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The Lamb shift in a Kerr nonlinear blackbody �KNB� is studied in the framework of nonrelativistic quantum
electrodynamics theory. It is found that the Lamb shift in a KNB depends on the absolute temperature and the
Kerr nonlinear coefficient. Below a transition temperature Tc, the Lamb shift is larger than that in a nonab-
sorbing linear medium. Under some conditions, the Lamb shift in a KNB can become much larger than that in
a nonabsorbing linear medium or in free space. Above Tc, the Lamb shift equals that in a nonabsorbing linear
medium. The application of our theory is also discussed.
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I. INTRODUCTION

The Lamb shift, which was a real sense stimulus of mod-
ern quantum electrodynamics, was first measured by Lamb
and Retherford �1� in 1947. In the same year shortly after the
experimental result was announced, Bethe developed a
simple nonrelativistic theoretical calculation which was in
good qualitative agreement with the experimental data �2�.
Thereafter, the Lamb shift had gained intense study both
theoretically and experimentally �3–8�. Traditionally, due to
the coupling of the bound electron to the vacuum modes of
the electromagnetic field, the 2S1/2 level of the hydrogen
atom shifts to above the 2P1/2 level approximately by an
amount 1058 MHz. By contrast, according to the Dirac
theory, the energies of the two levels should coincide with
each other.

In recent years, many efforts have been devoted to the
investigation of the Lamb shift �9–23�. In terms of the elec-
tromagnetic environment that the atom is located in, the pa-
pers mentioned above can be mainly divided into two
classes: in free space or in the modified vacuum. In free
space, the authors devoted themselves to improve the accu-
racy of the Lamb shift and several corrections have been
made. For instance, Seke �19� studied the Lamb shift includ-
ing retardation. Pachucki and Jentschura �21� investigated
the two-loop Bethe-logarithm correction. Czarnecki et al.
�22� calculated the one- and two-loop Lamb shift for arbi-
trary excited hydrogenic states, etc. These corrections are
quite significant due to the current experimental accuracy. By
contrast, in modified vacuum such as in dielectric mediums
�9,10�, photonic crystals �PCs� �11–14�, optical microwave
guides �16�, and other kinds of dressed environments
�17,18�, the results show that the Lamb shift can be modified.
For example, Wang et al. �14� predicted that the dominant
contribution to the Lamb shift comes from emission of real
photon in PCs and that the Lamb shift can be enhanced by 1
or 2 orders of magnitude, named giant Lamb shift. Sun et al.
�24� investigated the Lamb shift of a hydrogen atom due to
the surface plasmon polariton modes and showed that the
modification of the Lamb shift can be adjusted by many
parameters both spatially and spectrally. Fundamentally, the

modifications of the Lamb shift are caused by the unusual
electromagnetic environment that the atom radiates into.

Another interesting electromagnetic environment that the
atom can radiate into is a KNB, which was recently devel-
oped by Cheng �25�. A KNB is filled with a Kerr nonlinear
crystal in the interior of a cavity, as described in Fig. 1. In a
KNB below a transition temperature Tc, the interaction be-
tween photons and phonons can lead to an attractive effec-
tive interaction among the photons themselves. The attractive
effective interaction leads to bound photon pairs with oppo-
site wave vectors and helicities. A photon blackbody field in
Kerr nonlinear crystal is a squeezed thermal radiation state in
which there is a new kind of quasiparticle, the nonpolariton,
which is a condensate of virtual nonpolar phonons, with a
bare photon acting as the nucleus of condensation. In Ref.
�26�, it is found that a KNB undergoes a first-order phase
transition at a transition temperature Tc. In our recent work
�27�, it is found that the atomic spontaneous emission can be
inhibited in a KNB.

Along with the transition from bare photons to nonpolari-
tons, many quantities of the photon system have been
changed, such as the energy of the modified vacuum, the
photonic velocity, and the photonic density of state �DOS�,
etc. Correspondingly, it is natural to give rise to the question
of what will happen to the Lamb shift in a KNB. The aim of
the present paper is to answer this question. We find that the
Lamb shift in a KNB is modified by two factors: the linear
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FIG. 1. �Color online� A Kerr nonlinear blackbody: a rectangu-
lar Kerr nonlinear crystal enclosed by perfectly conducting walls
and kept at a constant temperature; there is a small hole in a wall. A
hydrogen atom is put in the vicinity of the hole. The hole is covered
by a filter.
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contribution factor and the nonlinear contribution factor. Un-
der some conditions, the Lamb shift in a KNB can become
much larger than that in free space or in a nonabsorbing
linear medium.

The remainder of this paper is organized as follows. In
Sec. II, we make a brief review on the KNB. The expression
of the Lamb shift of a hydrogen atom is derived in Sec. III.
In Sec. IV, we discussed the potential application of our
theory. Finally, we make a brief conclusion in Sec. V.

II. KERR NONLINEAR BLACKBODY

In this section, we will give a brief review of the KNB.
The model of a KNB has been described in Sec. I. The crys-
tal under consideration is a covalent one. From the earlier
works of Cheng �25�, we can find that in a KNB, the inter-
action between photons and phonons can lead to an attractive
effective interaction among the photons themselves. The at-
tractive effective interaction leads to bound photon pairs with
opposite wave vectors and helicities. The pair Hamiltonian
of the photon system is given by

Hem =
1

2�
k�

��k�ak�
† ak� + a−k,−�

† a−k,−��

+ �
k�,k���

Vk�,k���ak���
† a−k�,−��

† a−k,−�ak�, �1�

Vk�,k��� = �− V0��k��k�, if �k and �k� � �R,

0, otherwise,
� �2�

where ak�
† and ak� are, respectively, the creation and annihi-

lation operators of circularly polarized photons with wave
vector k and helicity �= �1. The constant V0 is given by
V0= 1

2N�P�0� /2V�0��R�2, where N is the number of primi-
tive cells, � is the permittivity of the crystal, V is the volume
of the KNB, �R is the Raman zero-wave-vector frequency,
and P�0� is the zero-wave-vector Raman coefficient that is
characteristic of a crystal. We assume that the crystal has a
dispersion-free refractive index n�	�, so the photonic fre-
quency is given by �k=c
k
 /n. Unpaired bare photons in the
photon system are transformed into a new kind of quasipar-
ticle, the nonpolariton. A nonpolariton is a condensate of
virtual nonpolar phonons in momentum space, with a bare
photon acting as the nucleus of condensation. The transition
from the operators of bare photons to those of nonpolaritons
can be effected by a unitary transformation,

U = exp�1

2�
k�

�k��ak�
† a−k,−�

† − ak�a−k,−��� . �3�

The Bogoliubov transformation is

ck� = Uak�U† = ak� cosh �k� − a−k,−�
† sinh �k�, �4a�

ck�
† = Uak�

† U† = ak�
† cosh �k� − a−k,−� sinh �k�, �4b�

and the inverse transformation is

ak� = ck� cosh �k� + c−k,−�
† sinh �k�, �5a�

ak�
† = ck�

† cosh �k� + c−k,−� sinh �k�, �5b�

where the parameter �k� is assumed to be real and spheri-
cally symmetric: �−k,−�=�k�. ck�

† and ck� are, respectively,
the creation and annihilation operators of nonpolaritons in
the photon system, and they obey Bose equal-time commu-
tation relations,

�ck�,ck���
† � = 	k,k�	�,��, �6a�

�ck�,ck���� = 0. �6b�

Under the mean-field approximation �28�, the pair Hamil-
tonian of the photon system can be diagonalized into a neat
form,

Hem� = Ep + �
k�

��̃k�T�ck�
† ck�, �7�

where Ep is the energy of the system of bound photon pairs,
and its expression is given by Ref. �29�. �̃k�T� is the fre-
quency of nonpolaritons and is given by �̃k�T�=v�T�
k
.
v�T� is the velocity of nonpolaritons determined by the equa-
tion

v�T� = 2V0
c

n �
�k��R

��k coth
�v�T�
k


2kBT
. �8�

The parameter �k� in Eq. �3� is determined by the relations

cosh 2�k� =
��k

	�2�k
2 − 
k

2�T�
, �9a�

sinh 2�k� =

k�T�

	�2�k
2 − 
k

2�T�
, �9b�

and

v�T� = �c/n�	1 − 
2�T� , �10�

where 
k�T�=��k
�T� with 
�T� being the order parameter
for pairing of photons. From Eq. �10� we can easily find that
the order parameter runs from 0 to 1, which is a monotoni-
cally decreasing function of temperature T and vanishes at
the transition temperature Tc. Thus we can first set 
�Tc�
=0 in Eq. �10�, then substitute v�Tc�=c /n into Eq. �8� and
make the substitution x=�� /2kBTc, finally we convert the
summation into the integration over bare frequency �. As a
result, the transition temperature Tc is determined by the
equation,

1 =
4�

xc
4 


0

xc

x3 coth xdx , �11�

where xc=��R /2kBTc is the upper limit of the integral. The
dimensionless constant � is given by

� =
�

2c3�n
�P�0��R

4
�0
�2

, �12�

where � is the cell volume. Equation �12� shows that �
contains the nonlinear coefficient P�0� and is characteristic
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of a nonlinear medium. � is meaningful only if 0���1. It
signifies the coupling strength between a nonpolariton and its
virtual nonpolar phonons. The normalized state vector of
photon pairs in the photon system may be constructed as

G�=U
0�, where 
0� is the vacuum state, such that ck�
G�
=0. It is convenient to define the number operators Nk�

=ck�
† ck� for nonpolaritons. The number operators have the

eigenvalues nk�=0,1 ,2 , . . .. The eigenstates of number op-
erators Nk� are given by


�nk��� = �
k�
� 1

	nk�!
�ck�

† �nk��
G� . �13�

III. LAMB SHIFT

We consider a hydrogen atom which is embedded in a
KNB, as shown in Fig. 1. The atom is put in the vicinity of
the hole. The hole is covered by a filter to prevent the atom
from running out of the hole. It is necessary to point out that
in the present model, we are only interested in the novel
effects that are caused by the KNB radiation. The size of the
hole is much larger than that of the Hydrogen atom, thus the
boundary effects can be neglected. This may be important
especially in view of the work of Nakajima et al. in Ref.
�17�. Here, we are going to derive the expression of the
Lamb shift of the hydrogen atom by using a nonrelativistic
QED theory. The relativistic correction is neglected because
it is much smaller than the nonrelativistic contribution �30�.
The Hamiltonian of the field and atom is

H = H0 + Hem� + HI, �14�

where H0 is the unperturbed atomic Hamiltonian which
obeys the eigenvalue equation

H0
n� = En
n� , �15�

where 
n� �n=1,2 ,3. . .�, with a corresponding eigenvalue En,
is the eigenstate of the hydrogen atom. HI is the interaction
Hamiltonian and is given by

HI = −
e

m
p · A , �16�

where p is the momentum of the atom and A is the vector
potential of the electromagnetic field. Due to the interaction
between bare photons and nonpolar phonons, the vector po-
tential of the electromagnetic field should be changed. In
order to show the characteristics of the present system, we
can express the vector potential in terms of the annihilation
and creation operators of nonpolaritons through Eq. �5�. We
exploit the property that c−k,−�

† is equivalent to ck�
† �25�. Then

we can write the vector potential as

A = �
k,�

� �

2V�0��k
�1/2

exp��k,���ck� + ck�
† �ek�, �17�

where ek�1 are two orthonormal circular polarization vectors
perpendicular to k. In Eq. �17�, we have made a dipole ap-
proximation. It is worth noting that in Eq. �16�, we have
neglected the quadratic term of the vector potential because

it contributes the same shift to each level and therefore can-
not be observed spectroscopically. However, there is a con-
tribution to the total mass. By using the second-order pertur-
bation theory, the energy shift for a reference state 
n0� is
given by


En0
= �

n
�
k,�


�n,1k,�
HI
n0,G�
2

En0
− En − ��̃k�T�

, �18�

where the summation over n includes both discrete and con-
tinuous spectra of the hydrogen atom. As we all know, the
Lamb shift is the energy difference between two relative lev-
els and is a measurable quantity. The energy shift, which acts
as an electromagnetic mass effect, must exist for a bound as
well as for a free electron. This effect has already been in-
cluded in the observed mass of the electron and is named the
mass renormalization term. Consequently, it should be sub-
tracted from Eq. �18� �2�. We can get the mass renormaliza-
tion term by setting En=En0

on the right-hand side of Eq.
�18� and so the mass renormalization term is given by


Efree = �
n

�
k,�


�n,1k,�
HI
n0,G�
2

− ��̃k�T�
. �19�

After some direct calculations and performing the mass
renormalization procedure, the expression of the Lamb shift
of the hydrogen atom in a KNB takes the form

S = SRSB, �20�

where

SR =
1

n
� c

v�T��2	1 + 
�T�
1 − 
�T�

�21�

is the relative shift and

SB =
e2

6
2�0�m2c3�
n


�n
p
n0�
2�En − En0
�ln

K


En − En0



�22�

is the usual Lamb shift for a hydrogen atom in free space,
and it is calculated by many authors �2,7,21�. The nonrela-
tivistic limit requires a cut-off energy K=mc2 of the nonpo-
laritons.

IV. RESULTS AND DISCUSSIONS

From Eq. �20�, we can see that the Lamb shift in a KNB
is modified by a factor SR compared to that in free space. In
order to see the physical origin of SR, we can write it in
another form. First, we can multiply a unity factor 	1+
�T�

1+
�T� to
the right-hand side of Eq. �21�. Then the relative Lamb shift
becomes

SR =
1

n
� c

v�T��2 1 + 
�T�
	1 − 
2�T�

. �23�

Using the equation v�Tc�=c /n and Eq. �10�, the relative
Lamb shift finally becomes
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SR = n�1 + 
�T���v�Tc�
v�T� �3

. �24�

For convenience, we can divide the relative Lamb shift SR
into two parts: the linear contribution part, SL=n, and the
nonlinear contribution part,

SN = �1 + 
�T���v�Tc�
v�T� �3

. �25�

As a result, the relative Lamb shift can be written as

SR = SLSN. �26�

The Lamb shift in an absorbing linear medium is discussed
in Ref. �10�. In the present paper, we are only interested in
the nonlinear effect on the Lamb shift. Obviously, the non-
linear contribution factor SN is a function of absolute tem-
perature T. As a result, the Lamb shift in a KNB is tempera-
ture dependent. In addition, the order parameter is also
dependent on the dimensionless parameter �. Therefore, the
Lamb shift in a KNB can also be modulated by the Kerr
nonlinear coefficient �. The variation in the nonlinear contri-
bution factor SN with the relative temperature T /Tc and di-
mensionless parameter � is shown in Fig. 2. In drawing Fig.
2, we take the steps as follows. From Eq. �11� we can deter-
mine Tc for given �, provided we know �R. Then, from Eq.
�8�, we can calculate the value of v�T� which depends on the
value of �. From v�T�, we can then determine SN as a func-
tion of T /Tc and �. There are four features in Fig. 2: �1� the
nonlinear contribution factor is always larger than unity at
T�Tc; �2� for fixed �, the nonlinear contribution factor is a
monotonically decreasing function of the relative tempera-
ture; �3� for fixed T, the nonlinear contribution factor is also
a monotonically decreasing function of the Kerr nonlinear
coefficient �; and �4� for different values of �, the nonlinear
contribution factor goes to unity as the temperature reaches

the transition temperature Tc. From Ref. �25�, it is found that
at T�Tc, the photonic system is in a squeezed thermal ra-
diation state. The velocity of the nonpolariton v�T� is always
less than v�Tc�=c /n, and the order parameter 
�T� is always
less than unity. Consequently, the nonlinear contribution
factor SN is always larger than unity at T�Tc. At T→0,

�T�→	1−�2 and v�Tc� /v�T�→1 /�, thus

SN → �1 + 	1 − �2�/�3. �27�

It is easily found that at T→0, SN is a monotonically de-
creasing function of � and can get a very large value on
condition that � is very small. That is to say, the Lamb shift
in a KNB can be much larger than that in free space at some
conditions. We call this giant Lamb shift. At T�Tc, the KNB
behaves as a usual blackbody with a linear crystal in its
interior. The nonpolaritons transform into photons and

�T�=0, v�Tc� /v�T�=1. As a result, SN=1 and the relative
Lamb shift equals to that in a nonabsorbing linear medium
�see Eq. �5.2� of Ref. �10��.

In order to give a numerical impression of Tc and SN,
we take the diamond crystal. The zero-wave-vector
frequency of the Raman-active mode of the diamond crystal
is �R=2.51�1014 s−1, and the refraction index of the dia-
mond crystal is n=2.417 �31�. At �=0.20,0.35,0.60,
Tc=3543.1,1962.7,1026.8 K, respectively. For �=0.20 and
at room temperature, the blackbody is in a squeezed thermal
radiation state. We can choose T=298.0 K, then the nonlin-
ear contribution factor SN=62.447. As a result, the Lamb
shift S=150.934SB�159.689 GHz, which is enhanced by 2
orders of magnitude compared to that in free space.

Up to now, one can raise a question why the Lamb shift
can get such a large value in a KNB. We can answer the
question as follows. As is well known, the Lamb shift is
mainly caused by emitting and reabsorbing virtual photons
by atom in free space. The key physical function concerning
the atomic QED, not to mention the Lamb shift, is the DOS
of the photonic system �13�. In a nonabsorbing linear me-
dium, the DOS is given by

���� = V�2/
2�c/n�3. �28�

However, in a KNB, the photons are replaced by the nonpo-
laritons. The DOS of the photons is accordingly changed into
that of the nonpolaritons. It takes the following form

���̃k�T�� = V��̃k�T��2/
2v�T�3. �29�

We can see that the DOS in a KNB is a function of the
velocity of nonpolaritons v�T�, which is a monotonically in-
creasing function of temperature �25�. At low temperature,
v�T� can get much smaller value than v�Tc�=c /n. Thus, the
DOS in a KNB can be much larger than that in a nonabsorb-
ing linear medium. From the expression of SN �Eq. �25��, we
can also find that SN is proportional to ���̃k�T�� /����
= �v�Tc� /v�T��3 at �̃k�T�=�. In addition, the origin of the
first factor on the right-hand side of Eq. �25� is the squeezing
effect, which is also larger than unity. As a result, the Lamb
shift in a KNB can get much larger value than that in a
nonabsorbing linear medium.

FIG. 2. �Color online� For three values of �, variation in the
nonlinear contribution factor of the Lamb shift SN with relative
temperature T /Tc; the ordinate axis is scaled by logarithm. SN and
T /Tc are all dimensionless. We take the diamond crystal,
for example, the value of the zero-wave-vector frequency
�R=2.51�1014 s−1 �31�. Inset: the ordinate axis is scaled linearly
and the dashed-dotted line represents SN=1.
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V. EXPLORING VIEW FOR APPLICATION

From Ref. �1�, we can easily find that SB is proportional to

�n0

�0�
2, with �n0
�0� being the wave-function value at the

center of a hydrogen atom in state n0. However, for P states,
the wave-function value vanishes at the origin. Conse-
quently, the Lamb shift SB=0 for P states. Inasmuch as the
Lamb shift in a KNB can get much larger value than that in
a nonabsorbing linear medium or in free space, we will ex-
pect that the energy level with lower principal quantum num-
ber can be higher than those with higher principal quantum
numbers. We can take 2S and 3P states for example. The
energy difference between the two states is 
E=5 Ry /36,
where Ry is the Rydberg energy. At zero temperature, the
Lamb shift S in a KNB for 2S state can be larger than 
E on
condition that ��0.002 24. That is to say, the 2S level can
be higher than 3P level at ��0.002 24. What an incredible
thing. Actually, for such a large energy shift, nonperturbative
effect may have to be taken into account, and we will discuss
it in our forthcoming work.

In free space or in a linear dielectric medium, the atomic
energy level with n=2 always lies below the level with
n=3, and the number of atoms that occupy the level n=2 is
larger than the number of atoms that occupy the level n=3.
However, in a KNB, due to the nonlinearity, the atomic en-
ergy level with n=2 can be higher than that with n=3 at
some conditions. As a result, the number of atoms with
higher energy level can be larger than that with lower energy
level. Thus, the nonlinear pumping can be realized, which
can be used to generate lasers. To generate lasers in a KNB,
the energy might come from the energy of the effective
vacuum. From the aspect of the law of conservation of en-

ergy, the statement seems right. However, to obtain the en-
ergy from vacuum is a fundamental problem and has long
been suspended. It is hard to answer this question theoreti-
cally. The only way is to resort to an experiment.

VI. CONCLUDING REMARKS

In summary, we have investigated the Lamb shift in a
KNB within the framework of nonrelativistic QED theory. It
is found that compared to that in free space, the Lamb shift
in a KNB is modified by two factors: the linear contribution
factor SL and the nonlinear contribution factor SN. The non-
linear contribution factor is a monotonically decreasing func-
tion of temperature T and also a monotonically decreasing
function of Kerr nonlinear coefficient �. As a result, the
Lamb shift in a KNB can be modulated by T and �. Below a
transition temperature Tc, the value of Lamb shift is always
larger than that in a nonabsorbing linear medium or in free
space. What is more, the Lamb shift in a KNB can get much
larger value than that in free space or in a nonabsorbing
linear medium at low temperature as well as small value of
�. Above Tc, the KNB behaves as a normal blackbody with a
nonabsorbing linear medium in its interior, and the Lamb
shift equals that in a nonabsorbing linear medium. The ap-
plication of our theory is also discussed. It is hoped that the
predicted properties will be verified in physics laboratories
for the not too distant future.
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