively, as

�

s =

�1+��0 − �1−
Bloch� + �1−e−2imk1

Blochd1��1+
Bloch − �0�

��0 − �1−
Bloch� + e−2imk1

Blochd1��1+
Bloch − �0�

, �17�

�	
s =

�2+��0 − �2−
Bloch� + �2−e2ink2

Blochd2��2+
Bloch − �0�

��0 − �2−
Bloch� + e2ink2

Blochd2��2+
Bloch − �0�

. �18�

As the frequency range which we studied lies in the gaps of
the PhCs on both sides of the interface, owing to the evanes-

cent nature of Bloch wave, we have �eik1
Blochd1�1 and

�eik2
Blochd2�1. In the limit case with m→� ,n→�, i.e., the

heterostructure is a combination of two semi-infinite PhCs,
we obtain �


s =�1−
Bloch and �	

s =�2+
Bloch. The match of surface

impedances turns to be the match of eigenimpedances and
the EM wave inside each semi-infinite PhC is just a single
eigen-Bloch wave. It is consistent with the analysis in Refs.
�7,11�. When the numbers of unit cells in each PhC are not
large, the surface impedance at the interface is quite different
from the Bloch impedance of the infinite PhC. The match of
Bloch impedances ��1−

Bloch−�2+
Bloch�=0 is not suitable for the

prediction of OTSs. In Fig. 5�a�, as a function of frequency,
��1−

Bloch−�2+
Bloch� is given in the gap of both semi-infinite PhCs.

Figure 5�b� shows the transmittances through three finite het-
erostructures embedded in air. There is a peak of unity for
each of three heterostructures, which indicates the occur-

FIG. 4. �Color online� The occurrence of OTSs and the match of
surface impedances at the metal-PhC interface of a heterostructure
Au�GaAs /Ga0.1Al0.9As�19, where the metal is a 30-nm-thick Au
layer. Realistic parameters of the materials are employed.
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rence of an OTS at the corresponding frequency. One can see
that the frequencies of the peaks in the three finite hetero-
structures are quite different with the infinite case. The less
the periods, the farther the frequency of OTSs shifting away
from f0 where ��1−

Bloch−�2+
Bloch�=0. Furthermore, the transmis-

sion coefficients at the frequency f0 for all these three het-
erostructures are much lower than unity. Thus one can find
that the eigenimpedance matching occurrence criterions for
OTSs cannot be used to finite PhC heterostructures. In the
criterion of OTSs by the match of surface impedance given
by Eqs. �13�–�15�, the numbers of periods of both PhCs m
and n are well considered, which provides us the feasibility
of accurate predictions about OTSs in finite heterostructures.

Reference �7� has studied the OTSs at the interface be-
tween two PhCs; one of which has a period close to the
wavelength of light and the other one has a period close to
the double of the wavelength. It was demonstrated that �i�
OTSs can occur in the frequency range lying in the odd gap
of one PhC and even gap of the other and �ii� the order of the
slabs at the interface has a crucial effect on the OTSs. When
the PhCs at the right-hand side of the interface begins with a
low index slab, the structure can sustain OTSs. When the
order of the elements of the PhCs is changed and with a high
index layer adhering to the interface at the right-hand side of
the interface, the OTSs disappear.

Different from the descriptions about OTSs in Ref. �7�,
we find that OTSs are not necessarily in the frequency range
lying in the odd gap of one PhC and even gap of the other
PhC in the heterostructure. OTSs can also exist at the fre-
quency lying in the first gap of both constituting PhCs, which
can be seen from Fig. 6, where the transmittances for
�AB�9�CD�9, �AB�9, and �CD�9 embedded separately in air
are plotted, respectively, by solid, dashed, and dotted lines.
In Fig. 7, we demonstrate the transmittances and the matches
of the surface impedances of four heterostructures with prop-
erly chosen m and n. One can find that by choosing proper
sets of m and n, �AB�m�CD�n, �AB�m�DC�n, �BA�m�CD�n, and

�BA�m�DC�n can all sustain resonant tunnelings and thus
OTSs. Just as we have demonstrated, it is the match of sur-
face impedances at different sides of the interface that deter-
mines the occurrence of the OTSs. When the unit-cell con-
figuration of one of the PhCs changes such as from �AB� to
�BA� or from �CD� to �DC�, the eigenimpedances �Eq. �5��
and thus the surface impedance �Eq. �13� or Eq. �14�� at the
corresponding side of the interface changes critically. So the
order of the unit-cell configuration will surely affect the oc-
currence of OTSs. But there seems no inevitable link be-
tween the orders of the elements in the unit cells and the
occurring of OTSs.

In conclusion, a Bloch-wave-expansion method is intro-
duced to study the transmission properties of finite PhCs. We
demonstrated that a finite PhC can be characterized by two
Bloch impedances and the Bloch-wave vector in the Bloch–
wave-expansion method where both the periodicity and the

FIG. 5. Comparisons between the match of eigenimpedances
and the OTSs in finite heterostructures. f0 labeled in �a� is the
frequency where the eigenimpedances �1− and �2+ match best. The
solid, dash, and the dot lines in �b� are, respectively, the transmit-
tances of �AB�6�CD�5, �AB�8�CD�8, and �AB�15�CD�18.

FIG. 6. The transmittances of �AB�9�CD�9, �AB�9, and �CD�9.
The substrate is air. The inset shows schematically the
heterostructure.

FIG. 7. �Color online� Resonant tunnelings and the matches of
the surface impedances for four kinds of heterostructures
�AB�6�CD�5, �AB�3�DC�3, �BA�3�CD�4, and �BA�3�DC�8.
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symmetry of PhCs are considered fully. Applying the method
to PhCs in a heterostructure, we obtained the relation of
fields at different boundaries of the PhCs inside the hetero-
structure and gave a criterion for the occurrence of optic
Tamm states in the heterostructure by the match the surface
impedances at the different sides of the interface. It is ex-
pected to give some instructions to the search of PhC hetero-
structures which can sustain OTSs.
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