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Semiclassical quantization of the one- and two-kink dark solitons

J. C. Martinez™ and M. B. A. Jalil

Department of Electrical and Computer Engineering, Information Storage Materials Laboratory, National University of Singapore,

4 Engineering Drive 3, Singapore 117576, Singapore
(Received 2 September 2008; published 6 April 2009)

Drawing from an analogy with a linear particle-chain model, we develop a picture of the dark optical soliton
as a composite of a background and notch each enjoying a certain degree of independence. The semiclassical
quantization procedure of Dashen et al. [Phys. Rev. D 11, 3424 (1975)] is modified to allow for the separate
quantization of these two entities. We apply our results to the one-kink and two-kink dark solitons. For both we
find that the fluctuations about the notch can be understood as a bound state of bosons held by an attractive
delta potential while the background fluctuations are seen as an ensemble of oscillators with a slightly repulsive
interaction. We show that the collision effects are small for the two-kink soliton. The quantum numbers
emerging from this analysis are interpreted in terms of the number of particles. Moreover, the topological
character of the dark soliton also appears naturally in our description. We speculate on the possibility of
fractional quantum numbers and derive the repulsive interaction of two dark solitons from the framework

developed for the two-kink soliton.
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I. INTRODUCTION

For over four decades now the ability of solitons to pre-
serve their shapes and identities during collision and evolu-
tion and their remarkable robustness have been the subject of
continuing interest and investigation. A large body of phe-
nomena describing solitons is well encapsulated by the non-
linear Schrodinger equation (NLSE) which has two distinct
types of localized solutions: the bright and dark solitons.
While much progress with the former has been made, for
various reasons, dark solitons have been observed only rela-
tively recently, for instance, in trapped Bose-Einstein con-
densates (BECs) [1], in optical fibers [2], and in thin mag-
netic films [3]. Here we focus on dark optical spatial solitons
in one dimension, which are low-intensity dips on a constant
wave (cw) background field and which do not diffract during
propagation of the beam [4]. Such solitons have been re-
garded as the reflectionless modes of the optical waveguide
they induce (contrasting with bright spatial solitons which
are the bound modes) [4,5].

The development of our understanding of optical dark
solitons might be said to parallel somewhat the odyssey of
modern optics: for a long time the semiclassical quantization
of the electromagnetic field was quite adequate for the elu-
cidation of the optical phenomena than known and only later,
with the advent of the laser, did the full quantization of the
electromagnetic field become urgently necessary [6]. Thus
one might argue that solitons in BEC are necessarily quan-
tum objects because these condensates are purely quantum
phenomena to start with, whereas optical solitons on the
other hand may be treated as classical objects since the cw
background seems classical. To be sure, a full quantum
theory of solitons, optical, or otherwise is not available. Nev-
ertheless if we recall that many nonlinear field theories de-
scribing elementary particles have soliton solutions, then the
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quantization of solitons should appear naturally because the
soliton remains a particle even in the classical limit, 7 — 0.
An obvious way to go about this is thus by carrying out an
expansion in the Lagrangian in powers of 7 or some other
parameter occurring with 7, wherein the classical soliton
emerges as the leading order term and the higher order terms
describe quantum effects. In fact, such a procedure, the semi-
classical quantization in field theory, is known in particle
physics [7] and has found application in other problems [8].
Although a small coupling approximation, the semiclassical
quantization method is not a perturbation theory because it
contains all orders of perturbation theory (see [7] and also
remarks after Eq. (18)). In the context of solitons this method
had been applied before by Dashen, Hasslacher, and Neveu
(DHN) [9] in their seminal work on the quantization of the
doublet solution of the sine-Gordon equation [Eq. (9)]. But a
direct link to dark optical solitons was not made. Hence the
goal of this paper is to carry out the semiclassical quantiza-
tion of the two-kink dark soliton. However, our approach
will depart somewhat from DHN, both in method and con-
cept of quantization, and we believe that it is much simpler
and also more physically direct. We should also note that
DHN were interested in manifestly relativistic field theories
whereas optical solitons will be treated here as nonrelativis-
tic systems.

The case for the quantization of nonlinear field theories,
of nonlinear effects in optical systems, and of optical solitons
in particular has been articulated by several workers in the
past few years. Recently, for instance, there has been much
interest in creating a strongly interacting atom-photon system
[10]. Although such a system does not involve the soliton,
one must contend with both photonic and atomic degrees of
freedom. (At this stage it will suffice to define quantization
as the calculation of the energy spectrum of a nonlinear sys-
tem about a suitable classical stable configuration. We will
make this more precise in Sec. III.) Chiao and his co-workers
[11] pioneered the study of a “photon fluid” confined in a
Fabry-Pérot resonator in which the photons appear as weakly
interacting massive bosons and where the Bose-Einstein con-
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densation for photons might be observed. Although these
workers do not explicitly discuss solitons, the underlying
physics is governed by the nonlinear Schrodinger equation.
If the photon-photon interactions of a photon fluid are re-
placed by exciton-polariton scattering instead we are led to
current studies on cavity polaritons which share much in
common with BEC. A large body of work on this exotic
system and on the prospects of a polariton laser is already in
existence [12]. In another development novel quantum ef-
fects including the possibility of a phase transition have also
been reported in optical pulses propagating in a Kerr-effect
ring cavity [13]. Thus there is a growing awareness that the
nonclassical aspects of solitons cannot be glossed over for
long.

To be specific we will be considering in this paper the
quantization of a one-dimensional optical system generically
described by the NLSE,

0+ @ — 31070 =0 (1)

with a view to arriving at a particle interpretation of it. Here
¢ is the complex electric field. As pointed out above the
semiclassical quantization method is appropriate for treating
this case because of its superiority over a perturbative ap-
proach. The last term is the interaction term and as it stands
this equation describes a system with a repulsive interaction
[4,14]. One can verify that a solution is the one-kink soliton
(p(x,t):y"ane‘iﬂzf tanh(7x/\2), 7=const, which is also
called the dark soliton. If |¢|? is proportional to intensity then
this describes a dark spot, or notch, at x=0 in an otherwise
uniform background field. We will, however, define the term
notch differently in Sec. II. In a recent paper we showed that
the semiclassical quantization of this soliton complemented a
parallel Bogoliubov—de Gennes (BG) analysis [15]. In this
paper we explain the dark soliton as a composite quantum
structure involving a background whose fluctuations are
quantized harmonic oscillators interacting with a slightly re-
pulsive anharmonicity and a localized notch supporting mas-
sive bosons with attractive interaction. In distinguishing
these features of the dark soliton, we must be careful not to
separate them for in doing so we would risk loosing the
nonlinear interaction itself and thus speaking of two objects
quite unrelated to the single unified reality being studied.
Going back to Eq. (1), if we have the positive sign for the
third term then the corresponding one-soliton solution is
<p(x,t)=2776“72’ sech(#x), which is termed a bright soliton
and, unlike the dark soliton, it clearly represents a localized
pulse. (In our work, this will correspond to the notch just
mentioned above.) This soliton has been shown to sustain a
bound system of bosons with attractive point delta interac-
tion [16,17]. The field-theoretical basis for characterizing
this soliton and its properties in the limit of large quantum
numbers had been carried out by Nohl [16] and more re-
cently studies of a possible phase transition indicate that it is
an object with a clear distinguishable identity [13]. For a
review of the quantum theory of point-particle bosons see
[18]. An important difference between the dark soliton and
the bright one is that the former is topological, i.e., its be-
havior at spatial infinity is nontrivial [7,19]. Clearly an
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adequate description of the dark soliton must address the
issue.

This paper is organized as follows. Section II discusses
the excitations of a linear chain model of particles which
shares some features in common with the dark optical soli-
ton. We develop an analogy between this physically appeal-
ing model and the less intuitively accessible dark optical
soliton and explore some of its consequences. We emphasize
that the linear chain, while useful in our development, has
properties quite unrelated to it. In Sec. III we introduce the
one-kink dark soliton and carry out the semiclassical quanti-
zation of this system. On account of a significant feature of
the dark soliton, namely, the fact that the Lagrangian can be
split into two distinct terms, we also explain how our proce-
dure differs from DHN. This section has several parts: (a)
first we introduce the one-kink soliton, (b) then summarize
the DHN method as it pertains to our case, (c) apply a modi-
fied DHN method to the kink, taking its topological character
into account, and (d) discuss the results. The two-kink dark
soliton is studied in Sec. IV and we quantize it in Sec. V
where we also relate it with the linear chain model. Here we
touch on fractional soliton number and the conservation of
topological charge. Then in Sec. VI we derive an expression
for the repulsive interaction between two well separated dark
solitons, an issue of relevance to the control over dark soli-
tons. We are unaware of a direct derivation of our result and
believe it would be of interest and utility. Finally in Sec. VII
we give our conclusions.

II. ANALOGY WITH A LINEAR CHAIN OF PARTICLES

In this section we study the dynamics of a linear mon-
atomic chain of particles interacting via nearest neighbors
through harmonic and quartic potentials. By focusing on the
antisymmetric kink solution of this system we hope to arrive
at an analogy which will provide us with a useful picture of
the dark optical soliton. There has been much work on this
model, which is only tangentially related to solitons, and our
aim is simply to gather insight useful for our immediate goal,
the quantization of the dark soliton. For our purposes it will
suffice to note that much of the effort on the chain model is
on the search for stationary localized modes brought about
by the quartic potential [20]. Our interest here then is in
identifying qualitative similarities, not necessarily quantita-
tively exact correspondences.

We denote the particle mass by m, the longitudinal dis-
placement of the nth particle by u,, and the harmonic and
anharmonic force constants by K, and K,, respectively. The
equations of motion are (see Fig. 1)

ml;in + K2(2un — Uy — un—l) + K4M’?; =0. (2)

We are studying therefore the case of on-site (negative) an-
harmonicity. (A study of the corresponding translationally
invariant case yields qualitatively similar results. Other sce-
narios, such as boundary conditions, can be introduced and
studied, but these will take us too far afield.) To solve for
stationary solutions of Eq. (2) we follow Bortolani er al. [21]
by first assuming that
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FIG. 1. Displacement pattern of the antisymmetric kink. The
dashed and solid curves show the fitting curves with tanh behavior
which connect displacements corresponding to a kink. Notice that
the patterns to the right and left of x=0 display their regular rever-
sal in sign from site to site. However on passing x=0 this regularity
suffers a phase change in 7 (e.g., n=1 should be “down” in relation
to the particles on the left half). If the pattern for positive x is
reflected about the horizontal axis, the phase change still remains
(since now the solid fitting curve also must be reversed to connect
“like” particles).

w=w;+ (3)

u,=§, cos wt,

and use the rotating wave approximation, familiar from op-
tics [22], to simplify Eq. (2),

ma’&, = K[ (&, - &) + (&, - €] +3K,E.  (4)

An approximate expression for the energy, which will be
useful later, can also be given by following similar steps:

1 1
E= EmeE & sin® wr + EKZE (&, &,41)° cos® ot
n n

3
+ ZK4E §ﬁ cos’ wt. (5)

Next we build into the equations of motion the reversal in
sign from site to site through (see Fig. 1)

gn = (_ l)nlpn’

(¢4, is independent of n) and introduce the continuous vari-
able x=na, a=lattice constant. Equation (6) is also used in
other problems, for instance, in polyacetylene [23]. The dis-
placements can be expanded to second order as i,=i(x),
Ype1=h(x) = al//x+%a21,bxx. The subscript x indicates differ-
entiation with respect to x. We expect the contribution from
the harmonic part of the excitation, w;, to be much larger
than (), which is the contribution due to the nonlinearity.
Thus we can ignore ? and choose the maximum frequency
w?=4K,/m. We obtain from Eq. (4)

2 U 3
= 2mw, Qi(x) +a K2F+ ZK4¢‘(x) =0. (7)
X

n=0 (6)

To keep track of signs, it will be convenient to write K,
=|K,|sgn(K,), Q=|Q|sgn(2). We also define the positive pa-
rameters,

k)
—|Ky
! 8)

a2K2 ’

and set x=y/ Va so we can now recast Eq. (7) as
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&’y B

— —sgn(Q) ¢+ sgn(K,) = ¢ = 0. 9)
dy o

Further simplification is made by letting y=v8/ay and u
=dyx/dy. We integrate Eq. (9) directly,

31 = 3sgn(Q)x° + gsen(Ky)x' = C, (10)

where C is an arbitrary constant. Anticipating a kink, i.e., a
tanh solution for y, we choose the boundary conditions u
=0, y=*1 as y— £, For the case we are interested in,
namely, sgn(K,;)=— and sgn({))=—, we must select Czi.
Solving Eq. (10) for y we finally arrive at the displacements

. 4mcu1|Q|>”2 {(mw1|ﬂ|)”2 }
Px)= = <—3|K4| tanh —a2K2 (x=xp) |-
(11)

This then gives the envelope for the particle displacements
of the antisymmetric kink [see Figs. 1 and 2(a)]. An
expression for the anharmonic contribution () can be
obtained by taking a large value for n, say N> 1. That is, we
put &y, =&y =—&y and substitute back into Eq. (4) to find

mw*Ey = 4K €y + 1K, 6. (12)

Once again, invoking the definition of w, and ignoring Q?
we have
0= 3Ky 2, (13)
8mw,
which is negative for K,=— and quadratic in the mode am-
plitudes &,.

The net output of this continuum-limit calculation is the
antisymmetric kink solution (11) and the result that the shift
in frequency due to the nonlinearity is below the harmonic
band (that is, the energy spectrum due only to K,) because
() <0. An important feature is that, {), the anharmonic con-
tribution to the frequency, is quadratic with respect to the
amplitude of the mode. Much of the literature on the chain
model focuses on numerical studies of the equations of mo-
tion and we now briefly touch on a comparison of the above
results with numerical studies. For small displacements ||
of the particles adjacent to the particle at rest (n=0 which
corresponds to x=0 in Fig. 1), the displacement patterns for
the kink fit very well with envelope (11). When the particle
displacements || are large, however, two localized exci-
tations of sech form appear which are superimposed on the
kink excitation at the regions adjacent to n=0 [21] [see Fig.
2(b)]. This is obviously more complicated than the first case
and there is no analytical treatment, similar to the above,
available for this. Nevertheless, we observe that when |,
is not small (a) the expansion to second order and (b) the
argument leading to Eq. (13) cannot be valid for the particles
near n=0 so we expect to encounter difficulties there. For
our picture of the dark soliton we consider the occurrence of
the localized excitations as evidence for two phenomena as-
sociated with different scales (from K, and K,). When the
nonlinearity (i.e., K,) is small only the first phenomenon con-
nected with K, is important. Indeed examining Eq. (7) for
large x (so |1>~1, say) we have a linear equation.
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FIG. 2. (Color online) (a) Envelope solutions [Eq. (11)] of the form tanh(x/ 2) displaying the kink at the origin. These fit well with
numerical results for small displacements around the kink. (b) When the displacements around the kink are large, sech type excitations
appear near the origin. An analytical theory for this is not available. Comparison of the (c) field envelopes tanh x/y2 (solid) and
v2[sech(x—1)—sech(1)] (dashed) and (d) their fourth power close to the origin and for positive x. These functions were discussed in Sec. I
for the dark and bright solitons, respectively. The term sech(1) is included so the envelope vanishes at the origin. These figures suggest that
the features of the dark soliton have a “bright soliton” component for the kink. This connection is explored in Sec. III.

Let us now draw up an analogy that will be useful for
interpreting the optical dark soliton. Based on the results
above for small displacements around the dip, the large set of
particles excluding those few around n=0 can be viewed as a
collection of oscillators with a natural frequency (i.e., ;)
dictated by the harmonic constant K,. We refer to this large
ensemble as the off-center particles. The effect of the non-
linearity K, is to reduce this frequency by an amount propor-
tional to the square of the mode amplitude [cf. Eq. (13)]. We
will refer to the relatively few particles around and including
the n=0 particle as the center particles (see Fig. 1). Now if
we remove the center particles and simply replace them with
a fresh set of off-center particles instead, we are effectively
overestimating the energy of the system. This is because the
amplitudes of the center particles are smaller than those of
the off-center particles and, according to Eq. (5), the energy
at t=7/2w is E=%mw22ﬁ, that is, a sum of squares of
amplitudes. If we imagine retaining the off-center particles in
place of the center ones, while keeping constant the energy
of the original configuration, we must subtract some energy
as compensation for the overcount.

We carry over this analogy into our picture of the optical
dark soliton and we now explicitly state this picture of the
dark soliton as follows: the optical dark soliton can be con-

sidered as a composite object of (a) a large set of off-center
particles (or background as it is currently called in the litera-
ture) extending throughout the entire range of the system and
(b) a smaller set of particles, that is, a negative energy notch
positioned over the center particles (negative so as to com-
pensate for the overcount as noted in the previous para-
graph). We emphasize once more that the notch particles are
not the same as the center particles because, by definition, at
the center, the background-particle energy minus the notch-
particle energy gives the center-particle energy. (Of course if
the background particles are bosons, then the notch particles
are bosons as well. They simply differ in frequency, energy,
position, and nearest-neighbor interaction.) Note that cur-
rently the term notch describes the kink at x=0, which is not
the way we have defined that term here. (Since x and y are
proportional we use them interchangeably.)

There is still another consequence of the above picture.
Because the amplitudes of the notch particles are smaller
than those of the background particles then in virtue of Eq.
(13) the frequency of the notch particles must be larger than
that of the background in order to effect a cancellation at
n=0 (where the particle energy is exactly zero). That is, we
must have () >0 for the notch particles and this in turn im-
plies that K,>0. This latter result can be verified directly
from Eq. (9) when the signs above for () and K, are used: the
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solution is now sech y instead of tanh(y/v2), which had led
to Eq. (11). The sech solution [cf. discussion around Eq. (1)],
a localized solution centered at y=0, reminds us of the bright
soliton mentioned in Sec. I, which can be shown to corre-
spond to a system with an attractive point-particle interac-
tion (instead of a repulsive interaction as in the case K;<0)
[13]. We will show later that the bright soliton has negative
energy because it is a bound state [see Eq. (29) and discus-
sion after it]. Hence the set of background particles around
y=0 and the notch together serve to describe the kink at y
=0.

We make two additional comments of the above picture.
First, the particle-chain model we have been discussing cor-
responds to the black soliton, one whose notch has a point of
zero intensity. However we can equally well apply this dis-
cussion to the case of the gray soliton for which the intensity
does not drop all the way to zero (see Fig. 4). Second, our
picture of the dark soliton distinguishes the background from
the notch. To correctly represent the kink, the notch and the
background have to be superimposed. The notch and back-
ground can be viewed as disparate objects. In the following
sections, we will apply this picture as well as amplify it
further for optical dark solitons (see Secs. III D, IIT E, and
V).

Let us summarize the two important observations gath-
ered in this section. First, two phenomena connected with
two different length scales—from Eq. (11) these are
alKy/mw;Q|"? and L, total length of the system—manifest
themselves distinctly in the particle chain. They are not scat-
tered or diffused but clear and distinguishable. Second,
whereas the main feature of the system away from the kink is
described by tanh x= * 1, the envelope at the kink is ap-
proximately given by a sech function as shown in Fig. 2(c).
A similar result can be written for x <<0. [The fourth power is
included in Fig. 2(d) because of the nonlinear interaction; see
Eq. (14).] These functions are precisely the dark and bright
soliton solutions discussed in Sec. I. They suggest that the
two features are related to these envelope functions. In Sec.
III B, we take advantage of these gualitative observations to
develop a quantitative picture of the dark soliton. Thus the
graphs are intended to motivate the study to be undertaken in
Sec. III.

III. ONE-KINK DARK SOLITON
A. One-kink dark soliton

In this section we study the one-kink dark soliton formed
by the internal field envelope of laser light propagating in a
cavity filled with a nonlinear polarizable medium. In dimen-
sionless units, the system is governed by the Lagrangian,

Y14

i . 1
MLﬂ=?¢¢r¢&%ﬁ%V+mMV—j¢

where subscripts denote derivatives with respect to time and
space. In the context of the propagation of light in a cavity
fitted with suitable highly reflective mirrors and with a bulk
optical medium possessed with intensity-dependent refrac-
tive index, the last (nonlinear) term arises from a self-
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defocusing Kerr nonlinearity and the field ¢ denotes the
complex scalar electric field. The same Lagrangian may also
describe the propagation of nonlinear pulses in optical fibers
with positive group-velocity dispersion. The quantity m is
the detuning, that is, the difference in angular frequencies
between the field and the natural cavity frequency. More de-
tail about this system can be found elsewhere [12-15] (see
also Ref. [4]). Here we will emphasize on the application of
the semiclassical quantization method to this system as well
as the two-soliton system in Sec. V. We assume that m is
positive (we verify this later). The equation of motion takes
the form

. 1
¢+ @ +me—3lefe=0, (15)

which reminds us of Eq. (9). The one-kink solution of Eq.
(15) is

o(x,1) = \y’%r]eim(l"’z)’ tanh( \/gn(x - xo)) , (16)

in which the constant %>0 is the amplitude and
Xg € (—©,%0) is an arbitrary position and the kink boundary
condition is @(—,1)=—¢(,1). The kink has the fundamen-
tal period 7(7)=2m/(m|1-17|). Next we compute explicitly
the classical action S= [dtdxL(\W) for a large box of length L
and over a period T=171, [=1,2,3,...,

Sa= m2774J dtdx[tanhz( \/%ﬂx)
- tanh2< m x) sech2< \/E x)
Vo7 2 7
=m%ffdﬂ4}—2$%ﬁ(\ﬁ§m)
+ sech4( \/E x)
2 7
8 2
=Tm*n'\L- ==\/— |, (17)
T3 N

where, for convenience, we had set x,=0.

We review briefly our tool of choice, the semiclassical
quantization method [9,16,17]. As noted in Sec. I the original
theory by DHN is for manifestly relativistic systems whereas
we will be concerned here with a nonrelativistic system.
Hence we will follow Nohl [16] more closely than DHN. For
a generic system, the semiclassical procedure is employed to
compute the trace of the propagator,

1 * . #r=® )
R i trJ dTe’ET/hJ [dele™™", (18)

- 0 o=@

G(E) = trH

in which H and E are the Hamiltonian and energy and the
trace is taken over all field configurations ¢(x,¢) with iden-
tical initial and final configurations. In the semiclassical
method the functional integral is evaluated for paths close to
the classically allowed orbits (retaining only terms quadratic
in the deviation from the classical orbits) since these yield
the dominant contribution. Because this expansion is per-
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formed on the exponent, the semiclassical method is not a
perturbative expansion [9,16]. This evaluation of the integral
by stationary phases effectively restricts us solely to all pe-
riodic orbits of the system. If 7is the fundamental period of
the classical solution, then the time is given by 7= 7/, [ being
an integer as noted above. The stationary phase point is ob-
tained through the condition

i(ET+ S)=0. (19)
an

Shifting by the solution of Eq. (19) yields a factor ¢’¢I, where
S, is the action for classical paths. We may then write sche-
matically in the stationary phase approximation,

3S(q",q")
aql 0q”

©

172

GE)=~i >

classical v 0

s
I—

9 =9"=4

dTeiETeiSCI(T)f dq

periodic

orbits
(20)

where 7 is set to unity, and the last integral is due to the
singular part of the action. When we gather all the results
together we have

G(E) l(W,>f(77)g,e , (21)

in which the exact form of f(7) is not required except that it
is independent of /. We have obtained a geometric series in
which the sum is over [, the discrete index for the periodic
orbits. W represents the expression for (E7+S) at the sta-
tionary phase point and a prime denotes differentiation with
respect to 7. A factor % is implicit in W. (It can be verified
for the particular system that W’ does not vanish at the sta-
tionary points.) The poles of G(E) occur at

W=2mn, n=integer. (22)

Equation (22), the principal goal of a semiclassical quantiza-
tion calculation, is the generalization of the Bohr-
Sommerfeld quantization into our field-theoretic system: for
the Bohr-Sommerfeld case n characterizes the energy levels.
(Even nondiscrete levels can be found by putting the system
in a box with periodic boundary conditions and allowing the
box size to tend to infinity.) As we will discuss in the next
paragraph, for our case n refers to the number of particles,
not energy levels.

To understand Eq. (22) and hence to go a step further in
forming a more precise picture of what quantization implies
in our context, let us examine what the stationary phase ap-
proximation means in nonrelativistic physics. Consider first a
collection of nonrelativistic particles described by a set of N
Cartesian coordinates {x;}. We assume the presence of a po-
tential V({x;}) whose expansion to second-order derivatives
about the minimum at {x;} is sufficiently accurate. The en-
ergy eigenstates correspond to the oscillator-ensemble result
E{,,[}=V({fi})+2ﬁ1(ni+%)ﬁw,-, where the frequencies are
found by diagonalizing (*V/dx;dx;)z. In field theory the
field variables at each point ¢,(x) replace the x; and the po-
tential V[ ¢;(x)] is a functional of the fields. If V[ ¢;] has a
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local minimum at the static classical solution ¢,(x), then we

can expand the potential about ¢,;(x) and obtain a set of low
lying energy levels. The first (lowest) level is conventionally
interpreted as the “extended particle” and the rest are its
excitations. When we apply this to the kink below [see Eq.
(32) below] we will find energy eigenstates of the form cor-
responding to the oscillator ensemble for which this interpre-
tation of Eq. (22) is natural, but instead of interpreting n as
the energy level quantum number, we take n to represent the
number of particles with some frequency w. Thus the par-
ticles will all be assumed to lie at the ground state and n
gives their number (for simplicity we ignore the zero-point
energy). Moreover we will also discover that for the kink,
another set of energies emerges which does not have the
oscillator form. We find in this case that it corresponds to a
system of bosons in their bound state. For this second case
the eigenenergies are not excitations of the extended particle;
n' (in general different from n) is the number of bosons of
this bound state and there is only one bound state for each
value of n'. Therefore for both cases describing the kink, n,
n' represent the number of particles in the ground state of
some minimum configuration. In Secs. Il B and III C we
work out the explicit details of this interpretation.

B. Application of DHN to the one-kink soliton
1. Basic approach

Except for our interpretation of the quantum number, the
above procedure describes the standard approach for finding
the energy levels of a one-dimensional system. Let us recall
once more that in the semiclassical approximation, the quan-
tum fluctuations are calculated over an underlying stable
classical configuration. We will argue in the following that,
as anticipated in Sec. II, two phenomena are encapsulated in
the NLSE for the dark soliton: a cw stable background over
which harmonic fluctuations are taking place and a topologi-
cal kink somewhere in the background which interpolates
between one side of the background and the other (with op-
posite phase to the former) (see also Ref. [15], where this is
treated briefly). We will interpret the fluctuations over the
kink as massive bosons with attractive point-particle interac-
tion.

As Eq. (15) stands, it contains only one natural scale,
namely, m. As a nonlinear equation, it really supports an
infinite number of solutions [24] and moreover, these solu-
tions possess an amplitude dependence, a fact that is ex-
ploited precisely in the Kerr effect. Thus, another scale be-
comes available once a particular solution with given
amplitude is chosen [see, e.g., Eq. (17)]. But these dynamical
scales must now be augmented by a new feature character-
istic of a nonlinear differential equation, namely, that the
solution may also be a topological object.

The kink is, in fact, a localized phenomenon with topo-
logical character. The locality aspect is borne out in the man-
ner by which it is created in the laboratory: for instance, dark
optical solitons can be created using grids and stripes [25]
while BEC dark solitons by phase imprinting [26]. Theoreti-
cally this fact of locality was already employed extensively
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L

FIG. 3. The absolute square of one-kink soliton envelope ¢ can
be thought of as two terms with different length scales, as shown
above (see text for discussion).

by Callan and Coleman [27] in their treatment of the double
well via a “dilute gas approximation applied to an instanton
gas.” We can see this for the one-kink solution by focusing
on its Lagrangian which has the generic shape shown in Fig.
3. Except at the region close to the kink, it varies very slowly
(over the scale of the total length, L) so the fluctuations are
small. The semiclassical theory as described in Sec. III A
predicts that a system described by a static and stable con-
figuration (such as the flat line in Fig. 3) corresponds to an
ensemble of harmonic oscillators ([7], especially p. 132ff).
Clearly in this case the quartic term may be ignored and the
Lagrangian is indeed that of an oscillator field. For the kink,
however, the field changes drastically over a scale §&
=\2/m»? dictated by m and the amplitude 7. Although the
quadratic and quartic terms operate together, it is the latter
that is dominant. Under this circumstance, it is safe to ignore
the quadratic term so the theory reduces effectively to a ¢*
theory whose nonrelativistic version is a system of massive
particles undergoing point interaction. We will see in Sec.
III C that this interaction becomes, unexpectedly, attractive
instead of remaining repulsive. This means that at the kink
the repulsive character of the interaction undergoes a local
change operating only in the region of the kink. It will then
not surprise us that the field theory corresponding to this
situation is exactly that of massive bosons with attractive &
interaction. We conclude then that the one-kink (and later,
the two-kink) dark soliton displays two distinct features: a
global harmonic oscillator-type feature (for the background)
and a system of bosons with & interaction around the kink(s)
(for the notch). These features are not at all evident by in-
spection of the original NLSE but they are necessary ele-
ments for analyzing the dark soliton. To summarize, the
NLSE along with the solution ¢ provided us with two dy-
namical scales. Then deeper scrutiny of the topological char-
acter of the dark soliton implied that a kink exists in which a
local dynamical change must also occur. It is not possible for
us to suppose that the system can only remain with the
oscillator-type fluctuations because the solution has to un-
dergo a phase change at some place and this is the kink, or
more precisely, the topological aspect of the dark soliton.
The transition from a repulsive to an attractive and then back
to repulsive interaction is another way of understanding the
locality of the dark soliton kink.

Because the locality of the kink is seen only in the La-
grangian L(¢) computed for a specific solution ¢, the sepa-
ration of the dynamics in terms of two subsystems cannot be
made prior to having L(¢) (as there are an infinite number of
solutions there would be also an infinite number of
Lagrangians). A putative separation can be effected by notic-
ing terms in L(¢) that are governed by different dynamical
scales [cf. Eq. (17)]. In the case of the one-kink and two-kink
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solutions this separation will turn out to be unambiguous and
unique. Once the separation has been made, the quantization
procedure must now verify that the interpretation in terms of
the two types of fluctuations can be made. (For the one-kink
dark soliton this is carried out in Sec. II C.) In the next
paragraph we explain how this separation is effected for the
one-kink dark soliton. We will call this the dynamical sepa-
ration because it is clearly rooted in the recognition of dis-
tinct dynamical phenomena in the system. Then in the suc-
ceeding paragraph we will show that the separated
subsystems can be quantized separately and independently.
This will be termed the ideal-gas approximation, because,
like a mixture of ideal gases, the two subsystems interact
negligibly and may thus be treated separately.

2. Dynamical separation

For the dark soliton let us then note from Eq. (17) that the
Lagrangian consists of two terms, denoted here as Lg')(n,f)
and LY(7,L). The first is the contribution from the notch
which is characterized by a length scale é=v2/m7 [i.e., this
is due to the sech terms in Eq. (17)] and the second is the
contribution from the background [unity in Eq. (17)] whose
length scale is the size of the system, that is, L [see also Eq.
(31) below]. We explained at the end of Sec. II that the
particle-chain model manifests dynamical behavior near the
kink which differs markedly from the rest of the chain, a
situation analogous to our present case. We augment the dis-
cussion in Sec. III B 1 with insights from the chain model.
From Eq. (11), the origin of the length scale ¢ is the ratio of
the force constants (K,/K,)"?> which is an indication of the
interplay between the harmonic and nonlinear dynamics as
the displacements grow from zero and where the nonlinear
force dominates or at least is important. On the other hand,
physically we can trace the background spectrum to a previ-
ous observation: far away from the kink when the displace-
ments satisfy |¢{>=const, i.e., [¢)y|*<1, then Eq. (7) reduces
to the harmonic equation with the harmonic force modified
very slightly by the term $K,|¢p|% i.e., the effective force is
a linear combination of the harmonic and nonlinear forces
with the harmonic force dominant. [This picture is in line
with Sec. I B 1 and will be borne out in Eq. (32)]. In fact,
(K,/K,4)"? and a linear combination of the K’s are the only
physically relevant scales of the theory.

To be consistent with the above we may also identify
energy with the two underlying phenomena by writing E)
=[§dx(dE,/dx) and E,= [{dx(dE,/dx) for the energies asso-
ciated with the background and the notch, respectively. This
means that, for example, dE )/ dx is an energy density asso-
ciated with the background. Naturally these densities share
the same scales as L(7,&) and L¥)(7,L) because the en-
ergy is an extensive quantity. Hence the identification of the
energies is exact. We may then cast Eq. (19) as

Jd Jd
%(Eb7'+ s 4 E(En7'+ sy =0, (23)

where S®(7) and S®)(7) are the actions obtained from

Li’f)(n, &) and L(?)(W,L). (Since the actions have been inte-

grated over space, the scales do not appear explicitly.) In the
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semiclassical approximation # is an amplitude which takes
quantized values. However there is nothing to exclude the
possibility that this amplitude takes more than one quantized
value in the whole span of the system. Such as generalized
outcome would, presumably, require extra formal develop-
ment of the semiclassical approximation. In view of the de-
velopments leading to this discussion it is reasonable to take
instead a more direct phenomenological approach and as-
sume that two quantized values of the amplitude are appro-
priate for the background and the notch. Then we may re-
place Eq. (23) by

J
—(E,7+S8) =~ —(E m+5%) =K,
an

where K represents two numbers, in general, not zero. But
now by a suitable redefinition of the energies E ) and E(,,) we
may, however, replace K with zero. We justify this step in
Sec. I B 3.

3. Ideal-gas approximation

In what we refer to as the ideal-gas approximation we

now replace Eq. (23) by two separate equations,

d d

—(E,m+S8) =0, —(E,7+S59)=0.  (24)

an an
Several observations already point to this separation. The
discussions of Secs. II and III B 1 indicate that the ampli-
tudes of the fluctuations about the notch are much larger than
those of the background. This is also implied by the different
phenomena operating in the background and kink and encap-
sulated in the scales identified above. The fact that the kink is
a local object allows us to consider it as having an entity
distinct from the background. Because the kink width is in-
versely proportional to the amplitude, a more intense back-
ground implies also a more concentrated kink. By analogy
with the ideal gas we can assume that interactions between
the background and kink are small and the above separation
follows. We neglect interactions altogether. Equation (24) ex-
presses the Bohr-Sommerfeld quantization condition for the
background and notch, respectively.

The semiclassical approximation itself can be invoked to

place the redefinition of energies on a firmer basis as follows.

Each equation in Eq. (24) gives a quantization condition [cf.
Eq. (22)], namely,

W(b)=2’7Ti’l1, W(,,)=27Tn2, (25)

where n| , are integers. The procedure of DHN stipulates that
we enumerate all the periodic orbits which means all pos-
sible n ,, that is, all the integers. Hence the absorption of
constants into the E() ) introduces no change in this enu-
meration of values. (Even if the redefinition of energy gave a
noninteger 1 5, we only need take the integer value because,
in general, the n| ; are large and the error incurred in simply
ignoring the fractional part is small.) The price we have to
pay for this boon is that we do not know a priori which
values of n; go with which values of n,. By invoking particle
conservation and initial conditions one is able to circumvent
this difficulty. While the redefinition argument works well
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for obtaining the energy levels, it would lead to an over-
counting of states if we were to use it to evaluate the path
integral. Fortunately we will not do this here. As an aside, we
observe that among the examples worked out by DHN [9],
they considered separable systems for which the action
could be separated into two distinct parts unambiguously;
although our discussion above is not strictly of this type, we
might also refer to it as a quasiseparable system. We have
thus given an explicit unambiguous albeit phenomenological
procedure for quantizing the dark soliton semiclassically pro-
vided the interaction between the kink and background is
neglected.

We close this section with a word on interactions. The
most relevant interaction results from the depletion of the
notch and can be included in the NLSE by appending a term
of the form iI'(p—¢,) (Where ¢, is the driving amplitude) in
Eq. (15) [11]. Here the cavity decay rate I" is proportional to
the transmission coefficient of the cavity mirrors and, in
principle, can be made very small.

C. Quantization

We now carry out the quantization initially for the second
term of Eq. (17) which is the action attributed to the notch.
Then we do a similar and independent calculation for the
first term but with the opposite sign because we assume that
this background contribution “balances” that coming from
the L-dependent term of S,. We also obtain expressions for
the energy in terms of the quantum number. We can infer in
a handwaving way from Eq. (15) that the kink corresponds to
an attractive interaction: given tanh solution (16), we split
|¢|? into 1 and —sech? (Fig. 3). Assigning the unit term to the
background and concentrating only on the kink, hence
—sech?, we see that Eq. (15) becomes a NLSE with the sign
of the nonlinear term reversed, that is, an attractive interac-
tion (see also Sec. IIT C).

The contribution from the notch is then

(925 172
G(nolch)(E) = 12 d’r]f lde d2q 9a' 9d"
= q q q=q1=q”
X eET —z’rl(8m2773/3 W2im ﬂ 5( 27 )
m|1 - 77|

(26)

The stationary phase approx1mat10n requires that we locate
the stationary point, i.e., —(E 8\2m325%13) H(7)=0. As
with Eq. (21), our final result for GMN)(E) can be cast as a
geometric series (a prime denotes d/d7),

Qi 1/2 -
G(notch)(E) o l( ) J()E e—iSTrmm‘Z/ml’ (27)
W 1

where J(-) is independent of / and whose detailed form is not
required, W is the coefficient of / in the exponent of G(E),
and the quantities had been evaluated at the stationary point.
(It can be verified that W”=82m>? 7][ pmr(r—1)—1] does

not vanish at the stationary point.) The poles of GMM(E)
occur when
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4\2my=n, (28)

where 7 is an integer. Note the dependence of n on the length
scale &, as noted in Eq. (23). From the condition on the
stationary point we also obtain the notch’s bound energies,

E(notch) _ 4\Em3/2( - ?) _ (29)
The detuning m is unspecified. Following Nohl [16] we
choose it such that E®™<M has the characteristic
Ex—const(n®*-n) form of a system of n bosons interacting
via an attractive delta potential [18,28]. Thus choosing
m=1/96 and invoking Eq. (28), the above reduces to
EMM=(1/96)(n—n>), which is the bound energy of an
n-particle bound state of bosons with an attractive delta
function potential [16,17]. Hence n represents the number of
notch particles. (We have also verified that m is positive.)
This discussion may now be connected with the notch par-
ticles introduced in Sec. II. In fact, the n-boson bound system
is known to be just the bright soliton with attractive interac-
tion [13]. The choice of m does not imply that the detuning is
locked to the driving frequency; it simply means that the
above choice is what is compatible with the quantization
condition. Except for n=1, Emoteh) < () If the center-of-mass
motion is also considered (v #0), one finds the bound state
acquiring additionally the correct free-particle de Broglie
momenta k in a box of length L [12]. It can be shown that the
approximate n-particle bound state wave function has a sech
form and this can be related once again to the discussion
following Eq. (1) [15].
A parallel and independent semiclassical calculation for
the background (b) now gives us the L-dependent result

G(background)(E) o ZE e—i417m772L/ (30)
!
whose poles occur when

-
=—— r=123,..., (31)
2mL

with the corresponding bound energies given by

E® =mr- ﬁ (32)
4L

Clearly 7? here depends on the length scale L but not on & In
general £<L. (Thus, as noted already, we have verified ex-
plicitly that the notch and background are characterized by
two distinct length scales.) If we refer to m—r/4L as the
background frequency then the small shift /4L must be as-
sociated with () in the particle-chain model of Sec. II and
according to Eq. (31) it is proportional to the square of the
amplitude as also noted in Sec. Il [Eq. (13)]. We interpret r
as the number of background particles with the frequency
m—r/4L (again we ignore the zero-point energy). Thus Eq.
(32) gives the ground energy of a collection of r harmonic
oscillators with a small nonlinear repulsive anharmonicity
due to —r/4L (as in the chain model of Sec. II). By analogy
with elastic phonons which are oscillators, we refer to the
background particles as phonons (which do not undergo ex-
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citations above the ground level). We do not know which n
[cf. Eq. (28)] corresponds to which r [cf. Eq. (31)]. This is
the price we pay for separately quantizing the notch and
background. However they can be related by the fact that, for
instance for black solitons, the notch completely cancels the
background intensity at one point. For both notch and back-
ground the quantum number obtained is interpreted as the
number of particles in the ground state of a stable minimum
of the system.

D. Notch particles and topological nature of the dark soliton

We take another look at the notch. It is reasonable to
assume that the notch particles originate from the particles
comprising the background. If we imagine the notch to be at
the middle of the background and try to draw the displace-
ment pattern as shown in Fig. 1 we find that there is always
a shift by one step as one crosses x=0. Figure 1 shows one
possibility in which the tanh envelope connects equally
spaced particles. By focusing on the particle types one sees
that at x=0 a jump in the up—down sequence has occurred.
Because of the phase relation [Eq. (6)], this implies that one
side of the background (right of the notch, say) must have an
extra phase of 7 relative to the other side. But also by virtue
of the staggered displacement field (6) this is really a global
phase requirement (not merely a local one) so the extra phase
is truly a topological quantity. This then is the origin of the
topological character of the dark soliton (see also [23]). In
Sec. V we will extend this to the case of two dark solitons
and to the conservation of topological charge.

E. Dark soliton notch as a superposition phenomenon

Although we are studying a truly nonlinear phenomenon
we can consider the point of minimum intensity in the dark
soliton as the linear superposition of the notch and back-
ground envelopes. This point was first mentioned at the end
of Sec. II. To see this we return to Eq. (16) and observe that
the field envelope ¢(x,f) is a tanh function which, outside
the notch, is either very nearly +1 or very nearly —1. From
studies of the NLSE for attractive interactions [i.e., Eq. (15)
but with a positive sign for the last term since the notch
corresponds to an attractive nonlinearity interaction], the
field envelope is cZ(x,t):Z\f‘%neim(””z)’ sech(\e‘%nx). By
properly choosing the background and notch quantum num-
bers (or numbers of particles) n and r we can make the
amplitudes of ¢ and @ equal. Since 1-tanh y=sech ye™
(where the argument y is proportional to distance from the
origin), we find that very close to the origin, where y is
almost zero, the background (represented by unity) superim-
posed with the notch (represented by the sech function)
yields the kink (represented by the tanh function). Of course
this no longer holds as we move away from the origin [see
also Figs. 2(c) and 2(d)].

An objection could arise about our argument above: if the
zero intensity is an interference phenomenon would this not
destroy the topological character of the dark soliton since the
parts to the right and left of this zero-intensity point differ by
a phase of 7? To answer this objection we observe that the
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FIG. 4. Plots of Re(V¥) and Im(W) versus x for g=3, (a) t=9 and
(b) =—9. Comparing (a) and (b) shows a phase change due to the
collision event at r=0.

interference phenomenon is a local one whereas the topo-
logical nature of the soliton is global: it requires that the
phases at o (i.e., very far from the notch) differ by .
Exactly where the transition takes place is a local issue
which needs not to destroy the global character of the soli-
ton. It is clear, however, that the interference has to occur at
some point. A similar argument (regarding Kramer’s theo-
rem) is given in [23].

We can see that the analogy drawn up at the end of Sec. II
for the particle-chain model is qualitatively consistent with
what has just been explained here. Thus there is a connection
between the kink of the particle-chain model and the inten-
sity minimum of the dark soliton: the minimum intensity is
due to the superposition of the notch and background enve-
lopes.

IV. TWO-KINK DARK SOLITONS

We extend our study to a pair of dark solitons by intro-
ducing the Lagrangian,

2, (33)

L(W) = %(\Iff\l’ W) W= W[ |

in which subscripts denote derivatives with respect to time
and space. This Lagrangian is the same as Eq. (14) with
numerical changes in some coefficients so that our results
will conform with the literature on the two-kink soliton. The
NLSE is

iV, -+ 2|V - W =0. (34)

General solutions of Eq. (34) had been studied previously
[29]; in this section and in Sec. V we will only be interested
in a particular solution describing the approach, collision,
and subsequent propagation of two dark solitons. Hence we
consider the following particular solution [29]:

g —coshgx+i V2 sinh ¢

W(x,f) = el -me - (35)

~ =
V2 V2 cosh ¢’t + cosh gx

where ¢ is arbitrary, its square being proportional to the
maximum intensity of the field (see Fig. 4). By analogy with
the one-kink soliton, this maximum intensity field corre-
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FIG. 5. Plots of |W|? for g=3 (a) as functions of time for x=0
(dashed), x=10 (full), and x=20 (dotted) and (b) as functions of
space for =0 (dotted), =4 (full), and r=10 (dashed). A collision
takes place around =0, x=0. Reflection of the graphs about x=0
yields plots for negative x values. Thus the second soliton is a
mirror reflection of the soliton shown above and is moving to the
left. Units for the vertical axis are arbitrary.

sponds to the background. The minimum intensity turns out
to be half of the maximum. Solution (35) is symmetric about
x=0 and describes two dark solitons each with a propagation
velocity ¢ >0 and passing each other in the vicinity of the
origin at the time =0 in an elastic collision event. If we
ignore the overall phase from the exponential in Eq. (35), we
can fix the time and examine the phase of W(x,7) as we move
from x=—% to x=+. If the phase at x=—2 is adjusted so it
is at —7r, we find that it increases toward positive phase (in
the first quadrant) and attains its highest positive value when
one is halfway between the dark solitons; then it decreases
along the same path back to —7 as we move to x=+%. Re-
ferring to Fig. 4 we see a phase change as a result of the
collision at =0. The phase of the background outside the
kinks is constant. After the collision, each soliton is shifted
by the amount ¢~! In 2 relative to the place where it would
have been if no collision had occurred [see also Eq. (55)].
Taking advantage of the symmetry about x=0, we have
drawn the square of the mod|W|? in Fig. 5 for a typical value
g=3 as a function of time at fixed position and as a function
of position at fixed time. The plots show a two-soliton colli-
sion event occurring close to the origin at =0 and subse-
quent (positive time) propagation of the dark solitons.

We next evaluate the action for particular solution (35) in
parallel with Eq. (17). Figure 6 displays the typical situation
for the various terms of the Lagrangian. When carrying out
the integration over space we will separate the terms extend-

40 n
7(@;@-@*mt)+m|@\2
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T 20
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o
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S \/(@;@x
/\
20 /Y -let
20 40

FIG. 6. Plots of components of the Lagrangian for ¢g=3, t=4.
Reflection about x=0 gives the result for the other soliton. Units for
vertical axis are arbitrary.
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ing throughout the entire range of integration from those that
quickly decay to zero. As in Sec. III, we associate the former
with the background and the latter with the notch. We display
below the various terms of the action. As with the one-kink
case, a careful examination shows that S is even in ¢. (In
Sec. III, this fact was not mentioned since the equations were
transparent. This is no longer the case here.) There are the
contribution from the kinetic energy [30],

S;lEJdtdx{é(‘l’f‘l’—‘l’*\]}’,)+m|‘lf|2}

= f d{g*L - 2(B* - D)]q’[- 33201(B)cosh(g*)
+20,(B)1}, (36)

the contribution from the space derivative part,
Si=- f dtdx|V |?

=- f dt{ lql* (8>~ 1)? Cosh(Zqzt){éQg(B) - Qa(ﬁ)] }
(37)

and the contribution from the nonlinear interaction,
== J dtdx|V|*
4
=- f dr 4 L- 2lgP(B*-1)| 0:1(B)
—\2cosh(¢?)Q}(B) - (B - 1){[1 + cosh*(¢*1)]05(B)
2\5 2001 1 20 232
- Tcosh(q 105(B) + gcosh (g°)05(B) . (38)

In writing these, we had introduced the parameter f3,

B

(B-1)1"? = \2cosh ¢’1, (39)

and Q,(z) and Q%(z), which are the Legendre and associated
Legendre functions of the second kind, respectively,

I'(v+ l)F(%)

0= ——1
2V+1F( v+ —)
2

o <v+2 v+1 2v+3 1)
F 9 9 ;_2 b
2727 2

(40)
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x

FIG. 7. Plot of the Lagrangian versus x for ¢=3 and t=4 (full)
and r=10 (dashed). Vertical units are arbitrary. This shows only the
result for the soliton propagating to the right.

Fv+p+ 1)F<l>

2"+1F(v+ —>
2

><F(v+,u«+2’v+,u+1,21/+3;l2
2 2 2 Z

Q};(Z) — ei;m' (Z2 _ I)M/ZZ—V—/J,—I

). (41)

As in Sec. III, L represents the large but finite size of the
system. The background contribution (i.e., the L-dependent
term) is thus a constant throughout the system. We confine
our subsequent calculation to the case of large (positive as
well as negative) times and large values of ¢. Then

B= 1+¢72¢°1 and the final result is simply

Sa= (3¢"L- Flql’ + (0la))T, (42)

where T is the total time. The above result is strikingly simi-
lar to Eq. (17). Note that the integration over time excludes
the small time interval when the collision is taking place, i.e.,
when 24¢%[t|=1.

The contribution of the background to the action is con-
stant over space and time (if we exclude the short time in-
terval representing the collision of the solitons) and has a
characteristic quartic dependence of g. The contribution due
to the notch has a negative sign relative to the background
contribution, a cubic dependence on the absolute value of g,
and decays exponentially at the region of the notch as can be
seen in Figs. 6 and 7. One can trace the numerical factor for
the notch to the length scale ¢~'. Provided we stay outside
the relatively insignificant collision zone, the contribution
from the notch is almost time independent. These character-
istics are general and are not dependent on the number of
dark solitons and we already saw these same characteristics
in the one-kink case (see also [15]). The observations given
at the end of Sec. II have now been verified.

Working within the same large ¢ and ¢ limit, the total
classical energy of the system can be written as
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-do Qo

FIG. 8. Total energy of the two-kink dark soliton system. Two
stable minima at g= = g, correspond to doubly degenerate ground
states associated with these values of g in W(x,7) [see Eq. (35)].

1 8
E=3q'L=3laf

; (43)

which has two minima g= * g, corresponding to doubly de-
generate ground states, while g=0 is a local (unstable) maxi-
mum (see Fig. 8). The twofold degeneracy of the ground
state implies that topological excitations exist and these act
as boundaries between domains having different ground
states [31]. We will discuss this further in Sec. V.

V. QUANTIZATION OF THE TWO-KINK SOLITON

The quantization of the two-soliton system now proceeds
as in Sec. III C since all the preliminary results are available.
We consider the notch (represented by the superscript n) first.
The period of the system is 7=27/|q>—m| and if we first take
the second term of Eq. (42), the stationary point is found
from (we assume positive g)

g 5. 2
—(E(”)——q3> 0. (44)
dq 37 /lg* = m|

The reason why only half of the full contribution is used here
is that there are two dark solitons sharing the full notch ac-
tion. The quantization condition turns out to be

== (45)

n being an integer. Following the argument after Eq. (29), we
choose for the detuning m=4/75 and find that the bound
state energies for each dark soliton notch are

E™W =tn(1-n?). (46)

As in Sec. III n represents the number of notch particles.
Once again we have a notch which is an n-particle bound
state of bosons with attractive delta interaction. There are, of
course, 2n notch particles for the two dark solitons. Similarly
the stationary point for the background (represented by the
superscript b) is obtained from the L-dependent term
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d f) 2
—<E<”>—q—L) =0 (47)
dq 47 /lg*~ml

from which we find ¢*>=2r/L, r=integer, and the background
energies are

r2

EY =mr-—. 48
mr L (48)

These results parallel Egs. (28), (29), (31), and (32) and the
remarks on them apply in the present case as well. As with
the one-kink case we refer to the background as phonons.

Along with the motivation given in Sec. III B, the fact
that the two notches of this system are quantized separately
can also be justified since from Fig. 7, for instance, we ob-
serve that these notches are widely separated (on either side
of the origin) and are moving in opposite directions. More-
over since these notches propagate over a background that
remains stable (almost featureless except close to the
notches) we conclude that the background also has a separate
identity of its own. Of course, this conclusion could be ques-
tionable during the collision of the solitons but it is clear that
the effect of this collision on the full action is not significant.
Thus the separation of the action into the background and
notch terms as in Eq. (25) is justified over the much longer
period of the soliton.

We had seen in Sec. III D that the topological nature of
the dark soliton is due to the fact that the kink introduces a
phase change in 7. This remains true for two and more dark
solitons. Clearly two notches will give rise to a total phase of
2. This is exactly what we see in Fig. 4: ¥ has the same
phase for large positive and negative x. If we “split” Fig. 4 at
the origin we have two one-kink dark solitons each with their
topological phase. They are referred to as kink and antikink
[7]. Note that dark soliton (35) is complex as opposed to the
real tanh function generally used to describe a one-kink soli-
ton. Therefore the actual structure of the two-kink is not as
simple as that of a one-kink soliton. A glimpse of that com-
plexity will be seen in Sec. VI. This simply illustrates the
point we made earlier: distinguishing the components of the
dark soliton does not necessarily allow us to separate them.
If the total phase betrween x=— and x= is observed we
find that it does not change on account of a collision event;
this is just the conservation of topological charge despite
collisions [7].

The semiclassical analysis given above can now be
complemented by appealing to the Bogoliubov—de Gennes
(BG) equations which we derive from Eq. (34). In matrix
form these equations are [15,32]

J( 8¢ £—2|\If|2 —2y? o
i_ * = %) 2 w | (49)
at\ 6¢ 2 - L+2|7| 5

in which £=¢/dx*+m—2|¥|*> and V¥ is given by Eq. (35).
The 2 X2 matrix operator on the right-hand side is non-
Hermitian. We verify that there are two zero modes of this

system, namely,
(u(,> oc_ii< W(x,1)e'? )
vy dO\V*(x,0)e”? )’
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i0
£ = (ux> d ( W(x,t)e ) (50)

o« —|( .
Uy Ix \W*(x,1)e?

The first zero mode (uy,v ) is due to the breaking of the U(1)
gauge symmetry We'?— Wel(%*2) whereas the second zero
mode &(x) is from the breaking of the translational symme-
try, x — x+¢. This latter mode is localized about the positions
of the two notches. Although we are unable to provide ex-
plicit forms for the continuum (nonzero energy) solutions of
Eq. (49) we can verify that if a pair (a,b) is a solution for
positive energy, then (b*,a”) is a solution for negative en-
ergy. In this instance the sign of the energy can be associated
with the direction of propagation (to the right or to the left).
Thus the solutions are time-reversal symmetric. If the solu-
tions are normalized, it is clear that this remains unchanged
for given positive and negatives times; however the phase
relation between the components a and b changes. Thus the
absolute square of the wave function for given large positive
and large negative times should be the same. Stated differ-
ently, the soliton does not scatter phonons but shifts their
phase and so the soliton belongs to a class of potentials that
enjoy the property of being reflectionless, i.e., complete
transmission. We do not have explicit expressions of the so-
lutions for the two-kink case, but the one-kink case is dis-
cussed in detail along with explicit solutions of the BG equa-
tions in Refs. [15,32] and a general discussion is given in
Snyder et al. [5]. By analogy with Ref. [15]. these continuum
solutions correspond to the background excitations while the
zero mode &)(x) relates to the notch.

We can quantify the effect of the solitons on the con-
tinuum solutions of the BG equations by reverting to the
particle-chain model of Sec. II [33]. The completeness of the
suitably normalized eigenstates &,(x) (v is a state label) at
each site implies that the energy integral of the local particle
density p,,(E) at any site n is unity. Formally we can define
Pun(E) as

N
pnn(E) = E |gv(n)|25(E - Ev)7 P(E) = 2 pnn(E)
v n=1

(51)

Moreover by virtue of our interpretation above, p,,(E)
=p,.(—E). We can understand this relation in the following
way. Both the notch and background have continuum states
because of the large size of L. This is clear for the back-
ground as noted in the previous paragraph and for the notch
in remarks on center-of-mass motion after Eq. (29). By mo-
mentum conservation, a notch particle moving in one direc-
tion implies a background particle moving in the other. This
establishes the symmetry relation. Returning now to Eq.
(51), if we break up the spectral integral into contributions
from the continuum energy states and the zero-energy states
and we have

J dEp,,(E) + |&(n)|*= f dEp,,(E), (52)

where the primed quantity is the local density in the presence
of the soliton; the unprimed refers to the case without the
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soliton. Invoking the symmetry relation p,,(E)=p,,(-E), we
find

0
| aetoi, - puen=—l6mr. 63

Summing over all N sites (equivalently, integrating over
space) we see that the total deficit is one-half. That is, the
deficit in the number of notch particles (interpreted as the
sum over negative energies) as a result of the soliton is one-
half.

The occurrence of half numbers here appears puzzling at
first glance [33,34]. This can be resolved as follows. The
soliton and antisoliton are created simultaneously. According
to Eq. (53), one-half of a state is missing from a notch in the
vicinity of the soliton and similarly for the other notch
around the antisoliton, so a total of one state is missing from
the pair of notches. By virtue of the symmetry relation above
a total of one state is also missing from the background.
These two states form a pair of states above and below
E=0, their energy-difference becoming vanishingly small as
the soliton—antisoliton separation d increases. As d — % the
two states become independent. These are precisely the zero
modes &)(x).

VI. REPULSIVE POTENTIAL

In this section we study the interaction of two dark soli-
tons with equal intensities but opposite phase jumps. Al-
though it is known that such dark solitons repel each other
weakly we are not aware of any effort to explicitly derive
this fact from an exact solution. Early studies were numerical
[35]. More recently approximate results were given by
Kivshar and Krolikowski [36] and by Martinez er al. [15].
One reason why this repulsive interaction is important de-
rives from the fact that this interaction does not lend us flex-
ible control over dark solitons thereby imposing a fundamen-
tal limit on the applicability of dark solitons [37]. Although
the calculation following is classical in nature it is not unre-
lated to the machinery already developed since the semiclas-
sical quantization method becomes “quantum” only after
quantization condition (22) is invoked. Hence the classical
underpinnings of the theory remain clear and present. For
instance, the importance of the nonlinearity will become
manifest in Eq. (58). Moreover a two-kink soliton is com-
plex, unlike a one-kink soliton which is real: hence the
former is really more complicated than the latter. We believe
our result is of great and immediate utility [38].

Since we are interested in an exact analysis we will make
use of the more general exact two-parameter solution of the
nonlinear Schrédinger equation [Eq. (34)],

U (x,1)
2(as —2a,)cosh(ut) — 2\r’@cosh(2px) + i sinh(u)
B 2 \'a:cosh( ut) +2 V/a_lcosh(2px)
X o2l (54)

where the parameters a; and a; are real and positive and
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— . . . .
ay>ay, p=Vay—ay, p=4pva, [29]. We distinguish this more
general solution from Eq. (35) by a tilde. The maximum
intensity corresponding to W(x,7) is a3 which is the back-
ground intensity and the minimum intensity is @;. The above
solution encapsulates the approach from x= * %, t=—c0, the
collision (around the origin) and the continued propagation
of two dark solitons. Solution (35) in Sec. IV is a special
case of the above two-parameter solution with g=\2a; and
az=2a,. Therefore our results apply to the general two-kink
collision. It will be convenient to identify the points where
the intensity is a minimum. One finds that the (x,7) values
corresponding to minimum intensity are given by

- as |2
exp[2p(£x=2Va;n)]={—| . (55)
ay

It follows that the velocity of each soliton is 2\@ and the
shift per soliton as a result of the elastic collision event is
ﬁln(ay a,). Next we expand Eq. (54) about (x,1) satisfying
relation (55). Choosing positive x and f, and designating
xp>0 as the solution of Eq. (55) for a fixed value of
(positive) time 7, we obtain the expansion for x=0,

1
1+ e

W(x,t)=— \/a_3+ 2pe'?

Zp(a3/a1)e_i0—w’/a_3€_2”y Zp(a3/a1)ei0>
1 +e” (1+e*)?

+ oo, (56)

+ e‘4’”‘0<

where tan =va,/p and the unwritten terms are of order
O(e~8P%0) and higher. In writing Eq. (56) we had also intro-
duced x=xy+y so the interval of y is —xo=y=2. The ex-
pansion is valid provided we stay clear of the collision zone
and this is generally the desired situation. A similar expan-
sion can be given for x=0. Corresponding to Lagrangian
(33) the potential energy functional for fixed time is

V[¥]= f dx(| >+ [W]*). (57)

The potential can now be computed directly from Egs. (57)
and (56),

V(¥) = 8pase ™ + O(e %), (58)

in which z=2x, is the separation between solitons. This is
clearly a repulsive potential. The entire lowest order contri-
bution to the potential came from the quartic interaction term

|¥|*. For the two-kink soliton of Sec. V, p=g/2=n/5, so the
potential is very short ranged when there are more notch
particles. Because the background has few distinguishing
features the repulsive interaction is mainly seen with the
notch particles.
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FIG. 9. Plots of the repulsive potential V(‘f’ ) for az=1 and sev-
eral values of ¢;=0.2,0.4,0.6,0.8.

Plots of V() versus z for a;=1 and several values of a,
are shown in Fig. 9. We observe that for fixed a; the repul-
sive strength of the potential can be varied significantly as
we change the second parameter a;. This effect of changing
a; is evidently stronger for lower z values. Along with the
repulsive interaction there is also the possibility of an attrac-
tive interaction that arises from the Casimir effect. The inter-
play between these two potentials in the context of creating
bound pairs of dark solitons and the possible control over
them is an interesting question [38].

VII. OUTLOOK

We had explored an analogy with a linear particle-chain
model and obtained a picture of the dark optical soliton as a
composite of a background and notch. Noting that the action
of the dark soliton is made up of two terms with different
length scales, we modified the semiclassical quantization
procedure of Dashen er al. [9] to allow for the separate quan-
tization of these two entities. We showed how the quantiza-
tion of these entities is equivalent to the quantization of the
original system in the semiclassical approximation. Applying
this to the one-kink and two-kink dark solitons, we found
that the notch could be understood as a bound state of bosons
bound by an attractive delta potential while the background
is an ensemble of oscillators (phonons) with a slightly repul-
sive interaction. Outside the collision zone the two-kink soli-
ton can be seen as two separate notches. The quantum num-
bers emerging from this analysis are interpreted in terms of
number of particles. We also showed how the topological
character of the kink can be incorporated into our descrip-
tion. We speculated on the possibility of fractional quantum
numbers and derived the repulsive interaction of two dark
solitons directly from our framework. An interesting ques-
tion that merits attention is whether an attractive force to
bind dark solitons might be found [38].
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