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We demonstrate two atom interferometric schemes based on Kapitza-Dirac scattering in a magnetic trap. In
the first method, two Kapitza-Dirac scattering pulses are applied with a small time delay between them. High
contrast interference is observed both using a thermal cloud and a Bose-Einstein condensate �BEC�. In the
second method, two Kapitza-Dirac scattering pulses are applied to a BEC with a time separation sufficiently
large that the interfering orders complete half an oscillation in the magnetic trap; this enables interferometry
between spatially separated paths.
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One of the most promising new technologies suggested
by modern atomic physics is atom interferometry. Light in-
terferometers have been used for numerous purposes, includ-
ing probing materials �for an early example, see Ref. �1��,
navigation �for reviews see Refs. �2,3��, and searching for
gravitational waves �see Ref. �4� for theory, and Ref. �5� and
other Laser Interferometer Gravitational Wave Observatory
�LIGO� publications for experimental status�. Despite their
many uses, however, light interferometers are mostly insen-
sitive to electromagnetic and gravitational fields. Atoms,
meanwhile, are sensitive to all of these fields; thus, an atom
interferometer can provide a far more sensitive probe of
force fields �4�, in addition to being able to measure nearly
anything a light interferometer can measure. Additionally, if
the two arms of an atom interferometer are separately ad-
dressable, one can measure atom-surface interactions �6�,
electric polarizability �7,8�, and atom neutrality �9�, as well
as realize novel nanolithography schemes �10�. In this paper
we present the experimental realization of two atom interfer-
ometry schemes using Kapitza-Dirac scattering. The first
scheme can be used on thermal or Bose-Einstein-condensed
�BEC� atoms to produce high-contrast interference patterns
with many fringes. The second scheme is used on a BEC to
achieve a highly sensitive, large-separation atom interferom-
eter, in which the maximal distance between the BEC com-
ponents is sufficient that the components can be addressed
separately.

Our experimental apparatus for cooling and trapping 87Rb
atoms is described in Ref. �11�. The atoms are trapped in an
approximately harmonic magnetic potential with a frequency
of 45 Hz along the axis of the interferometric arms, and 15
and 45 Hz along the other two axes. We use an optical lattice
to create two Kapitza-Dirac scattering pulses for splitting
and recombining the atomic wave function. The lattice is
composed of a retroreflected laser beam with wavelength
�=852 nm and lattice depth of about 80 recoil energies �one
recoil energy is equal to h2 /2�2m, where m is the mass of
87Rb�.

When a Kapitza-Dirac scattering pulse is applied to a
plane matter wave, the wave function is split into several
orders with momenta 2npr+ p0, where n is the scattering or-
der, p0 is the momentum before the Kapitza-Dirac scattering
pulse is applied, and pr is the recoil momentum due to a
single photon from the lattice �pr=h /�=m�5.4 mm /s�. In

our experiment, the value of p0 varies randomly from shot to
shot over a range �p0��0.4pr, due primarily to magnetic field
noise. The amplitude of the scattering order n is given by
Jn�V0�t /��, where Jn is the nth-order Bessel function of the
first kind, 2V0 is the full lattice depth, and �t is the duration
of the Kapitza-Dirac scattering pulse �12�.

A schematic of the first interferometry scheme is shown in
Fig. 1�a�. We use two Kapitza-Dirac scattering pulses: one to
initially split the atomic wave function into multiple compo-
nents and the other to recombine some of those components.
When we split and recombine the components, we want the
resultant interference pattern to arise from the interference of
only two components. If more than two components inter-
fere, the pattern becomes more complicated, and thus less
straightforward to analyze. We also want the interfering or-
ders to have approximately equal amplitudes, in order to
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FIG. 1. �a� Schematic of the first interferometry method, repre-
sented in momentum space. This method can be used for both a
thermal cloud and a BEC. �b� Schematic of the second interferom-
etry method, represented in position space. This method can be used
to realize a large-separation atom interferometer.
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maximize the visibility of the interference pattern. We
choose �t=2 �s, corresponding to V0�t /�=1.6. This causes
only a small portion of the wave function to be in orders
higher than 1 ��6% of the wave-function probability is scat-
tered into each of the �2 orders�, and approximately equal
amounts in the −1, 0, and +1 orders. After the application of
the first Kapitza-Dirac scattering pulse, a time interval 	t, in
the range of hundreds of microseconds, is allowed to pass.
During this time, the �1 orders move slightly in the trap due
to the momentum imparted to them. After 	t, a second
Kapitza-Dirac scattering pulse is applied. The wave func-
tions in each order n are split again into several orders n�.
After both Kapitza-Dirac scattering pulses, the momentum of
a component of the wave function is given by 2�n+n��pr
+ p0 �neglecting the momentum change due to the magnetic
trap�. With the second pulse, we again want to coherently
split the wave-function components into the orders n�=0 and
n�= �1 with approximately equal amplitudes, while avoid-
ing orders �n��
2. Thus, we also pick �t=2 �s for the sec-
ond pulse. Immediately after the second Kapitza-Dirac scat-
tering pulse, the magnetic trap is turned off and the atoms
undergo 20 ms of time-of-flight �TOF�. During the TOF, the
wave function components spread into each other and inter-
fere if they have approximately the same momentum, i.e., if
their values of n+n� are equal. If they have significantly
different momenta, i.e., their values of n+n� are different,
they do not interfere, but rather gain macroscopic separation
during TOF.

The description in the previous paragraph applies to a
single atom interfering with itself. However, the experiment
can be performed on a thermal cloud cooled to a sufficiently
low temperature. At very low temperatures, the atoms in the
thermal cloud will have similar enough momenta that even
though the resulting measurement is an incoherent sum over
all of the atoms, the interference pattern can still be seen
�13�. We perform this experiment on a thermal cloud consist-
ing of �2–3.5��105 atoms evaporatively cooled to just
above the BEC transition. The results for various delay times
	t are shown in Fig. 2�a�. As can be seen, interference
fringes are clearly visible up to 	t=400 �s. At image posi-
tions corresponding to momenta �2pr in Fig. 2�a�, two
wave-function components interfere with each other, namely,
the components �n ,n��= �0, �1� and ��1,0�. As a result, at
these image positions the interference patterns exhibit regu-
lar, sinusoidal interference fringes. The fringe contrast varies
with 	t; at 	t=50 �s a fringe contrast of over 90%
is observed, while at 	t=400 �s the fringe contrast is only
33%. At the center of the images in Fig. 2�a�, three wave
function components interfere with each other, namely,
�n ,n��= �0,0�, �1,−1�, and �−1,1�, resulting in more compli-
cated interference patterns. The interference patterns near
zero momentum are most visibly complex when the fringe
period is largest, at small 	t.

To obtain the fringe period, �f, from our experimental
data, we determine the average distance between adjacent
peaks for a given 	t, using multiple images, and ignoring the
center region where the fringe pattern is more complex. The
resulting plot, �f vs 1 /	t, is shown in Fig. 2�b�. The error
bars shown in the figure are based on estimated reading un-
certainties, due to camera resolution, and the number of

samples. Applying a linear fit, we find a slope of 9.2 �m ms,
with a fit uncertainty of �1.1 �m ms.

The fringe period can also be calculated analytically and
using simulations. To find �f analytically, we assume the
wave function is initially in the ground state of the harmonic
potential �frequency �=2��45 Hz in our experiment�. The
first Kapitza-Dirac scattering pulse splits the wave function
into several components with momenta differing by mul-
tiples of 2pr. Since the harmonic trap is left on between the
Kapitza-Dirac scattering pulses, these components propagate
without dispersion and maintain a position uncertainty of

=�� /2m�. The expectation values of the positions and
momenta of the components follow the classical equations of
motion of the harmonic oscillator. The second Kapitza-Dirac
scattering pulse, applied at time 	t, then splits the evolved
wave-function components a second time. After the second
Kapitza-Dirac scattering pulse the harmonic-oscillator poten-
tial is turned off, and the wave function components propa-
gate according to the well-known equation for a free Gauss-
ian wave packet,

�l�x,t� �
exp�iklx − iElt/��exp� −�x−xl−�klt/m�2

4
2�1+i�t/�2
2m�� �
�2��1 + i�t/�2
2m��

. �1�

Here, xl and kl are the expectation values of the position and
momentum of component l immediately after the second
Kapitza-Dirac scattering pulse, El is the energy of compo-
nent l, and t is the time elapsed after turning off the harmonic
potential. The interference pattern after time of flight is ob-
tained by setting t= tTOF and summing over all wave-packet
components. Specifically, the periodicity �f of the interfer-
ence pattern in the overlap region of two components, l1 and
l2, follows:
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FIG. 2. �a� Thermal-cloud interference with different time inter-
vals, 	t, between Kapitza-Dirac scattering pulses. �b� Fringe period
of interference for a thermal cloud vs 1 /	t. �c� BEC interference,
for 	t=420 �s between pulses.
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2�/�f = � ��l1

�x
−

��l2

�x
� , �2�

where �l1 and �l2 are the phases of wave-packet components
l1 and l2. After extracting �l1�x , t� and �l2�x , t� from Eq. �1�
and taking the spatial derivatives, Eq. �2� leads to

�f =
2�

m
	 4m2
4 + �2tTOF

2

− 4mkrel

4 + �tTOFxrel


 , �3�

with krel=kl2−kl1 and xrel=xl2−xl1. Maximum interference
contrast occurs at the classical intersection time of the wave
packets, tclass=−mxrel / ��krel�; as expected, the fringe period
�f at that time equals �class=2� /krel. Since the wave packets
spread considerably during time of flight, for values of
tTOF different from tclass there can still be high-contrast inter-
ference, with fringe periods �f different from �class. To find
�f for our experiment, we may consider, for instance, the
interference of the scattering orders �n ,n��= �0,1� with
�n ,n��= �1,0�. For these, krel=2kL�cos��	t�−1� and
xrel= �2pr /m��sin��	t�. It is easy to verify that under the
conditions of Fig. 2 the terms in Eq. �3� that involve 
 are
much smaller than the terms that involve the time of flight,
tTOF. Noting further that under the conditions of Fig. 2,
�	t�1, and thus xrel�2pr	t /m, we arrive at

�f �
htTOF

2pr	t
. �4�

This is the same equation as given in Ref. �13� for the case of
free evolution between pulses and in the absence of mean-
field interaction. Thus, in this first interferometry scheme,
where �	t�1, the presence of the harmonic trap between
the Kapitza-Dirac scattering pulses has no significant effect
on the fringe period. According to Eq. �4�, in our system we
expect �f=

1
	t �8.5 �m ms. This is in reasonable agreement

with our experimental observations.
The modeling described so far has been restricted to the

case where the initial wave function is in the ground state,
whereas the experiments discussed so far have been per-
formed on thermal clouds. A thermal cloud of atoms at tem-
perature T in a harmonic oscillator �frequency �� can be
modeled as an ensemble of minimum-uncertainty Gaussian
wave packets with average initial positions xt and momenta
kt following thermal distributions, �2m�xt

2
=�2�kt
2
 /m=kBT.

Forming weighted averages of the interference patterns pro-
duced by such wave function ensembles we find that high-
contrast interference patterns may be observed for tempera-
tures up to hundreds of nK. We have qualitatively confirmed
this finding in the experiment by varying the temperature T
of the cold-atom cloud. We control the temperature by stop-
ping the rf-induced evaporative cooling at different frequen-
cies above the critical frequency at which a BEC begins to
form. We determine the resultant temperature of the thermal
cloud, after evaporative cooling and adiabatic relaxation of
the magnetic trap, using TOF analysis along the vertical di-
rection of the shadow images. We experimentally observe
interference for temperatures up to T�650 nK. Due to un-
certainties in the size of the initial atom cloud before TOF,
the uncertainties of the temperature measurements are

�50 nK �which corresponds to a fairly high relative uncer-
tainty for the lowest temperature thermal clouds�. In Fig. 3
we compare experimental interference patterns obtained with
thermal samples to simulated patterns �simulated for the tem-
peratures indicated in the figure�, and find some qualitative
agreement. However, the experimental results at high tem-
peratures show greater fringe contrasts than the simulations;
we still see contrasts of 13% at �650 nK in the experiment,
but the simulations indicate that the interference pattern
should be completely washed out at that temperature. This
parallels the observation of Miller et al. in Ref. �13�. Their
proposed explanation of velocity-selective Bragg diffraction
does not fit our experiment, though, since Kapitza-Dirac
scattering is not velocity selective.

We have also implemented the described interferometry
scheme using BECs of �5–8��104 atoms. Since the spatial
extent of the BEC components after time of flight is much
smaller than that of cold thermal clouds, it is more challeng-
ing to observe interference in BECs than in cold thermal
clouds. Fringes in BECs can only be observed if the fringe
period, �f, is less than the size of the BEC components after
TOF, but still larger than the spatial resolution of the imaging
system �which is �7 �m in our experiment�. In our
system, these contrasting requirements mean that BEC inter-
ference fringes can only be observed over the range
300 �s�	t�800 �s. In Fig. 2�a� we see that in the case
	t=400 �s, where there is a mix of thermal cloud and a
very small BEC, a single interference fringe is only slightly
smaller than a BEC component. In Fig. 2�c�, we show BEC
inteference for 	t=420 �s; several interference fringes are
visible in each BEC component. For 	t�300 �s, the inter-
ference fringes are too wide to be visible, but any asymmetry
between the paths of the +1 and −1 components will still
cause a phase shift in the interference. These phase shifts
manifest as one component having a greater amplitude than
its symmetric component in the TOF image. An example
leading to asymmetry between the paths of the +1 and −1
components is the initial momentum of the wave function,
p0. In our system, variations in the magnetic trapping fields
cause a shot to shot fluctuation of p0 over a range
�p0��0.4pr. The resulting asymmetry in the interference pat-
tern can be quantified by comparing the number of atoms P−
and P+ with momenta −2pr and +2pr, respectively, in the
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FIG. 3. �Color online� Experimental and simulated interference
patters for �=45 Hz, 	t=200 �s, tTOF=20 ms, and the indicated
temperature values. Experimental temperatures are estimated using
TOF, and have uncertainties of �50 nK.
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TOF images. In the presence of a cold thermal cloud, p0 can
be measured by using the interference of the thermal cloud as
a reference. A thermal cloud has a sufficiently wide range of
initial momenta that its interference pattern is independent of
small variations in the average momentum. Thus, the center
of the thermal-cloud interference pattern can be taken as
p=0. The initial momentum of the BEC can then be found
by comparing the position of the BEC component with
n+n�=0 to the p=0 position as indicated by the thermal
cloud. A straightforward calculation shows that, in the
limit of small 	t and weak Kapitza-Dirac scattering
�V0�t /��2.4�, the asymmetry of P− and P+, defined
as A= �P+− P−� / �P++ P−�, should vary as

A =
− sin�2�	tkL

2 /m�sin�2�	tkLk0/m�
1 + cos�2�	tkL

2 /m�cos�2�	tkLk0/m�
, �5�

where kL=2� /� and k0= p0 /�. Using simulations, we have
found that for �t=2 �s �the value used in the experiments�
Eq. �5� approximately holds for lattice depths, 2V0, of up to
about 70 recoil energies; for deeper lattices the dependence
of A on 	t and k0 becomes more complicated due to higher-
order scattering. Therefore, to model our experiment, where
the lattice depth is about 80 recoil energies, we use a numeri-
cal simulation. In Fig. 4, we plot A as a function of p0 for
images containing both a BEC and a thermal cloud with
	t=100 �s �squares�, the simulation using propagators
�solid line�, and the analytic calculation �Eq. �5�; dashed
line�. Since the lattice depth is large, the analytic method
does not accurately describe our experiment. The experimen-
tal data do agree well with the theoretical result based on
propagators, showing that the experimental shot-to-shot
variations in p0 result in well-characterized changes of the
interferometric quantity A.

The second interferometry scheme demonstrated in this
paper differs from the first in that 	t is more than an order of
magnitude larger: �8 ms. This allows the nonzero momen-
tum components produced by the first Kapitza-Dirac scatter-
ing pulse to complete a half-oscillation in the magnetic trap

and return approximately to their initial positions near the
center of the trap by the time the second Kapitza-Dirac scat-
tering pulse is applied. This procedure, a schematic of which
is shown in Fig. 1�b�, is a realization of a Mach-Zehnder
interferometer. In the present work, clear demonstrations of
this interferometer have only been possible using BECs. Un-
der our experimental conditions, the +1 and −1 BEC com-
ponents �starting with momenta of about +2pr and −2pr, re-
spectively� are, at the farthest point, 60 �m apart, which is
much larger than the BEC size. This is far enough apart that
it would be possible to manipulate the atoms traveling in one
arm of the interferometer without affecting the atoms in the
other; for example, a distance of 60 �m can be resolved
using laser beams. The sensitivity of an atom interferometer
to accelerations and fields is proportional to 	t. While a few
other groups have achieved larger 	t �see, for example, Refs.
�14,15��, 8 ms is still one of the larger time separations �16�.

The images shown in Fig. 5, taken as described above,
demonstrate that our large-separation interferometer pro-
duces interference fringes after a half-round-trip of the atoms
in the magnetic potential �for the case depicted in Fig. 5, the
frequency of the trap along the axis of the lattice is 60 Hz�.
The contrast of these fringes varies considerably from shot to
shot, ranging from 20% to 75%. In the large-separation in-
terferometer, the fringe period is no longer described by Eq.
�4� because �	t is not �1. At 	t=8.4 ms, very close to a
half-oscillation in the magnetic trap, �f is larger than a BEC
component, and interference is observed indirectly as a dif-
ference in atom number between the components emerging
with �2pr, as described above for the other interferometry
scheme. As seen in the figure, the +1 component has a larger
population than the −1 component. At 7.2 ms and 7.8 ms, �f
is small enough that multiple fringes can be seen in each
BEC component. The presence of multiple fringes theoreti-
cally allows for more sensitive measurement, in that small
changes in the phase of the fringes can be observed, rather
than the less precise measurement of the number of atoms in
each component. In order to exploit this potentially higher
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sensitivity, however, it would be necessary for the imaging
system to be able to resolve small phase changes, which is
not the case in our present setup.

The mean-field energy of the BEC in our system is
�h�100 Hz, so in theory it should be possible to begin to
see small effects from the mean field after a half oscillation.
However, although the number of atoms in our BEC varies
by a factor of about 2, we see no correlation between atom
number and fringe phase when we compare images with the
same p0. When we simulate the interferometer and vary the
mean field, we find that for the range of BEC sizes in our
experiment, we would expect the variation in the fringe po-
sition due to the mean field to be smaller than the resolution
of our camera, e.g., �5 �m for the case of 	t=7.8 ms. The
simulations show a systematic shift of �10 �m, however,
between a BEC of the size of the ones used in our experi-
ment and one with an order of magnitude fewer atoms.

While our spatial and temporal separations are not as
large as those in the experiment of O. Garcia et al. �14� �who
hold the record for a BEC interferometer with the arms com-
pletely spatially separate�, our system provides some advan-
tages over theirs. One advantage is that we can make �f
small enough to see individual fringes by making 	t not
exactly equal to half an oscillation period in the magnetic
trap. As mentioned above, this allows for potentially more
precise measurements. Another advantage is that we use the
curvature of our magnetic trap as the “mirrors” at the end of
each arm of the Mach-Zehnder interferometer. This is both
easier to implement and more reproducible than using a
Bragg-scattering pulse. A Bragg-scattering pulse can lose its
efficiency if the BEC starts with a small unknown momen-
tum, as is the case for both our experiment and the one
described in Ref. �14�, while a small momentum has no ef-
fect on the efficiency of a Kapitza-Dirac pulse. Additionally,
Kapitza-Dirac scattering provides advantages over Bragg
scattering for interferometers where the arms are separate for
only a short period of time. Bragg-scattering pulses are much
longer than Kapitza-Dirac scattering pulses, and in many
cases may take up a sizable portion of the separation time
�for example, �13��.

Based on the periodicity of the propagator of the one-
dimensional harmonic oscillator, for given 	t0 and integer n
one would expect to find the same shadow images for all
values 	t=	t0+n� /�. Thus, based on observations of
thermal-could interference at some short-time delay,
	t0�500 �s, as in Fig. 2, one might expect to find similar
interference patterns of thermal clouds at much longer delay
times, 	t=	t0+n� /�. We observe that cold, thermal clouds
do indeed produce some interference after a half-round-trip,
as demonstrated in Fig. 5�b�. Nonetheless, in all cases stud-
ied the thermal-cloud interference observed after a half-
round-trip has been found to be much less pronounced than
after short-time delays, 	t�500 �s. The observed fringe
contrast is 35% along the top edge of the shadow image,
while it drops to zero near the center line and below. There
are multiple causes that can explain the discrepancy between
this observation and the high-contrast fringes observed for a

BEC after the same time delay. The motion of the atoms in
the trap may not be exactly one-dimensional. If the lattice
laser is not perfectly aligned with one of the principal axes of
the trap, the components gain a small momentum along a
transverse axis of the trap. In this case, the interference
planes in three-dimensional space may tilt after a large 	t
due to differences in trap frequency along the different axes
of the trap. This would cause the interference to average out
in the shadow images, which are two-dimensional projec-
tions of the atom density. This is also the probable cause of
the noticeable tilting of the fringes in Fig. 5�b�. Additionally,
any anharmonicity of the trap potential would break the pe-
riodicity of the propagator, leading to a reduction in the co-
herence time of cold, thermal samples.

Finally, as an extension of the previous scheme, we dem-
onstrate that interference can be seen when the �1 compo-
nents are allowed to undergo a full oscillation. This is shown
for a BEC in Fig. 6, where 	t=16.5 ms. In this case, the
fringes appear tilted; this is presumably because the lattice
laser is not perfectly aligned with the axes of the trap, as
explained above. The full-oscillation version of the large-
separation interferometer has both advantages and disadvan-
tages over the half-oscillation version presented above. Hav-
ing both components go through all the same space over the
course of their separation negates any phase difference a
component might pick up due to asymmetries in the trap.
Time-independent, spatially dependent fields and linear ac-
celerations would affect both components equally, since they
each sweep out the same spatial range. Each component is
separately addressable only if the duration of the perturba-
tion under investigation is timed such that it affects one com-
ponent when it reaches one end of the trap but is no longer
present by the time the other component reaches that loca-
tion. Furthermore, when the �1 components collide at the
center of the trap after half an oscillation, atom loss and
four-wave mixing can occur due to s-wave scattering.

In conclusion, we have presented two simple atom inter-
ferometry schemes using Kaptiza-Dirac scattering. In one
scheme, we can produce large, high-contrast interference
fringes in both a BEC and a thermal cloud. In the other
scheme we can see visible interference fringes after the BEC
components follow spatially separated paths. This separation
is sufficient for the BEC components to be individually ad-
dressable.

We acknowledge the support of AFOSR �Grant No.
FA9550-07-1-0412� and FOCUS �NSF Grant No. PHY-
0114336�.

0 2-2

momentum ( p )runits of

4-4

FIG. 6. Interference after a full-period oscillation.
	t=16.5 ms.

ATOM INTERFEROMETRY USING KAPITZA-DIRAC… PHYSICAL REVIEW A 79, 043630 �2009�

043630-5



�1� A. Bramley, J. Franklin Inst. 203, 251 �1927�.
�2� E. J. Post, Rev. Mod. Phys. 39, 475 �1967�.
�3� B. Culshaw, Meas. Sci. Technol. 17, R1 �2006�.
�4� L. Stodolsky, Gen. Relativ. Gravit. 11, 391 �1979�.
�5� B. Abbott, R. Abbott, R. Adhikari et al., Phys. Rev. D 76,

082003 �2007�.
�6� J. D. Perreault and A. D. Cronin, Phys. Rev. Lett. 95, 133201

�2005�.
�7� C. R. Ekstrom, J. Schmiedmayer, M. S. Chapman, T. D. Ham-

mond, and D. E. Pritchard, Phys. Rev. A 51, 3883 �1995�.
�8� A. Miffre, M. Jacquey, M. Büchner, G. Trénec, and J. Vigué,

Phys. Rev. A 73 011603�R� �2006�.
�9� A. Arvanitaki, S. Dimopoulos, A. A. Geraci, J. Hogan, and M.

Kasevich, Phys. Rev. Lett. 100, 120407 �2008�.
�10� A. Gangat, P. Pradhan, G. Pati, and M. S. Shahriar, Phys. Rev.

A 71, 043606 �2005�.

�11� R. Zhang, R. E. Sapiro, N. V. Morrow, R. R. Mhaskar, and G.
Raithel, Phys. Rev. A 77, 063615 �2008�.

�12� P. L. Gould, G. A. Ruff, and D. E. Pritchard, Phys. Rev. Lett.
56, 827 �1986�.

�13� D. E. Miller, J. R. Anglin, J. R. Abo-Shaeer, K. Xu, J. K. Chin,
and W. Ketterle, Phys. Rev. A 71, 043615 �2005�.

�14� O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and C. A.
Sackett, Phys. Rev. A 74, 031601�R� �2006�.

�15� G.-B. Jo, Y. Shin, S. Will, T. A. Pasquini, M. Saba, W. Ket-
terle, D. E. Pritchard, M. Vengalattore, and M. Prentiss, Phys.
Rev. Lett. 98, 030407 �2007�.

�16� Ying-Ju Wang, Dana Z. Anderson, Victor M. Bright, Eric A.
Cornell, Quentin Diot, Tetsuo Kishimoto, Mara Prentiss, R. A.
Saravanan, Stephen R. Segal, and Saijun Wu, Phys. Rev. Lett.
94, 090405 �2005�.

SAPIRO, ZHANG, AND RAITHEL PHYSICAL REVIEW A 79, 043630 �2009�

043630-6


