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Using many-body results available from diagrammatic and ab initio Monte Carlo calculations we analyze
the phase diagram �= ��↑+�↓� /2 versus h= ��↑−�↓� /2 of a unitary Fermi gas at zero temperature with
population imbalance and unequal masses. We identify different regions where the gas is superfluid, partially
polarized or fully polarized, and determine the corresponding coexistence conditions. The asymmetry in the
phase diagram, caused by the mass imbalance, and its effect on the Chandrasekhar-Clogston limit for the
critical polarization are explicitly discussed. The equation of state of the superfluid and normal phases is
employed, within the local density approximation, to predict phase separated configurations in the presence of
harmonic trapping potentials.
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I. INTRODUCTION

The study of polarization effects in Fermi superfluids �Ss�
has been the object of intense experimental and theoretical
work �for recent reviews on the subject see, e.g., �1,2�� in
ultracold atomic gases in the last few years. Crucial goals of
these studies are the identification of novel quantum phases
and the determination of the Chandrasekhar-Clogston limit
of critical polarization above which the system is no longer
superfluid.

The recent observation of heteronuclear Feshbach reso-
nances in ultracold mixtures of two fermionic species �3� as
well as the realization of a degenerate two-species Fermi-
Fermi mixture �4� has opened new stimulating perspectives
in the field of Fermi superfluids built with atomic species of
different masses.

The phase diagram of Fermi mixtures with unequal
masses and the corresponding polarization effects, including
the possible occurrence of the Fulde-Ferrell-Larkin-
Ovchinnikov �FFLO� phase �5�, have already been the object
of theoretical predictions based on BCS mean-field theory
�6–10�. This theory is known to give reasonable predictions
at unitarity in the case of unpolarized configurations �see, for
example, �2��. However, it fails to give quantitatively correct
results in the imbalanced case and to predict the
Chandrasekhar-Clogston limit of critical polarization. The
failure of the BCS mean field is mainly due to the fact that it
ignores the role of interactions in the normal phase which are
now understood to play a crucial role at unitarity �11,12�.

The main goal of this paper is to use the present knowl-
edge of the equation of state of Fermi mixtures with unequal
masses to give quantitative predictions for the phase separa-
tion between the normal and superfluid components. Our
analysis is based on the study of the zero temperature �-h
phase diagram, as shown in Fig. 1, of the uniform two com-
ponent gas, where �= ��↑+�↓� /2 is the chemical potential
and h= ��↑−�↓� /2 is an effective magnetic field. The phase
diagram at unitarity is determined, thanks to the knowledge

of the equation of state available from diagrammatic tech-
niques applied to highly polarized configurations and from
Monte Carlo simulations. The phase diagram is then used, in
the local density approximation, to calculate the density pro-
files of the two Fermi components in the presence of har-
monic trapping.

We begin in Sec. II by reviewing the general theory of the
normal state for equal masses and discuss its extension to the
unequal mass case. Then in Sec. III we introduce the bulk
phase diagram and discuss its properties in dependence on
the mass ratio �. In Sec. IV we use the phase diagram in
local density approximation �LDA� to calculate the density
profiles, focusing on three particular configurations. Finally
in Sec. V we draw our conclusions.

II. NORMAL STATE OF A FERMI GAS
WITH UNEQUAL MASSES

The equation of state of the normal phase in the unitary
limit of infinite scattering length and at zero temperature was
first derived by Lobo et al. �11� in the case of equal masses
using the concept of quasiparticles. As a function of the con-
centration x=n↓ /n↑ and for x�1 it is given by
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FIG. 1. �Color online� In the case of equal masses the �-h phase
diagram is symmetric with respect to zero effective magnetic field
h. Shown are the superfluid �S, red�, the partially polarized �PP,
green�, and the fully polarized �FP, blue� phases.
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E�x�
N↑

=
3

5
EF↑�1 − Ax +

m

m�
x5/3 + Bx2� , �1�

where N↑ is the total number of spin-↑ atoms and EF↑
=�2 /2m�6�2n↑�2/3 is the Fermi energy of the spin-↑ gas. In
Eq. �1� it is assumed that adding a few spin-↓ particles to a
noninteracting spin-↑ sea, the ↓ atoms form a Fermi gas of
quasiparticles with an effective mass m�.

The first term in Eq. �1� corresponds to the energy per
particle of the noninteracting gas, while the term linear in x
gives the binding energy of the spin-↓ particles to the spin-↑
sea. The interaction between ↑ and ↓ particles is accounted
for by the parameter A=0.99�1� �13�, which is proportional
to the ratio ��↓� /�↑. The Fermi gas of quasiparticles with an
effective mass m� contributes to the total energy in Eq. �1� by
the quantum pressure term proportional to x5/3 and in the
case of equal masses m� /m=1.09�2� �13�. Eventually, the
term proportional to x2 can be interpreted as an interaction
between quasiparticles, and its value B=0.14 has been deter-
mined by fitting expression �1� to the Monte Carlo results for
the equation of state as a function of the concentration �13�.
Although based on a small x expansion, Eq. �1� turns out to
account for the x dependence of the equation of state also for
values of x close to 1.

For m↑�m↓ the values of the parameters A and m� de-
pend on the mass ratio in a nontrivial way and have been
calculated in �14,15� as functions of the mass ratio m↓ /m↑
=� using diagrammatic many-body techniques. The param-
eter A is an increasing function of the mass ratio � going to
infinity for �→0 and reaching the asymptotic value A
�0.45 for �→�. On the other hand at unitarity the effective
mass, which we will denote in the rest of the paper as m�

=m↓F���, shows a weak dependence on the mass ratio.
The quasiparticle interaction B has up to now only been

determined for equal masses m↓=m↑. We can find a first
estimation for B��� in the following way. In the unpolarized
case �x=1� the energy of the normal state as a function of the
mass ratio � has been calculated using Monte Carlo methods
�16,17�, resulting in the expression

EN���
N↑

= �N���
3

5

�2

4m�

�6�2n↑�2/3 	 ��n↑,�� , �2�

where the dimensionless parameter �N��� accounts for the
interactions and m�= �m↑m↓� / �m↑+m↓� is the reduced mass.
First results based on quantum Monte Carlo �QMC� calcula-
tions suggest that the dependence of the interaction param-
eter �N��� on the mass ratio � is very weak �18� so that we
can set �N���	�N=0.56 �16,17� also for ��1. Therefore the
effect of unequal masses on the energy of the unpolarized
normal state enters only through the reduced mass m�. We
can define B as a function of the mass ratio by requiring that
the energy of the normal state be reproduced by Eq. �1� for a
concentration x=1 with the �-dependent interaction param-
eters A and m� /m↓ given in �14�. Then the generalization of
Eq. �1� to the unequal mass case yields

E�x,��
N↑

=
3

5
EF↑�1 − A���x +

F���−1

�
x5/3 + B���x2�

=
3

5
EF↑g�x,�� 	 �N�x,�� . �3�

III. PHASE DIAGRAM

In terms of the mass ratio � the superfluid energy takes
the form

ES���
NS

= �S���
3

5

�2

4m�

�6�2nS�2/3 	 �S�nS,�� , �4�

where NS is the number of atoms in the superfluid phase, nS
is the superfluid density, m� is the reduced mass, and �S���
accounts for the interactions in the superfluid. Also in the
superfluid phase the coefficient �S��� has only a very weak
dependence on the mass ratio �18� so that we can set �S���
	�S=0.42 �16,17� as in the equal mass case.

In order to establish the phase diagram for the system we
address the equilibrium conditions for the phase separation
of the superfluid and normal state in the bulk. We start by
writing down the energy of the system at zero temperature,

E = 2
 dr��S�nS,��nS − �S
0nS�

+
 dr��N�x,��n↑ − �↑
0n↑ − �↓

0n↓� , �5�

where �S�nS ,�� and �N�x ,�� are the energy densities per par-
ticle, nS, n↑ and n↓ are the densities, �↑

0 and �↓
0 are the chemi-

cal potentials of the spin-↑ and spin-↓ components, respec-
tively, and �S

0 = ��↑
0+�↓

0� /2 is the superfluid chemical
potential.

To find the equilibrium conditions we minimize the en-
ergy with respect to the densities of the superfluid and nor-
mal phase, and we find the chemical potentials

�S
0 = �S

�2

4m�

�6�2nS�2/3, �6�

�↑
0 = �g�x,�� −

3

5
xg��x,��� �2

2m↑
�6�2n↑�2/3, �7�

�↓
0 =

3

5
g��x,��

�2

2m↑
�6�2n↑�2/3, �8�

where prime means the derivative with respect to x. Eventu-
ally requiring that the pressure of the two phases be the same
yields

�nS
2 ��S

�nS
� =

1

2
�n↑

2��N�x,��
�n↑

+ n↓n↑
��N�x,��

�n↓
� . �9�

Making use of Eqs. �3� and �4� we can write the equal pres-
sure condition as the density jump,
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n↑�x,��
nS���

= ��1 +
1

�
��S

g�x,��
�

3/5

. �10�

From Eqs. �6�–�9� we obtain the implicit equation

g„x���… +
3

5
�1 − x����g�„x���… − 
�1 +

1

�
��S�3/5

�g„x���…�2/5

= 0, �11�

which gives the Chandrasekhar-Clogston limit xc in depen-
dence on the mass ratio �. For values smaller than xc��� the
system remains normal, while for x	xc��� the system starts
nucleating the superfluid and phase separates into those two
states. In Fig. 2 we plot xc��� for mass ratios 0.1
�
10
�blue solid line�. Comparing with xc��=1�=0.42 we find that
for mass ratios �	1 the concentration needed to create a
superfluid phase decreases, while for mass ratios �
1 it first
increases and reaches a maximum value at ��0.3. In the
same figure we plot xc��� as resulting from the BCS mean-
field approach at unitarity �red dashed line, see also, e.g.,
�7��. In the latter treatment interactions in the normal phase
are not taken into account, and hence its energy is just the
sum of the ↑ and ↓ components, EN

BCS=EF↑N↑+EF↓N↓, and
the interaction parameter for the superfluid is �S

BCS=0.59.
The significant quantitative difference between the two
curves proves the importance of interactions �12�.

It is worth noticing that xc is sensitive to the actual value
of the parameters used in Eq. �3�. Since an exact calculation
of the parameter B��� in the case of unequal masses is still
lacking, the interpolated value of B��� might be a significant
source of error. As for ��1 the kinetic energy of the quasi-
particles becomes irrelevant �see Eq. �3��, the
Chandrasekhar-Clogston limit is only determined by the val-
ues of A��� and B���. Thus an uncertainty in B affects more
our predictions. On the other hand for ��1 a polarized su-
perfluid phase might have to be included in the description of
the system so that the two-phase assumption will not longer
be valid �see also discussion in Sec. V�.

We varied the value of B��� by �10% to see its final
impact on the value of xc���, and we find that the variation in
xc��� is around 
5% for mass ratios ��1, while for �	1 it
is 
10%.

In terms of the chemical potentials of the ↑ and ↓ compo-
nents the phase transition is characterized by the critical
value �c���= ��↓ /�↑�xc

. From the knowledge of �c��� we are
able to determine the coexistence lines between the super-
fluid and the normal phase.

We represent the different homogeneous phases employ-
ing the �-h phase diagram, where 2�=�↑+�↓ and 2h=�↑
−�↓. The transition line between the superfluid �S� and the
partially polarized �PP� phases is given by

�S
h	0 =

1 + �c���
1 − �c���

h ,

�S
h
0 = −

1 + �c� 1

�
�

1 − �c� 1

�
�h , �12�

and stands for the first-order phase transition between the
unpolarized superfluid and the partially polarized normal
phase.

The second-order phase transition between the partially
polarized �PP� and the fully polarized �FP� phases occurs at
x=0, which corresponds to �↓ /�↑=−3 /5A���, and thus the
coexistence line is given by

�PP
h	0 =

1 −
3

5
A���

1 +
3

5
A���

h ,

�PP
h
0 = −

1 −
3

5
A� 1

�
�

1 +
3

5
A� 1

�
�h . �13�

Finally, the transition line between the fully polarized gas
and the vacuum is given by the simple �-independent rela-
tion,

�FP = − �h� . �14�

The phase diagram for unequal masses is not symmetric with
respect to zero effective magnetic field h as can be seen in
Fig. 3, where we choose �=2.2 corresponding to the case of
a 87Sr-40K mixture �19�. While the S moves clockwise �an-
ticlockwise� for �	1 ��
1�, the PP moves in the opposite
direction �see, e.g., Figs. 1 and 3�. In all the figures we use a
solid line for the first-order phase transition, a dashed line for
the second-order phase transition, and a short-dashed–long-
dashed line for the transition to the vacuum.

Such an asymmetry in phase diagrams is general for this
system and has been already noticed by Parish et al. �9� in
the T /� vs h /� phase diagram and by Iskin and Sá de Melo
�10� in the P= �N↑−N↓� / �N↑+N↓� vs �1 /kF,+ ,aF� diagram.

In particular, from Eq. �12� we can identify a critical mass
ratio ��=2.73 above which the superfluid region has moved
entirely to the h	0 plane �see, e.g., Fig. 4�a��. This shift of
the superfluid region above a certain mass ratio � has also
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FIG. 2. �Color online� Critical concentration xc��� for the bulk
system to phase separate as a function of the mass ratio � �solid
blue�. In comparison, also the concentration derived from the BCS
mean-field solutions at unitarity is shown �dashed red�.
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been identified by Parish et al. �9� applying BCS mean-field
theory yielding ���3.95.

At the same time, for �	�� the sum of the spin-↑ and
spin-↓ densities in the partially polarized phase is bigger than
the superfluid density, �n↑+n↓�	2nS. This anticipates the
fact that in a trap the heavy partially polarized phase can sink
toward the center, while the superfluid will form a spherical
shell around it even if the two species feel the same trapping
potential. This peculiar formation of a “sandwiched” super-
fluid has been previously identified also in �7–9�.

IV. TRAPPED GAS

Having constituents with different masses and hence dif-
ferent magnetic and optical properties permits to engineer
different configurations in the trap depending on the mass
ratio, the polarization, and the choice of the trap parameters.

In order to study the trapped case we assume that the
external potential is harmonic of the form V��r�= 1

2��r2,
where ��=m���

2 with �= ↑ ,↓, and that the local density
approximation is applicable. Thus the configuration in the
trap is found by using the expression ��=��

0 − 1
2��r2 leading

to

� = �↑
0
1 + �0

2
−

1

2
�1 +

�↓
�↑
� r2

�R↑
0�2� ,

h = �↑
0
1 − �0

2
−

1

2
�1 −

�↓
�↑
� r2

�R↑
0�2� , �15�

where we define �0=�↓
0 /�↑

0 as the central imbalance of the
system and �R↑

0�2=2�↑
0 /�↑. Note that if �↑=�↓ the effective

magnetic field h does not depend on the position in the trap
but is only a function of the central imbalance �0. Concern-
ing the central imbalance of the chemical potentials we have
that if �0
�c���, there is no superfluid and the system con-
sists only of the partially and fully polarized components. In
the case that �0	�c���, we have a superfluid component
whose fraction is determined by the value of �0.

In the following we will describe three different cases
with different values of the polarization

P =
N↑ − N↓

N↑ + N↓
, �16�

where the interplay between the asymmetry in the masses
and in the trapping potential gives rise to different configu-
rations.

A. Unequal masses with equal trapping

We first analyze the situation when the spin-↑ and spin-↓
components have different masses ��1 but feel the same
restoring forces �↑=�↓. This would be the case, for example,
if the fermions are trapped magnetically and have identical
magnetic moments. For equal populations and for mass ra-
tios in the range 0.36
�
2.73 the system is completely
superfluid. In the opposite case, the system can never be
completely superfluid even if the populations are equal.
Therefore, we can also have the particular configuration of a
system consisting only of a partially polarized phase �with-
out any fully polarized part�.

If �0	1 /�c�1 /�� the trapped system will consist of a
three-shell configuration, where the superfluid is sandwiched
between a “heavy” normal phase �heavy spin ↓ are the ma-
jority� at the center of the trap and a “light” normal phase
�light spin ↑ are the majority� in the outer trap region.

As an example we choose the mass ratio �=6.7 corre-
sponding to a 40K-6Li mixture �4,19�. The phase diagram of
the system is shown in Fig. 4�a� together with the LDA line
for a central imbalance �0=0.3 �black dot�. The intersection
of the LDA line with the coexistence lines determines the
radii of the configuration, from which we are able to calcu-
late the density profiles. These are shown in Fig. 4�b� for a
polarization P=−0.13.
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FIG. 4. �Color online� �a� Phase diagram for �=6.7, correspond-
ing to a 40K-6Li mixture, and the LDA line �black vertical� for a
central imbalance �0=0.3 �black dot� and �↑=�↓. �b� Density pro-
files for P=−0.13; the inset shows a zoom into the outer superfluid-
light normal border.
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FIG. 3. �Color online� For �=2.2 the phase diagram is asym-
metric. Shown are the S �solid red lines�, PP �dashed green�, and FP
�dotted-dashed blue� regions.
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The density jump �or drop� between the superfluid and
both normal phases is a function of � according to Eq. �10�.
For �=6.7 at the heavy normal-superfluid border, n↓
�1.92nS and n↑=xc�

1
� �n↓�0.86nS, while at the superfluid-

light normal border n↑�0.71nS and n↓=xc���n↑�0.17nS
�see inset of Fig. 4�b��. Note that this is quite different com-
pared to the equal mass case, where the jump between the
superfluid and the majority component is n↑�1.01nS and
hence the spin-↑ density is practically continuous.

B. Unequal masses with trapping anisotropy

Using unequal restoring forces for the trapped atoms the
mass ratio for having a sandwiched superfluid needs not to
be necessarily bigger than the critical value ��. In order to
have a three-shell configuration the condition is

� 
 �S
h
0 ⇒

�↓
�↑

= �
�↓

2

�↑
2 	

1

�c� 1

�
� . �17�

For example, for equal trapping frequencies, Eq. �17� simpli-
fies to �	 �1 /�c�1 /��� resulting in the critical mass ratio
�c�1.95, while for equal oscillator lengths one gets �c
�6.7. In Fig. 5�a� we show the �-h phase diagram of such a
particular configuration, where we choose �=2.2 corre-
sponding to a 87Sr-40K mixture �19�. The LDA line is drawn
for the values �0=2.1 �black dot� and �↓ /�↑=8.

In the density profiles as shown in Fig. 5�b� we have
chosen the parameters such that the resulting global polariza-
tion is P=0.

C. No trapping for _ component

An interesting limiting case is when one of the elastic
constants �� is zero �or very small�, implying that one of the

components would not be confined in absence of interspecies
atomic forces.

If we assume that �↑→0, the LDA line in the �-h phase
diagram is parallel to the polarized-vacuum transition line as
shown in Fig. 6�a�.

Let us start considering the equal mass, m↑=m↓=m,
highly unbalanced N↓�N↑ case. The densities are easily
found to be �12�

�↓
0 =

�2

2m
�6�2n↓�r��2/3 + V↓�r� ,

�↑
0� =

�2

2m�
�6�2n↑�r��2/3 + V↑��r� , �18�

where �↑
0�=�↑

0+ 3
5A�↓

0, V↑��r�=V↑�r�+ 3
5AV↓�r�, and A	A��

=1�. From these equations it is clear that if V↑→0, the ↑
atoms feel nevertheless the renormalized potential 3

5AV↓�r�
and are confined due to the interaction with the ↓ component.
In this regime �↑

0 is negative and in the limit of a single ↑
atom, i.e., �↑

0�→0, it takes the value �↑
0=−3 /5A�↓

0, corre-
sponding to a polarization P=−1. This induced trapping
mechanism would not be predicted by a BCS mean-field
description, where interactions are absent in the normal
phase, and the ↑ atoms cannot be confined by the ↓ atoms.

Increasing the number of ↑ particles, the LDA line moves
upward until it crosses the origin of the phase diagram, cor-
responding to �↑

0=0, and the system remains normal since
for equal masses the slope of the superfluid-partially polar-
ized coexistence line is bigger than the slope of the LDA
line, i.e., �c�1 /�=1�	0 �see Eq. �12��. Moreover, in this
case the ↓-fully polarized phase is absent as the radii of the ↓
and ↑ species coincide, and in this limit the polarization ap-
proaches the value P=−0.42.

If we further increase N↑ we enter in a three-shell con-
figuration including an intermediate superfluid component.
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FIG. 5. �Color online� �a� Phase diagram for �=2.2 and LDA
line for �0=2.1 �black dot� and �↓ /�↑=8. With this choice, it
crosses the, “heavy normal,” superfluid, “light normal,” and fully
polarized phases. �b� Density profiles for a global polarization P
=0; the inset shows a zoom into the superfluid-light normal border.
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FIG. 6. �Color online� �a� Phase diagram for �=1. The LDA line
represents the case �↑=0. �b� Density profile in the limiting case
�↑=0 and P=−0.42.
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But since in this case the atoms of species ↑ are no longer
confined, they escape from the trap, and the system goes
back to the normal state previously described. Hence we can
never find a stable configuration containing a superfluid re-
gion, and the polarization of the system will always be in the
range −1
 P�−0.42.

Note that the same scenario is valid for m↓	0.9m↑, where
�c�1 /�� is positive and the range of the polarization is be-
tween P=−1 and an upper value which is dependent on �.

Interestingly, in the case m↓
0.9m↑, for which �c�1 /��

0, we find that adding ↑ atoms we end up in a superfluid
state �20� characterized by a density profile given by

�S
0 = �S

�

2m
�6�2nS�r��2/3 + Ṽ�r� , �19�

where Ṽ�r�= 1
4m�↓

2r2 is the effective potential felt by the su-
perfluid. This configuration would correspond to a LDA line
which stays entirely in the superfluid region, crossing the
origin of the phase diagram. The value of the polarization for
m↓
0.9m↑ covers the entire range −1
 P�0.

From the experimental point of view the above configu-
rations could be, in principle, reached starting with both the
trapping frequencies different from zero and a certain initial
polarization and then opening adiabatically the trap for the ↑
atoms. For instance, starting with only a superfluid in the
trap the final state of the system will be simply a superfluid
with a bigger radius for m↓
0.9m↑, while it will be a normal
state in which both components have the same radius �see
Fig. 6�b�� if m↓	0.9m↑.

V. CONCLUSIONS

We have studied the zero temperature �-h phase diagram
of the unitary Fermi gas in the case of unequal masses, as-
suming phase separation between an unpolarized superfluid
and a polarized normal phase. The latter is described by an
equation of state which, unlike in the BCS mean-field treat-
ment, takes into account the effect of the strong interaction.
As we have shown, this has a dramatic impact on the results
such as the Chandrasekhar-Clogston limit needed to start
nucleating a superfluid.

Using LDA we have determined how the trapped configu-
ration depends on the trapping potential, the mass ratio, and
the polarization. Many different configurations are possible.
Among them it is worth mentioning the three-shell configu-
ration �7–9�, where the superfluid is sandwiched between a
heavy normal phase at the center and a light normal phase
toward the edges of the trap. Note that the shells can occupy
quite small regions, and we cannot exclude that surface ten-
sion plays an important role in this case.

We can also have nontrivial configurations even if one of
the two components is not trapped but still remains confined
due to the interaction induced trapping. Such configurations
can be experimentally obtained by adiabatically opening the
trap for one of the two species.

An important issue is the existence of other phases at
unitarity. In the present work we assume that only two
phases are possible, and hence we have not considered any
polarized superfluid state. For the equal mass case the as-
sumption seems to be correct and is theoretically understood
by comparing the phase separated state energy with the po-
larized superfluid energy calculated via Monte Carlo, as in,
e.g., �21�. The same information is not yet available for the
unequal mass case. However, taking the quasiparticle point
of view in �21� and the recent calculation for equal popula-
tion by Baranov et al. �22�, it seems that when the mass of
the minority component is much bigger than the one of the
majority component, the polarized superfluid phase should
be included in the description, as predicted by mean-field
theory. Theoretical work in this direction is in progress.

Note added. Recently, a Monte Carlo calculation for the
system considered here for �=6.5 was posted in �23�. Al-
though an accurate comparison has not yet been done, it
seems that the Monte Carlo analysis is in agreement with our
description.
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