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Comparative study of the finite-temperature thermodynamics of a unitary Fermi gas
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The finite-temperature thermodynamics of a unitary Fermi gas is studied in detail. The chemical potential,
energy density, and entropy are given analytically with the quasilinear approximation. The ground-state energy
agrees with previous theoretical and experimental results. Recently, the generalized exclusion statistics is
applied to the discussion of the finite-temperature unitary Fermi-gas thermodynamics. A concrete comparison
between the two different approaches is performed. Emphasis is made on the behavior of the entropy per
particle. In physics, the slope of entropy gives the information on the effective fermion mass m*/m in the
low-temperature strongly degenerate region. Compared with m*/m=0.70<1 given in terms of the generalized
exclusion statistics, our quasilinear approximation determines that m*/m=1.11>1.
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I. INTRODUCTION

In recent years, strongly interacting fermion physics has
become the focus of theoretical and experimental attention
[1]. This is much attributed to the rapid progress of the
atomic Fermi-gas experiments.

By tuning the external magnetic field, one can control the
s-wave scattering length a or interaction strength between
two atomic fermions. The crossover from Bardeen-Cooper-
Schrieffer (BCS) regime to Bose-Einstein condensation
(BEC) can be realized by the so-called Feshbach resonance
[2]. At the resonance point, the scattering length can be sin-
gular with the existence of a zero-energy bound state. Al-
though the scattering length is singular, the scattering cross
section is saturated as o~ 4m/k> (with k being the relative
momentum between two atomic fermions) due to the unitary
property limit. The divergent scattering fermion thermody-
namics is referred to as the unitary Fermi-gas thermodynam-
ics in the literature [3]. Dealing with the strongly interacting
matter is related with a variety of realistic many-body topics.

Usually, the thermodynamics of dilute fermion system is
determined by the two-body scattering length a, particle
number density n, and temperature 7. In the unitary limit
with a= *oc, the dynamical scattering limit should drop out
in the thermodynamic quantities. At unitarity, the dynamical
detail should not affect the thermodynamics; i.e., the unitary
fermion system can manifest the universal properties [3].

Due to lack of any small expansion parameter, the unitary
Fermi gas provides an intractable problem in statistical phys-
ics. The fundamental issue is on the zero-temperature
ground-state energy. Based on the dimensional analysis, the
ground-state energy should be proportional to that of the
ideal Fermi gas with a universal constant é=1+ 3, which
excites many theoretical and experimental efforts. The world
average value of £ is 0.42-0.46 [4-8]. Recently, we have
attempted a quasilinear approximation method to explore the
strongly interacting limit fermion thermodynamics [9]. The
obtained ground-state energy or the universal constant §=g
is reasonably consistent with some theoretical or experimen-
tal investigations.
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Generally, the finite-temperature thermodynamics is as in-
triguing as the zero-temperature ground-state energy. There
have been several Monte Carlo finite-temperature calcula-
tions of a unitary Fermi gas [10,11]. In the strongly corre-
lated unitary fermions, the nonlinear quantum fluctuations
and correlations compete with dynamical high-order effects.
In the weakly degenerate Boltzmann regime, the nonlinear
correlations make the second-order virial coefficient a, van-
ish. To a great extent, the vanishing leading-order quantum
correction reflects the intermediate crossover characteristics
of a unitary Fermi gas [9].

Can the intermediate characteristics be described in an-
other way? In [12,13], the generalized exclusion statistics
was developed to describe the anyon behavior in the low-
dimensional strongly correlated quantum system. Physically,
the behavior of a unitary Fermi gas is between those of Bose
gas and Fermi gas [10]. Similarly, the behavior of anyons is
also between those of bosons and fermions. Can one use the
anyon statistics to describe the intermediate unitary Fermi
gas? Recently, the generalized exclusion statistics has been
generalized to describe the unitary Fermi-gas thermodynam-
ics [14,15]. As a hypothesis, the priority is that the thermo-
dynamics at finite temperature can be investigated quantita-
tively.

From the general viewpoint of statistical mechanics, cal-
culating entropy is not a simple task. In either classical or
quantum theory, the entropy describes how the microscopic
states are counted properly. From the quantum degenerate
viewpoint, the low-temperature behavior of the entropy is a
characteristic quantity. For example, according to the Landau
theory for the strong-correlation Fermi liquid, the slope of
entropy per particle versus temperature is related to the ef-
fective fermion mass m*/m. In physics, the dynamical pa-
rameter m"*/m is very important for the phase-separation dis-
cussion of the asymmetric fermion system with unequal
populations [ 16—18]. Like the universal constant £=1+ 3, the
effective fermion mass m™/m is an another universal constant
for the BCS-BEC crossover thermodynamics. Obviously, the
physics beyond the mean-field theory should be reasonably
well understood.

Unlike the ground-state energy or the universal constant &
with the world average value £=0.44, the effective fermion
mass is an unknown parameter up to now. For example, the
effective fermion mass is estimated to be m*/m=1.04 with a
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quantum Monte Carlo calculation [16]. A quantitative study
of the phase diagram at zero temperature along the BCS-
BEC crossover using fixed-node diffusion Monte Carlo
simulations shows that m*/m=1.09 [17]. A many-body
variational wave function with a T-matrix approximation
leads to a larger value m*/m=1.17 [18]. What is the exact
value of m*/m?

In a quantitative way, we make a comparative study of the
finite-temperature thermodynamic properties of the unitary
fermion gas with the two formulations. The behavior of en-
tropy per particle based on the quasilinear approximation and
the generalized exclusion statistics is discussed in detail. In-
directly, the effective fermion mass is determined from the
entropy. The results are further compared with the Monte
Carlo calculations.

The paper is organized in the following way. In Sec. II,
the relevant thermodynamic expressions are given by the
quasilinear approximation. Correspondingly, the thermody-
namics given by the generalized exclusion statistics is pre-
sented in Sec. III. The numerical calculations and concrete
comparisons between the two methods are given in Sec. IV.
In this section, the entropy per particle and corresponding
effective fermion mass m*/m are discussed. In Sec. V, we
present the conclusion remarks.

II. THERMODYNAMICAL QUANTITIES GIVEN BY
STATISTICAL DYNAMICS WITH QUASILINEAR
APPROXIMATION

Strongly correlated matter under extreme conditions often
requires the use of effective field theories in the description
of the thermodynamic properties, independently of the en-
ergy scale under consideration. In the strongly interacting
system, the central task is how to deal with the nonperturba-
tive fluctuation and correlation effects. In Ref. [9], a quasi-
linear approximation is taken to account for the nonlocal
correlation effects on the unitary Fermi-gas thermodynamics.

With the quasilinear approximation method, the obtained
grand thermodynamic potential Q(7T,u) or pressure P=
—(/V can be described by two coupled parametric equations
through the intermediate variable effective chemical poten-
tial w”,

2T , T gt
P=—=f5p(z") + n*+nu,, (1)
A m
2T opp
T N (2)

In the above equations, A= 27/ mT is the thermal de Bro-
glie wavelength and m is the bare fermion mass (with natural
units of kz=A=1 throughout the paper).

The effective chemical potential u* is introduced by the
single-particle self-consistent equation. u* makes the ther-
modynamic expressions appear as the standard Fermi inte-
gral formalism

, 1 (" xldx
fil2') = () fo R (3)
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where I'(v) is the gamma function, and z’ =e* 7 is the effec-
tive fugacity. For example, the quasiparticle Fermi-Dirac dis-
tribution function gives the particle number density accord-
ing to

2
n= nyz(Z')- 4)

In coupled equations (1) and (2), the shorthand notations are
defined as

m 5 on )
Aopp=— ">, Mn= ol I 5
e 27Tm§) P (c?,u T )

The shift term oy, characterizes the high-order nonlinear
contributions, which strictly ensures the energy-momentum
conservation law. In the quasilinear approximation, this sig-
nificant high-order correction term can be fixed in a thermo-
dynamic way. It is worthy noting that the terms o« u, can be
exactly canceled by each other in the Helmholtz free-energy
density

€=f=_P+nlu“’ (6)

where V is the system volume. However, the high-order cor-
relation term o, can be obtained in terms of the thermody-
namic relations [9]

F
JF N -
n
P:—(-) = - — :n2 — . (7)
IV/rn (9\_/ onj/r
N/t
and
F
JF 7 af
S I R
IN/ 1y N on/r
V/r

Comparing those obtained from Egs. (7) and (8) with Egs.
(1) and (2), the explicit expression of u, is

1( om?> 2T |
e
2\ dn J;\ m

The integrated expressions of the pressure and chemical
potential for the unitary Fermi gas are

fg/z(z,) fg/z(zl)f—l/z(Z')
! + 3 '
2f1/2(Z ) zfl/z(z )

2
P=)\_§(f5/2(1/)— ), (10)

o f3n@) Tf35(2)fo1n(2)
fin(@') 2 f?/z(l')

In the quasilinear approximation, the auxiliary implicit
variable u* is introduced to characterize the nonlinear fluc-
tuation and correlation effects. As indicated by Egs. (10) and
(11), the w* or z' makes the realistic grand thermodynamic
potential (T, w) appear as the set of highly nonlinear para-

p=p (11)
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metric equations, which can be represented by the standard
Fermi integral. By eliminating the auxiliary variable u*, the
equation of state will uniquely be determined.

From the underlying grand thermodynamic potential-
partition function, one can derive the analytical expressions
for the entropy density s=S/V and internal energy density
e=E/V. The following partial derivative formulas will be

used:

(22) (%) +(52) (%), oo
or ), \ or )" \ou )\ T/,

The entropy is derived according to

S _ l(g) _ §f5/2(zl) n ' 3f—1/2(2')f§/2(1,)
- - "N nz+ 3 ’
n n\dT/, 2f3p') 4f1,(z")
f3n(2")
4f1/2(Z'). (13)

Correspondingly, the explicit energy density expression is
calibrated to be

3T
€=

fg/z(Z’) fg/z(zr)f—uz(z'))
. 14
2f1/2(Z,) ’ 2f?/2(Z’) (14

Essentially, the entropy density includes the high-order
nonlinear contribution. What we want to emphasize is that
the third law of thermodynamics is exactly ensured as ex-
pected. The analytical analysis indicates that the energy den-
sity at zero temperature gives the dimensionless universal
coefficient according to &=pu/ EF=g or E/ (%NEF)=§, where
the Fermi energy is Ep=(37°n)*?/2m and Ty is the Fermi
characteristic temperature in the unit Boltzmann constant.
The universal coefficient 5:% has attracted much attention in
the literature and is reasonably consistent with some Monte
Carlo calculations [4,10].

(fS/Z(Z,) -

III. THERMODYNAMICS GIVEN BY THE GENERALIZED
EXCLUSION STATISTICS

A. Generalized exclusion statistics

The generalized exclusion statistics is proposed in
[12,13]. If the dimension of the Hilbert space is d and the
particle number is N, then d and N are connected by Ad=
—gAN, where the shift in the single-particle states’ number is
Ad. The shift in the particle number for identical particle
system is AN and g is a statistical parameter, which denotes
the ability of one particle to exclude other particles in occu-
pying single-particle state. When g=0 the intermediate sta-
tistics returns to the Bose-Einstein statistics and when g=1 to
the Fermi-Dirac statistics.

For anyons, the number of quantum states W of N identi-
cal particles occupying a group of G states are determined by
the interpolated statistical weights of the Bose-Einstein and
Fermi-Dirac statistics. A simple formula with the generalized
exclusion statistics is used to describe the microscopic quan-
tum states [13],
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_[G+N-D(-9)]!
S NIG-gN-(1-g)]\

(15)

One can divide the one-particle states into a large number
of cells with G>1 states in each cell, and calculate the num-
ber with N; particles in the ith cell. The total energy and the
total number of particles are fixed and given as

E=2> Ne, N=2N, (16)
with €; defined as the energy of particle of species i. By
generalizing Eq. (15), we have

G- -9
W_HN,- [Gi-gN;—(1-g)]!"

(17)

We consider a grand canonical ensemble at temperature 7.
For very large G;>1 and N,;> 1, using the Stirling formula
In N!=N(In N-1) and introducing the average occupation

number defined by N;=N,/G;, one has
{ [G,+ (N, = (1 = ]! }

In W=21n

1

= 2 {G[1+(1 —g)Ni]ln Gl1+(1 —g)ﬁi]

N;![Gi-gN;=(1-g)]!

- G(1-gN)In G(1-gN,) - G,N;In GN}.
(18)
Through the Lagrange multiplier method, the most prob-
able distribution of N; is determined by

J Giﬁi € —
—_[m w-> M]:o, (19)
ON; i r
with chemical potential u. It follows that

Nl T=[1+(1-g)N]'4(1 - gNps.  (20)

Setting w;=1/N;—g, we have the anyon statistical distribu-
tion

— 1
N;= , (21)
w;+g
where w obeys the relation
(1 + @) "8 = eleWIT, (22)

One can define w, of w at e=0 with Eq. (22),
w=—TIn[wd(1 +wy)'%]. (23)

The relation between w and T has been established indirectly
through w, and g. From Eq. (22), the w and w, are related
with each other through single-particle energy e,

e= Tln{(g)g<l+—w>l_g}, (24)
wy/ \ 1+ wy

which gives
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_T(g+ o)

de do. (25)

"ol + w)

For T=0, the average occupation number can be explicitly
indicated as

0 if e>p
N=4{1 . (26)
— if e<p,
8

which is quite similar to the Fermi-Dirac statistics.

B. Particle number and energy densities

In the anyon statistics, the density of states is also given
by

D(€) = a(2m)*?*Ve"?/472, (27)

where « is the degree of the spin degeneracy and m is the
bare fermion mass.
At T=0, the particle number is explicitly given by

1 E 2 3/2
N= gf "D(e)de= %VE}”, (28)
0

where EF is related to the Fermi energy Ey through EF

=g?*Ey.. With the E symbol, the system energy can be rep-
resented as

1 (Er 3 .5
E=- eD(e)de=—g”°NE. (29)
8J0 5

As we will see, once g is fixed, one can discuss the gen-
eral finite-temperature thermodynamic properties. Therefore,
the essential task in the generalized exclusion statistics is
fixing the statistical factor g. This can be determined by the
zero-temperature ground-state energy or the universal con-
stant & according to é=g*3. Various theoretical or experi-
mental attempts have been made in the literature for deter-
mining the ground-state energy. With the universal
coefficient 5:;3‘ [9], the expected statistical factor can be
identified to be g=1-.

For the general finite-temperature scenario, the particle
number and energy can be rewritten as

N:JWM, (30)
o wt+g
0o w*tg

By replacing Egs. (24), (25), and (28) into Egs. (30) and
(31), one can have

3 3/2
E(T_> a(wg) =1, (32)
F
3 5/2
]%;5(%) blwo). (33)
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* dw [ (w)g<1+w>l_g:|”2
a(w0)=jw0 o(l + w) In w_O 1+ gy ’

“ dw o\ 1+w |83
b= [ —{ln(_) (1xe) } |
wy (1)(1+(1)) w( 1+(1)0
Equation (32) determines w, for a given temperature 7.
E/NE can be obtained by a given w, through Eq. (33).
For giving the explicit entropy density expression with the
generalized exclusion statistics in Sec. III C, let us make fur-
ther discussion on the energy density. By eliminating N with

Eqgs. (28) and (33), the energy can be alternatively expressed
as

~ a(zm)3/2

E= 477

The partial derivative of the internal energy E to T for fixed
M is given by

VT 2b(wy). (34)

(35)

Furthermore, the variable w, of the integral function
b(wp) can be converted into w and T through Eq. (23)

* dw 32
b(wo,M»T)=f m{ln[wg(l+w)“g]+’£—;} .

(36)
Therefore, one can have
b 3

(E_‘)Mz Eln[wg(l + wo)l_g]a((l)o). (37)

C. Entropy per particle

Due to the scaling properties, the thermodynamics of a
unitary Fermi gas also satisfies the ideal gas virial theorem
[3,9,19]

2FE
P=——. 38
3V (38)

According to the thermodynamic relation for the entropy

S and pressure P, one can have

2(0E
Ss(a_T) (39)

By substituting Egs. (35) and (37) into Eq. (39), the ex-
plicit expression for the entropy per particle is derived to be
S 5(T 3/2

(T—) b(awy) + In[@f(1 + wp)' 4], (40)
F

N2
where w is given by Eq. (32) for a given T.
IV. NUMERICAL RESULTS AND COMPARISONS

Based on the above analytical expressions, we will give
the numerical results.
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E/ (NEg)

i FIG. 1. The internal energy per
| particle versus the rescaled tem-
perature. The solid curve denotes
that for the ideal Fermi gas, and
the short-dashed one is that given
by the quasilinear approximation.
The long-dashed curve represents
1 the result in terms of the general-
] ized exclusion statistics model.
The dots and solid squares are the
Monte Carlo calculations of
[10,11], respectively.
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A. Internal energy and chemical potential

From Egs. (32) and (33), the energy per particle versus
the rescaled temperature can be solved. As indicated by Fig.
1, the internal energies for the unitary Fermi gas based on the
quasilinear approximation and the generalized exclusion sta-
tistics have similar analytical properties; i.e., the internal en-
ergy increases with the increase in temperature. The two ap-
proaches both show that the energy density of a unitary
Fermi gas is lower than that of the ideal Fermi gas. However,
the shift in the internal energy given by the quasilinear ap-
proximation is quicker than that determined by the general-
ized exclusion statistics model.

With Egs. (32) and (23), we also show the chemical po-
tential versus the rescaled temperature in Fig. 2. The chemi-
cal potential given by the two formalisms decreases with the
increase in temperature. The departure between them be-
comes bigger with increasing temperature.

The results for the energy per particle shown in Fig. 1 in
terms of the two different analytical approaches are reason-
ably consistent with the Monte Carlo calculations [10,11],
while the chemical potential differs explicitly from the
Monte Carlo result [11] for 7/Tz>0.8, as shown in Fig. 2.

B. Entropy

With Egs. (32) and (40), the entropy per particle versus
the rescaled temperature curve is presented in Fig. 3. The
quasilinear approximation predicts that the curve is higher
than that of the ideal Fermi gas, while the generalized exclu-
sion statistics model gives lower values compared with that
of the ideal Fermi gas. With the increase in temperature, the
entropy per particle given by the generalized exclusion sta-
tistics becomes closer to and almost overlaps with that of the
ideal Fermi gas. In terms of the quasilinear approximation,
the ratio of entropy to that of the ideal Fermi gas approaches
a constant in the Boltzmann regime.

Especially in the low-temperature strongly degenerate re-
gime, the slopes of the entropy per particle versus the scaled
temperature curves given by these two approaches are differ-
ent. The low-temperature behavior is determined by the ef-
fective fermion mass according to the Landau theory of
strongly correlated Fermi liquid. In turn, from the entropy
curve, one can derive the effective fermion mass indirectly.
The careful study shows that the quasilinear approximation
indicates that m*/m=~1.11>1, while the latter predicts
m*/m=0.70<1. Compared with the latter, the quasilinear

FIG. 2. Physical chemical po-
tential versus the rescaled tem-
] perature. The line styles are simi-
1 lar to those in Fig. 1.

T/Tr
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S/N
N}

FIG. 3. Entropy per particle
versus the rescaled temperature.
The line styles are similar to those
in Fig. 1. The Monte Carlo simu-
lation result is extracted from Ref.
[10].

0 0.2 0.4 0.6 0.8 1 1.

T/Tp

approximation result is more consistent with the Monte
Carlo calculations of m*/m~1.04—1.09 [16,17].

V. CONCLUSION

In terms of the quasilinear approximation method and
generalized exclusion statistics model, the internal energies,
chemical potentials, and entropies of a unitary Fermi gas
have been analyzed in detail. The two different approxima-
tions give similar behavior for the internal energies and
chemical potentials of a unitary Fermi gas.

The entropy is an important characteristic quantity in sta-
tistical mechanics. The entropy obtained by the quasilinear
approximation is higher than that of the ideal noninteracting
fermion gas. In the Boltzmann regime, the entropy curve
given by the generalized exclusion statistics gets closer to-
ward and almost overlaps with that of the ideal Fermi gas.
The entropy given by the quasilinear approximation deviates

from that of the ideal Fermi gas and the ratio of entropy to
that of the ideal Fermi gas approaches a constant.

According to the quasiparticle viewpoint of the Landau
Fermi-liquid theory, the slope of entropy per particle deter-
mines the effective fermion mass in the low-temperature
strongly degenerate region. The numerical analysis demon-
strates that the generalized exclusion statistics model gives
m*/m=0.70<1. The developed quasilinear approximation
predicts m*/m=1.11>1, which is closer to the updated
Monte Carlo investigations.
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