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When an incident light beam is scattered off a sample of ultracold atoms trapped in a double-well potential,
the statistical properties of the retroreflected field contain information about the quantum state of the atoms,
and permit, for example, to distinguish between atoms in a superfluid state and a product of Fock states for
each well (Mott-insulator-like state). This paper extends our previous analysis of this problem to include the
effects of cavity damping. We use a Monte Carlo wave-function method to determine the two-time correlation
function and time-dependent physical spectrum of the retroreflected field. We also analyze quantitatively the
entanglement between the atoms and the light field for atoms in these two states.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a remarkable
test system in which to simulate a number of situations in
condensed-matter physics [1] under exquisitely controlled
conditions. The first example along these lines was the
superfluid—to—Mott insulator transition [2,3] in bosonic sys-
tems, but the list of strongly correlated condensed-matter
systems that can be simulated by atoms or molecules [4-7]
in optical lattices has continued to grow since these pioneer-
ing experiments. Examples include, but are not limited, to
the Bose-Hubbard and Fermi-Hubbard models [8,9], spin
systems [10], and the Anderson lattice model [11]. In other
examples, rotating lattices [12] are expected to lead to the
realization of analogs of the quantum Hall effect, and ran-
dom lattices have recently been used to study Anderson lo-
calization in atomic systems.

The ability to characterize the many-particle state of the
atomic fields in optical lattices is of course central to the
realization of these experiments [13]. In a recent paper [14],
we proposed an optical scheme based on the diffraction of a
quantized light field off the atomic sample to probe the num-
ber statistics of the matter-wave field. The basic idea is to use
two light fields counterpropagating in a high-Q ring cavity
and coupled via Bragg scattering off the atoms, a technique
that is analogous to the Bragg reflection of x rays off a crys-
tal, but operating in the quantum regime. We found that the
dynamics of the light field strongly depends on the many-
body state of the atomic field as well as on the well spacing.
Specifically, the statistical properties of the Bragg-reflected
light field for the atoms in each well in Fock states and for a
superfluid—described both in terms of a number-conserving
state and a mean-field coherent state—were found to provide
a clear signature of the state of the atomic field.

The present paper extends these results to include the ef-
fects of cavity damping. We use a Monte Carlo wave-
function method [15] to determine the two-time correlation
functions and (time-dependent) physical spectrum [16] of the
retroreflected field, restricting our considerations to the case
of a simple two-well lattice. We also analyze quantitatively
the entanglement [17] between the atoms and the light field
for atoms in a product of Fock states and a superfluid state.
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Our main result is that even in the presence of dissipation,
these quantities allow one to easily distinguish between these
two states, and in addition permit one to decide between two
familiar descriptions of that state.

Section II describes the main elements of our model, pre-
senting in particular the effective non-Hermitian Hamiltonian
required in the Monte Carlo wave-function simulations of
the problem. The intensity reflected by the atoms via Bragg
scattering is discussed in Sec. III, and Sec. IV presents the
time-dependent physical spectrum of the reflected light. The
quantum entanglement that may develop as a result of Bragg
diffraction is quantified in Sec. V in terms of the logarithmic
negativity. Finally, Sec. VI presents a conclusion and out-
look.

II. MODEL

We consider a sample of ultracold bosonic two-level at-
oms [8] with transition frequency w, trapped in the lowest-
energy state of a one-dimensional double-well potential
[18,19] placed inside an optical ring resonator [20,21]. The
atoms are driven by two counterpropagating cavity modes of
wave vectors *k and frequency w,=kc; see Fig. 1. This
interaction is described by the Hamiltonian

D= f dxdi(Held - B0 d(0) + He., (1)

where d is the dipole moment of the transition, E(x) is the
electric field operator, and 1;06 and 1,Abg are field operators de-
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FIG. 1. (Color online) Atoms trapped in a double-well potential
with well separation d and interacting with two counterpropagating
modes with wave vectors *k in a ring resonator. F: filter; D:
detector.
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scribing atoms in their excited and ground electronic states
le) and |g), respectively. We assume that the optical fields are
sufficiently detuned from the atomic transition frequency w,
that the excited electronic state can be adiabatically elimi-
nated.

We proceed by expanding LAﬂe and 1,Zg as
Jeg) = 2 P (0)ET, 2)

where égs) and 655) are the annihilation operators for excited-
and ground-state atoms in the mth well, and zﬁif) and wff) are
the corresponding wave functions. Introducing also the op-
erator

N(d) =g+ 2%, (3)
where
iy = 9T (4)

and d is the well separation, the atom-field system is easily
seen to be described by the Hamiltonian [14]

H="2, haydd,+hg[N0)(aja, +a'da_y)
k

+N(d)a d, + N(- d)dja_], (5)

where a; and aZ are bosonic annihilation and creation opera-
tors for mode k, and similarly for mode —k,

2

AR

2
f dxE ()Y )PP (x) |

A is the detuning between the optical frequency and the fre-
quency of the atomic transition, and g is the dipole matrix
element of that transition. We drop the label (g) in the fol-
lowing for notational clarity since no confusion is possible
once the excited electronic state has been eliminated.

Cavity damping is treated in the usual way by coupling
the cavity modes to a Markovian reservoir of harmonic 0s-
cillators of frequencies {wq}, with the interaction Hamil-
tonian

V,=h(d+ad_) 2 g bl +He. (6)
q

Finally, the +k cavity mode is driven by an oscillating clas-
sical current of amplitude 7 and frequency w=wy,

f/p =h ne‘i‘“k’&z +H.c. (7)

The numerical studies that are the subject of this paper are
conveniently carried out using a Monte Carlo wave-function
approach [15]. In this case, the coupling of the system to the
reservoir is described in terms of the effective non-Hermitian
Hamiltonian

= il

Hep=Hg— >
=12

where
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and vy is the familiar Wigner-Weisskopf decay rate resulting
from the coupling of the cavity modes to the Markovian
reservoir. For the specific situation at hand this gives, in an

interaction picture with respect to the Hamiltonian H
=3 h[w+gN(0)]d dy,

I:Ieff= ﬁ[gli’(d)aikak + n&ZeigN(o)’ +H.c.]
— iifaja,+ala]. (10)

III. REFLECTED INTENSITY

The light intensity transmitted and reflected by the
trapped atoms depends strongly on the state of the atoms as
well as on the well separation d. Throughout this paper we
assume that the incident +k mode is initially in a coherent
state (with amplitude a= V2 in our simulations) and the re-
flected —k mode is in the vacuum state. Furthermore we con-
centrate on the special cases of well separations d=\/4 and

N\/2, for which the Hamiltonian I:Ieff becomes

I:Igf) =hg(i, = ﬁl)(aikak + ala_k) + ﬁn(éleig(ﬁoml)’ +H.c.)

- iﬁy(a}:ak + ajka_k). (11)

Here the “plus” sign corresponds to the d=\/2 case and the
“minus” sign to the d=N\/4 case.

A. Fock states

When the atomic field has a well-defined number of at-
oms in each well, the system can be described by a product
of Fock states. Atomic Fock states are eigenstates of effec-
tive Hamiltonian (11); that is, the operators /i, and 7, are
constants of motion with eigenvalues n, and n;, and it is
possible to replace the operators by these eigenvalues in Eq.
(11).

It is known [22] that if a system of coupled harmonic
oscillators satisfies Heisenberg equations of motion that can
be expressed as

iy= F{ay0h),

where the functions F; may depend explicitly on time, then if
the oscillators are initially in a coherent state they will re-
main in a coherent state for all times. This is the case for the
situation at hand. Hence the two modes of the light field are
in coherent states whose amplitudes exhibit damped oscilla-
tions due to the combined effects of photon exchange be-
tween the incident and reflecting modes and of cavity decay.
As to be expected, the oscillation frequency is proportional
to the total number of atoms for the d=N/2 case and to the
difference in the populations of the two wells for d=N\/4.
The difference between the oscillation frequencies in these
two cases permits therefore a full determination of the well
populations.

Figure 2 illustrates the time dependence of the reflected
intensity for equal well populations and for the two special

j=1,....n, (12)
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FIG. 2. Single trajectory [or average reflected intensities
(A_(1))] for atoms in the Fock states with three atoms per well for
(a) d=N/4 (zero signal) and (b) d=\/2, p=1.5g, and y=0.9g.

well separations. Different atomic populations in the two
wells also result in an oscillating signal for the “destructive
well separation” d=A/4, but they are much weaker and
slower than that in the “constructive case” d=\/2. Since the
light field remains in a coherent state at all times, the quan-
tum jumps do not affect them and all Monte Carlo wave-
function trajectories are identical in this case.

B. Superfluid

There are two particularly simple ways to approximate the
state of the atoms in a superfluid state. The first one is es-
sentially a mean-field approach that assumes that the atoms
in the two wells are in coherent states,

|lr//SFl>=|a0’al>= 2 Cn0,11l|n()’nl>’ (13)

np.ny

whereas the second description accounts for the fixed total
number N of atoms and describes their state as

lspa) = N7 (] + ¢h)M[0,0)

% f N
= — |y N-—
2V U (N = ng)! - = n0)

o
N
= b”0|l’l0,N— I’l0>. (14)

g

This subsection compares the reflected optical field corre-
sponding to these two descriptions, assuming as before that
the incident light field is initially in a coherent state and the
reflected field is in a vacuum state.

Consider first the coherent-state description in Eq. (13).
From the previous discussion we know that for fixed atom
numbers in the two wells the state of the field remains a
coherent state,

la,0:n0,n1) — |ay(ng,ny.d, 1), i (ng,ny,d,1);ng,ny),

so that without quantum jumps between times 0 and ¢

PHYSICAL REVIEW A 79, 043801 (2009)

@
05 i
. l\;\
oy 0 \/\/—\-
= o
S &
05 . %

/2 T 3r/2 2
/g

FIG. 3. Reflected intensity (Ai_,(r)) for atoms initially in the
superfluid state |¢gr;) with four atoms on average per well and d
=N/4. (a) Typical single trajectory. (b) Average over 100 trajecto-
ries, for »=1.5g and y=0.9g.

|¢(t)> = E Cno,n1|ak(n0’nl7d’t)7a—k(n()?nl’d’t) ;no,l’l1>.

ng.ny
(15)

It is apparent from this expression that the atoms and the
light field become entangled, a point to which we return in
Sec. V. Also, since the optical field does not generally remain
in a coherent state in this case, the quantum jumps resulting
from the loss of photons due to dissipation become apparent
in the single trajectories; see Fig. 3.

Comparing the present case to the situation in Sec. III A,
we observe that there are no contributions to the backscat-
tered intensity from situations with equal populations in the
two wells, since the coupling between the incident and re-
flected fields is zero in these cases. Also, the oscillatory char-
acter of the backreflected light is now largely washed out by
the uncertainty of the atom numbers in the two wells.

The number-conserving description [Eq. (14)] of the su-
perfluid state leads to similar results, although the details of
the dynamics are slightly different because of the fixed total
number of atoms, which results in less atomic number uncer-
tainty; see Fig. 4. In practice, it is therefore not expected that
the backscattered intensity will allow one to unambiguously
distinguish between the two descriptions.

IV. PHYSICAL SPECTRUM

We now turn to the analysis of the physical spectrum of
the reflected optical field, which also provides a signature of
the state of the atomic field.

Because the process under study is not stationary, the
usual spectrum obtained from the Wigner-Khintchine theo-
rem is not appropriate, and we use instead the time-
dependent physical spectrum of Ref. [16]. We recall that this
spectrum is defined as

t t
S(t,w;F):J f H(t-t,0,)H(t - tp,w,T")
0J0

X <aAik(tl)aA—k(t2)>dtldt2’ (16)

where H(f,w,T") is the response function of the filter, w is its
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FIG. 4. Reflected intensity (/i_;(r)) for atoms initially in the
superfluid state |¢gp,) with a total of eight atoms and d=\/4. (a)
Typical single trajectory; (b) average over 100 trajectories, for 7
=1.5g and y=0.9g.

setting frequency, and I' is its bandwidth; see Fig. 1. Follow-
ing Ref. [16], we assume that it is constant for the frequency
range of interest, and choose the filter response function as

H(t,w:;T) = O()[e~ T+ (17)

where O(z) is the unit step function.
Figure 5 shows the real part of the two-time correlation
function

G(t,t+ 1) ={a" (Na_(t+ 7))

for d=N/4 and in the range 0=t+7=T=2m/g when the
atoms in the two wells are in Fock states, while Fig. 6 shows
that same function for the initial superfluid state |ixp,), and
Fig. 7 for the initial superfluid state |¢gp,). As was the case
for the reflected intensity, the periodic oscillations of the re-
flected intensity characteristic of the Fock states case are
washed out in the superfluid regime. Since the number-
conserving description |¢gr,) of the superfluid state corre-
sponds to a smaller atom number uncertainty, the corre-
sponding correlation function is characterized by stronger
oscillations, intermediate between its description in terms of
coherent states and the Fock states case; see Fig. 7.

FIG. 5. (Color online) Two-time correlation function G(t+7,1)
in the Fock states case, with six atoms in well 0 and two in well 1.
Well separation is d=N/4, the pump constant is 7=0.1g, and the
decay constant is y=0.5g.
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FIG. 6. (Color online) Two-time correlation function G(¢+ 7,1)
for atoms initially in the superfluid state |igp;) with a mean atom
number of 4 per well and d=\/4, »=0.1g, and y=0.5g. The curve
is the average over 50 trajectories at time ¢ and 3 trajectories at time
T.

In terms of 7=¢,—1,, the physical spectrum S(z, w;I") may
be re-expressed as

t
S(t,0,I') = 2F26—2Fff dreT-io)
0

X f _ dt,e® 2 Re[(@' (t + Dd_i(1,))]
0

=212l (w,T), (18)

with 7=0.

Figure 8 shows the real part of Sy(w) for atoms initially in
a product of Fock states, while Figs. 9 and 10 are for atoms
initially in superfluid states. In Fig. 8, the temporal oscilla-
tions of the correlation function G(t+7,7) translates into a
modulation of the Lorentzian spectrum due to the filter func-
tion at the oscillation frequency w_= g|ny—n,| between the
incident and reflected light fields. The physical spectrum pro-
vides therefore a direct measure of the population difference
between the two wells for d=N\/4, of their sum for d=\/2,
and hence of n, and n, separately, i.e.,

w-=g(ny * ny),

no;=(w, * w_)/2g, (19)

where we assumed ny>n; for concreteness. The second
small dip at frequency g(ng+n,) originates from the pump

FIG. 7. (Color online) Two-time correlation function G(¢+7,1)
for atoms initially in the superfluid state |igp,) with a total number
of eight atoms, d=\/4, =0.1g, and y=0.5g. The curve is over 50
trajectories at time ¢ and 3 trajectories at time 7.
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FIG. 8. (Color online) Real part of Sy(w) for a Mott insulator
state with six atoms in well 0 and two atoms in well 1, with d
=\/4. The peak is centered at |ny—n,| in this case.

term, ﬁr](&zeig(ﬁ0+ﬁl)’+H.c.), in Hamiltonian (11).

Figures 9 and 10 show the physical spectra for the coher-
ent and number-conserving superfluid states |¢gp) and
|ihspa), respectively. In the number-conserving description
[Eq. (14)], the total atom number N is fixed. Hence for d
=M\/4 the population difference between the two wells, |2n,
—N|, can only take all even or all odd numbers, depending on
N. This restriction disappears in the coherent-state descrip-
tion of |¢gp), so that additional peaks appear although the
mean number of atoms in each well is the same in Figs. 9
and 10.

We conclude this discussion by mentioning that for a well
separation d=\/2 case the superfluid descriptions |¢q,) and
|fsr>) result in completely different spectra. For |igp;) the
spectrum is similar to that of the d=N\/4 case since n, and n,
are independent and hence give all combinations of different
total numbers (ny+n,;) to form the spectrum. By contrast, the
number-conserving description |igp,) results in a single
sharp peak, just as in the Fock states case; see Fig. 8.

Next we use the number-conserving approximation |, )
to investigate the relation between the full width at half
maximum (FWHM) of the physical spectrum and the atomic
number uncertainties in the two wells. We evaluate that
width with the help of an envelope function fitted in the way
illustrated in Fig. 11. The atomic number uncertainties o are
defined in the usual way as

N
o=/ 2 (m-m)b,, (20)
m=0

where m=2,,mb>, N is the total number of atoms, and b2,
the probability of having m atoms in one of the wells, is a

Re[So(w)]
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FIG. 9. (Color online) Real part of Sy(w) of superfluid states
|ihsp1) with each well containing four atoms on average and d
=N/4.
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FIG. 10. (Color online) Real part of Sy(w) for the superfluid
state |¢gp,) with a total number of eight atoms and d=\/4.

binomial distribution. Figure 12, which plots the FWHM w
of the physical spectrum as a function of o, shows as ex-
pected a linear dependence, further illustrating the use of that
spectrum in helping to characterize the many-body state of
the atomic system.

V. ENTANGLEMENT

In this section we make some brief remarks on the en-
tanglement generated between the light fields and the atoms,
and its dependence on the state on the atomic system. We
characterize the entanglement in terms of the logarithmic
negativity [17]

E{p) =log,|lp"]);, (21)

where p’4 is the partial transpose of p and ||-||; denotes the
trace norm.

There is always some ambiguity in the way a quantum
system is described in terms of its subsystems. One simple
way to describe the system at hand is as a four-partite system
comprised of two optical modes and the atoms in the two
wells. It is then possible to trace over any two parts of the
full system, and to consider the remaining subsystems only.
We find that independently of our choice of the subsystems
being considered, the resulting reduced density operator does
not retain any trace of whatever entanglement may have
characterized the full system. This leads us to describe in-
stead the full system as a bipartite system, the two sub-
systems being the optical field and the atoms.

The situation is particularly simple if the atomic system is
initially in a product of Fock states. As discussed in Sec. III,
in the absence of quantum jumps between the times 0 and ¢
we have

Re[So(w)]
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FIG. 11. (Color online) The envelope and FWHM.
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FIG. 12. (Color online) FWHM w vs atomic number uncertainty
of each well o. The data points correspond to N=1, 2, 3, 4, 5, 6, 7,
8, 10, and 12. The straight line is the fit to the data points.

l1)) = ey (ng,ny,d.1), a_(ng,ny,d 1) sng,ny), — (22)

where the amplitudes of the coherent states «; and a_; de-
pend on the atomic populations of the wells and on their
separation. It is immediately apparent from Eq. (22) that the
total optical field is not entangled with the atoms. As previ-
ously remarked, for coherent states quantum jumps do not
affect the light field. Hence |¢()) is always a product state
for this four-partite system; that is, no entanglement builds
up between the atoms and the field.

The situation is markedly different for atoms in a super-
fluid state. For example, in the atom number-conserving ap-
proximation |¢p,), and in the absence of quantum jumps
between times 0 and ¢, the state of the system at time ¢ is

N
|’7[/(t)> = 2 bn0|ak(n0’d’ t)’a—k(no’d’ t) ;HO’N_ }’l0>, (23)

ny

a state for which the light field and atoms are clearly en-
tangled. Dissipation and the associated quantum jumps
clearly impact the amount of entanglement in that case. To
illustrate that point, we first evaluate the logarithmic nega-
tivity of the bipartite atom—optical field system for a well
separation of d=A/4 while neglecting pump and decay
mechanisms. In that case, from Egs. (3) and (5) the system is
described by the Hamiltonian

H="hg[(Ai,+ ﬁl)(@}:dk + ﬁikﬁ_k) + (g — ﬁ])(dik&k + &Zd—k)],

(24)
and we find easily that
8
[0y =2 :8n0|ak(n(),t)’ a_i(ng,1)in9,N = ng),
no
where
«@ —2igngt —2ignt
ak(no,nl,t)=5(e 8107 4 gmI8MI) |
@ —2ignpt —2ignt
a_k(no,nl,t)=§(e 810" — gm8MI) (25)

The logarithmic negativity E ), corresponding to that case is
shown in Fig. 13 for N=8 atoms. We observe that E,=0 for
t=€m/g, where € is an integer, indicating the absence of
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FIG. 13. (Color online) Logarithmic negativity of light and at-
oms for a perfect cavity (no decay and no pump). The initial coher-
ent amplitude of kK mode a=1 and atoms are in superfluid states
|thspn) with total number of atoms N=8 and well separation d
=N/4.

entanglement between the light and the atoms. These are the
times when the atoms do not scatter any light into the —k
mode, and the state of the system has undergone a full re-
vival to its original, unentangled form.

The situation is changed when including the external
pump in the description of the system, in which case there is
no longer an exact revival. Figure 14 illustrates that a rem-
nant of that feature is still observable in this case, but it
disappears almost completely when both pump and dissipa-
tion are included; see Fig. 15. In that latter case, the en-
tanglement between the light field and the atoms disappears
completely over time as would be expected.

As a final point, we remark that similar results hold in
case the superfluid atomic system is described by the state
|thsp1), although the maximum value of the logarithmic nega-
tivity is now larger, due to the larger number of terms in the
expansion of that state in terms of number states.

VI. CONCLUSIONS

We have studied the interaction of a light field and ultra-
cold atoms trapped in a two-well optical potential in a lossy
cavity. We have calculated the reflected intensity, the physi-
cal spectrum, and the logarithmic negativity, and shown that
all three observables present completely different features for

2.0t /W \ﬁ \ ’mm\ / \/ /ﬂvﬁm\

1.57/ \/ | | \
1.0}/ \ / \o

\
0.5] | o

Ey

72 e 37/2 o
t/g~*

FIG. 14. (Color online) Logarithmic negativity for a perfect cav-
ity, without decay but including the pump. The initial coherent am-
plitude of the k mode is =1 and the atoms are initially in the
superfluid state |¢gp,) with total number of atoms N=8 and well
separation d=N\/4. The pump constant is 7=0.5g.
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FIG. 15. (Color online) Logarithmic negativity including dissi-
pation. The initial coherent amplitude of the k mode is @=1 and the
atoms are in a superfluid state |igp,) with total number of atoms
N=2 and well separation d=N\/4. The pump constant is 7=0.2g and
the decay constant is y=0.7g. The curve has been averaged over
100 trajectories.

the two different many-body atomic states, allowing one to
distinguish these states.

Our explicit results are for small systems of a few atoms
only, and a legitimate question is to ask to which extent this
scheme remains practical for larger numbers of atoms and/or
of wells. Returning, for instance, to the physical spectrum of
the system, it is clear that the interpretation of the results
becomes increasingly complicated in that case: the superfluid
spectrum in Fig. 10 rapidly acquires additional peaks corre-
sponding to all allowed values of |2ny—N|, odd or even de-
pending on the well separation. In the Fock states situation,
though, the physical spectrum will still be characterized by
two peaks only as in Fig. 8, so the distinction between the
superfluid and Fock states situations should still be observ-
able. However, the distinction between the two superfluid

PHYSICAL REVIEW A 79, 043801 (2009)

descriptions is expected to become more difficult to make as
the number of particles in increase.

Going from two to multiple wells is also worth consider-
ing. For instance, for a well separation d=\/4 the contribu-
tions to the backscattered light alternatively add and subtract
[see Eq. (10)], thereby masking the double-peak signature in
the physical spectrum. Even for d=N\/2, where this difficulty
is absent, well-to-well fluctuations in atomic numbers result
in a situation more akin to the case of a superfluid. This, of
course, would not be the case for a perfect Mott insulator
state, where the atom number in each well is precisely the
same. We also note that experiments normally involve an
additional harmonic trap superimposed onto the optical lat-
tice, leading, for instance, to a “wedding cake” distribution
of atomic populations. While our scheme is in principle able
to distinguish the appearance of such structures, its experi-
mental implementation is bound to be challenging. As such,
our considerations are of most relevance for experiments in-
volving small atom-cavity systems.

Future work will generalize this analysis to more complex
many-body atomic states, using in particular Laguerre-
Gaussian modes of the light field to characterize the state of
vortex lattices. We are also extending this work to optom-
echanical situations, using radiation pressure force on Fabry-
Pérot resonators with moving mirrors to induce quantum
phase transitions and monitor them optically in real time.
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