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We present a method for accurate and efficient treatment of the time-dependent Schrödinger equation and
electron energy and angular distributions after above-threshold multiphoton ionization. The procedure does not
require propagation of the wave packet at large distances, making use of the wave function in the core region.
It is based on the extension of the Kramers-Henneberger picture of the ionization process while the final
expressions involve the wave function in the laboratory frame only. The approach is illustrated by a case study
of above-threshold ionization of the hydrogen atom subject to intense laser pulses. The ejected electron energy
and angle distributions have been calculated and analyzed. We explore the electron spectrum dependence on
the duration of the laser pulse and carrier-envelope phase.
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I. INTRODUCTION

Recently the phenomenon of above-threshold ionization
�ATI� and investigations of resulting electron distributions
attracted much new interest. This is related to advances in
laser technology which made possible generation of short
and intense laser pulses �1�. For such pulses the absolute or
carrier-envelope phase �CEP� plays an important role �2�,
and properties of the ejected electrons momentum �or
energy-angle� distributions differ significantly from those for
long pulses. Recent experiments �3,4� were able to measure
high-resolution fully differential data on ATI of noble gases.
Thus accurate theoretical description of the electron distribu-
tions becomes an important and timely task. Traditionally
many theoretical ATI studies are based on the strong-field
approximation �SFA� �5�; this approach has its origin in ear-
lier works of Keldysh, Faisal, and Reiss �6� as well as in the
semiclassical rescattering model �7�. While SFA-based mod-
els result in rather simple theoretical expressions and pro-
duce electron spectra that qualitatively resemble those ob-
tained with accurate numerical wave functions, they fail to
give quantitative agreement with more accurate theories. The
discrepancy can be as large as several orders of magnitude
�8�. Recent calculations of two-dimensional �2D� electron
momentum distributions by both SFA and solution of the
time-dependent Schrödinger equation �TDSE� �9� show that
SFA cannot reproduce some features of the distributions even
qualitatively. An alternative to SFA can be a numerical solu-
tion of TDSE and making use of accurate time-dependent
wave functions. Certainly, this approach is much more de-
manding computationally but it can provide results good
enough for correct description of the electron spectra includ-
ing subtle effects related to CEP dependence.

Normally one needs accurate wave functions in a large
space domain to obtain correct distributions of the ejected

electrons. This is because unbound parts of the wave packet
spread out of the core region, and conventional expressions
for the transition amplitude which come from the scattering
theory �10� utilize these parts of the wave function. Solving
TDSE within all required space volume can be a very diffi-
cult computational problem. To circumvent the problem, in
Ref. �11� the whole space was partitioned in two regions. In
the inner region, the wave function was obtained by solving
exact TDSE numerically. In the outer region the Coulomb
interaction was neglected, and the wave function was propa-
gated analytically in the laser field only. For large enough
inner region, the final results did not depend on the position
of the boundary between the two regions. In the present pa-
per, we propose another approach. It is based on alternative
expression for the transition amplitude which utilizes the
core part of the wave function. In this approach, all necessary
information regarding the outgoing electron distributions can
be extracted from the vicinity of the atomic core, so no
wave-function computations at large distances are required.

The paper is organized as follows. In Sec. II, we derive
the desired expression for the transition amplitude in the gen-
eral case and also provide some specific formulas for the
Coulomb interaction with the atomic core. In Sec. III, we
present results of ATI calculations of the hydrogen atom sub-
ject to an intense laser pulse. Section IV contains concluding
remarks.

II. THEORY OF ELECTRON SPECTRA

A. General formulation

We start from the time-dependent Schrödinger equation
for the electron wave function,

i
�

�t
��r,t� = �H0 + V�r,t����r,t� . �1�

Here the term V�r , t� describes the interaction with the laser
pulse and H0 is the unperturbed Hamiltonian,
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H0 = −
1

2
�2 + U�r� , �2�

U�r� being the atomic core potential. We assume that the
pulse begins at t=0 and ends at t= tf, therefore the interaction
V�r , t� vanishes for any time moment outside interval �0, tf�.
Before the pulse, the electron wave function �i�r , t� de-
scribes one of the bound states of the core potential U�r�,

�i�r,t� = �i�r�exp�− iEit� , �3�

with Ei being the energy of the initial state. The laser field
causes transitions to other bound and unbound states, and
after the pulse the electron quantum state represents a wave
packet which contains bound �discrete spectrum� as well as
unbound �continuous spectrum� contributions. The transition
amplitude to any eigenstate of the unperturbed Hamiltonian
with the energy Ef �the final state�,

�f�r,t� = �f�r�exp�− iEft� , �4�

can be calculated as a projection of the wave packet ��r , t�
onto the final state at t= tf �or any time t� tf�,

Tfi = ��f�r,tf����r,tf�� . �5�

Expression �5� is simple and can be used in practical calcu-
lations once the wave packet ��r , t� is constructed �for ex-
ample, by solving Eq. �1��. However, there is some technical
problem when applying Eq. �5� for evaluation of transition
amplitudes to unbound states, that is ionization amplitudes.
In this case, the result is nonzero due to the unbound part of
the wave packet which is spreading out of the core region.
After the pulse, this part of the wave packet can be found far
from the core, and using Eq. �5� requires accurate represen-
tation of the wave function at large distances. For example,
for the electron momentum 1 a.u., laser wavelength 800 nm,
and pulse duration 10 optical cycles �approximately 27 fs�,
the important distances from the core can be as large as 1000
a.u. Construction of an accurate time-dependent wave func-
tion in the volume with linear dimensions of 1000 a.u. can be
a demanding computational task. Using remote space regions
may have its advantages, however. Thus, one can apply
asymptotic forms of the final states �f�r , t� instead of the
exact wave functions. This is particularly important for cal-
culations of double ionization in two-electron systems where
fully correlated two-electron final states cannot be easily ob-
tained �12�.

Our goal, however, is to avoid propagation of the wave
function at very large distances. That is why we need to
consider alternative expressions for the transition amplitude.
Another commonly used expression can be obtained from
the integral equation which follows immediately from Eq.
�1�,

��r,t� = �i�r,t� − i�
0

t

dt� exp�− i�t − t��H0�V�r,t����r,t�� .

�6�

Making a projection of the wave function ��r , t� onto a final
state �f�r , t� at time tf results in the following expression for
the amplitude Tfi:

Tfi = �fi − i�
0

tf

dt��f�r,t��V�r,t����r,t��

= �fi − i�
0

tf

dt exp�iEft���f�r��V�r,t����r,t�� . �7�

Here the Kronecker symbol �fi accounts for the possible situ-
ation when the final state coincides with the initial state.
Equation �7�, however, is not very helpful for us either. It
contains a matrix element of the interaction operator V�r , t�.
Within the commonly used �and well justified for optical
range of radiation wavelengths� dipole approximation, this
operator is a multiplication by the electron coordinate �in the
length gauge�. Thus the spatial integration in Eq. �7� empha-
sizes large distances, just like Eq. �5� does. In the velocity
gauge V�r , t� is a differential operator but this does not im-
prove the situation.

To derive a suitable expression for the transition ampli-
tude Tfi, we return to Eq. �1� and adopt the dipole approxi-
mation. Instead of vector potential or electric field strength,
we make use of the time-dependent quantity b�t� which has
the meaning of the displacement of the “classical” electron �a
particle with the mass equal to unity and the charge equal to
minus unity� under the influence of the laser field only. Then
Eq. �1� will take the form,

i
�

�t
�L�r,t� = 	−

1

2
�2 − �b̈ · r� + U�r�
�L�r,t� , �8�

for the interaction in the length gauge, and the form,

i
�

�t
�V�r,t� = 	1

2
�− i � + ḃ�2 + U�r�
�V�r,t� , �9�

for the interaction in the velocity gauge. One and two dots
above b denote the first and the second derivative with re-
spect to time. The wave functions �L�r , t� and �V�r , t� are
related to each other by a simple gauge transformation,

�V�r,t� = �L�r,t�exp�− i�ḃ · r�� . �10�

Now we make a transition to the Kramers-Henneberger �KH�
�13,14� frame of reference with the help of the following
transformation:

�V�r,t� = �K�R,t�exp�−
i

2
�

0

t

ḃ2d�� , �11�

R = r − b�t� . �12�

The wave function �K�R , t� satisfies the time-dependent
Schrödinger equation without external field but with the
atomic core moving according to the classical law b�t�,

i
�

�t
�K�R,t� = 	−

1

2
�2 + U�R + b�
�K�R,t� . �13�

Before the pulse, b�t�0�=0, and the KH frame coincides
with the original laboratory frame. We can split the Hamil-
tonian in the right-hand side of Eq. �13� in two parts, “un-
perturbed” Hamiltonian H0 and interaction operator V�R , t�,
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H0 = −
1

2
�2 + U�R� , �14�

V�R,t� = U�R + b� − U�R� . �15�

Note that H0 is exactly the same as it was defined in the
laboratory frame by Eq. �2�, and V�R , t� is decreasing as
1 /R2 at large R �the Coulomb interaction with the atomic
core at large distances is assumed�. After the pulse, the re-
sulting displacement b�tf� is not necessarily equal to zero, in

contrast with the resulting momentum ḃ�tf� which must van-
ish for any real laser pulse �the zero-net-force condition, see,
e.g., Ref. �15��. In the following, however, we will restrict to
the case of the laser pulses which satisfy the both zero-net-
force and zero-net-displacement conditions. In this case, the
interaction �Eq. �15�� vanishes at large distances in the space
domain as well as before and after the pulse in the time
domain. Since the time-dependent problem in the KH frame
differs from that in the laboratory frame by the specific form
of the interaction term V�R , t� only, one can proceed with the
integral Eq. �6� and write down the transition amplitude in
the form �Eq. �7��,

Tfi = �fi − i�
0

tf

dt��f�R,t��U�R + b� − U�R���K�R,t�� .

�16�

Although Eq. �16� is derived in the KH frame, it also gives
the transition amplitude in the laboratory frame provided the
zero-net-displacement condition is satisfied, and both frames
coincide at the end of the pulse. With the help of Eqs. �4�,
�11�, and �10�, one can express Tfi through the wave func-
tions defined in the laboratory frame, using the velocity or
length gauge,

Tfi = �fi − i�
0

tf

dt exp�iEft +
i

2
�

0

t

ḃ2d��
���f�r − b��U�r� − U�r − b���V�r,t�� , �17�

Tfi = �fi − i�
0

tf

dt exp�iEft +
i

2
�

0

t

ḃ2d��
���f�r − b��U�r� − U�r − b��exp�− i�ḃ · r���L�r,t�� .

�18�

The interaction term U�r�−U�r−b� decreases at least as 1 /r2

at large r, therefore the spatial integration in Eqs. �17� and
�18� emphasizes the core region of the wave packet.

We note that the KH frame has been widely used to solve
TDSE when treating stabilization of atoms in superintense
laser fields �see the review paper �16� and references
therein�. In Ref. �17�, simulations of the wave packet in the
KH frame have been made for the analysis of stabilization
and calculations of the ATI spectra of the hydrogen atom. In
our current approach, the procedure is different. We employ
the KH frame to derive the expressions for the transition
amplitude only. Our final Eqs. �17� and �18� do not contain
quantities which must be calculated in the KH frame. The

wave packets �V�r , t� and �L�r , t� are obtained by solving
TDSE in the laboratory frame.

If unbound final states are used in Eqs. �17� or �18�, then
Tfi provides the ionization amplitude. Any energy eigenvalue
Ef in the continuum corresponds to infinite number of eigen-
states, and one has to select some specific eigenstates as the
final states to obtain the amplitudes Tfi with particular physi-
cal meaning. As discussed in the scattering theory �see, e.g.,
Ref. �10��, to obtain angular �or momentum� distributions of
the ejected electrons, the final states �k

−�r� should be used
which have plane waves and incoming spherical waves in
asymptotic forms at large distances. The states �k

−�r� corre-
sponding to different momenta k and k� are orthogonal to
each other, and we adopt the following orthogonality and
normalization condition:

��k�
− �r���k

−�r�� = ��3��k − k�� . �19�

Then the differential ionization probability corresponding to
ejection of the electron with the energy Ef within the unit
energy interval and unit solid angle can be expressed as fol-
lows:

�2P

�Ef � �
= 
2Ef�Tfi�2. �20�

B. Specific expressions for the Coulomb interaction with the
core

If interaction with the core is represented by the Coulomb
potential,

U�r� = −
Zc

r
, �21�

Zc being the core charge �Zc=1 for the hydrogen atom�, then
the general expressions of Sec. II A can be further elabo-
rated. First, the final unbound states �k

−�r� in the Coulomb
field are known in a rather simple closed form,

�k
−�r� =

1

2	

 


exp�2	
� − 1
exp�i�k · r��

�M„i
,1,− i�kr + �k · r��… , �22�

where M�a ,c ,x� is the confluent hypergeometric function
�18� and 
 is the Coulomb parameter,


 = −
Zc

k
. �23�

Second, one can simplify the spatial integration in Eqs. �17�
and �18� accurately accounting for the Coulomb singularities
of the integrand. The space integrals in Eqs. �17� and �18� are
two-center integrals which can be recast in the following
form:

���r − b/2��U�r + b/2� − U�r − b/2����r + b/2�� , �24�

with the appropriate functions ��r� and ��r�. Introducing the
prolate spheroidal coordinates � and 
 with the half-
separation between the centers a= 1

2b,
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r cos � = a�
, r sin � = a
��2 − 1��1 − 
2� , �25�

�r and � are the spherical polar coordinates�, one can express
the difference of the Coulomb core potentials as follows:

U�r +
b

2
� − U�r −

b

2
� =

Zc

a2

b


�2 − 
2 . �26�

Then the two-center integral Eq. �24� takes the form without
the Coulomb singularities,

���r − b/2��U�r + b/2� − U�r − b/2����r + b/2��

= abZc�
0

2	

d��
1

�

d��
−1

1

d

���r − b/2���r + b/2� .

�27�

With the help of Eq. �27�, one can calculate the two-center
spatial integrals in the ionization amplitudes Eqs. �17� and
�18�. For example, with the length gauge wave function
used, the differential ionization probability can be expressed
as follows:

�2P

�Ef � �
= 
2EfZc

2��
0

tf

dtb�t�exp	iEft +
i

2
�

0

t

ḃ2d�

−
i

2
�ḃ · b�
�

0

2	

d��
a

�

d�a���
−1

1

d



���k
−�r − b/2���exp�− i�ḃ · r���L�r + b/2,t��2

.

�28�

III. ATI OF ATOMIC HYDROGEN

As a case study, we consider above-threshold ionization
of the hydrogen atom by long and short laser pulses. We
choose a sine-squared pulse envelope in the vector potential

form. In our notations, the classical velocity ḃ�t� has the
following expression:

ḃ =
F0

�
sin2� �t

2N
�sin��t + �� . �29�

Then the classical acceleration and displacement appear as
follows:

b̈ = F0	sin2� �t

2N
�cos��t + �� +

1

2N
sin��t

N
�sin��t + ��
 ,

�30�

b = −
F0

2�2	cos��t + �� −
N

2�N + 1�
cos�N + 1

N
�t + ��

−
N

2�N − 1�
cos�N − 1

N
�t + �� +

1

N2 − 1
cos �
 . �31�

In Eqs. �29�–�31�, � is the carrier frequency, F0 has the
meaning of the peak electric field strength �more precisely,

F0 /� is the peak value for the pulse envelope in the vector
potential form�, N denotes the number of optical cycles in the
pulse, and � is the carrier-envelope phase. The linear polar-
ization of the laser field is assumed.

We solve the time-dependent Schrödinger Eq. �8� with the
interaction term in the length gauge; the atomic core poten-
tial is U�r�=−1 /r. The ground state of the hydrogen atom is
selected as the initial state, and then the wave function is
propagated in time using the split-operator technique and
generalized pseudospectral �GPS� discretization of the
spherical polar coordinates; the details of the method were
discussed elsewhere �19,20�. The radial coordinate is re-
stricted to the domain from 0 to 60 a.u.; between 40 and 60
a.u. we apply an absorber which smoothly brings down the
wave function without spurious reflections. Absorbed parts
of the wave packet localized beyond 40 a.u. describe un-
bound states populated during the ionization process. Be-
cause of the absorber, the normalization integral of the wave
function decreases in time. Calculated after the pulse, it gives
the survival probability Ps,

Ps =� d3r��L�r,tf��2. �32�

Then the ionization probability appears as

Pi = 1 − Ps. �33�

Finite range of the radial coordinate �yet large enough to
contain all physically important space domain� allows to
maintain high accuracy while using moderate number of grid
points �we use 64 points for discretization of the radial co-
ordinate and 24 points for discretization of the angular coor-
dinate�. Since the wave function is not computed at very
large distances, making use of Eqs. �5� or �7� to calculate the
electron distributions is inappropriate and leads to erroneous
results. On the contrary, Eq. �28�, as our computations show,
provides accurate electron distributions.

In Eq. �28�, we integrate in the time domain with the help
of the fast Fourier transform �FFT� routines, and the space
integration is performed using the GPS quadrature in prolate
spheroidal coordinates �see, e.g., Ref. �20��. Since the
quadrature points differ from the original discretized coordi-
nate values in the polar spherical coordinates for the wave
packet �L�r , t�, we perform additional interpolation with the
help of the GPS interpolation formula,

�L�r,�,t� = �
i=i

Nx

�
j=1

Ny

�L�ri,� j,t�
PNx+2�x� − PNx

�x�

�x − xi�PNx+1�xi��2Nx + 3�

�
�2Ny + 1��1 − yj

2�PNy
�y�

�y − yj��PNy−1�yj� − PNy+1�yj��
. �34�

Here Nx and Ny are the numbers of discretized values for the
radial r and angular � coordinates, respectively. PNx

�x� and
PNy

�y� are the Legendre polynomials; we use the Gauss-
Lobatto discretization scheme for the radial coordinate and
the Gauss-Legendre scheme for the angular coordinate. The
relations between the variables x and y in the interval
�−1,1� and the coordinates are as follows:

DMITRY A. TELNOV AND SHIH-I CHU PHYSICAL REVIEW A 79, 043421 �2009�

043421-4



r = Rm
1 + x

1 − x + 2Rm/Rb
,

cos � = y , �35�

Rm and Rb being the mapping parameter and the end point
for the radial coordinate, respectively. We used the GPS in-
terpolation in our previous studies of above-threshold de-
tachment of H− and achieved a good accuracy �21�. Note that
the interpolation of the wave packet does not depend on the
final state and is performed before the electron energy and
angular distributions are computed according to Eq. �28�,
thus reducing the computational effort. The total computa-
tion time of the ATI spectra depends on the length of the
energy domain as well as on the desired resolution in the
energy and angle domains. As our results show, for reason-
able parameters, the time spent on the computation of the
ATI spectra is of the same order as the time spent on solving
TDSE for the wave packet �several hours using a modern
Xeon-based workstation�.

The calculations have been performed for relatively long
�20 optical cycles� and short �4 optical cycles� laser pulses.
The carrier frequency corresponds to the wavelength 800
nm, and the peak electric field strength F0 used in Eq. �29�
corresponds to the intensities of the continuous wave 5
�1013, 1�1014, and 2�1014 W /cm2. To test the accuracy
of the method, we have calculated the populations of the
ground and the first two excited states after the pulse using
two different expressions for the transition amplitude, Eq. �5�
�since the bound states are localized in space, it works even
for the wave function with truncated large-distance domain�
and Eq. �18�. The results are presented in Table I. As one can
see, the agreement is very good. Note that compared to sim-
pler expression �5�, calculations based on Eq. �18� involve
two-center space integration and additional time integration.
Another good accuracy test comes from comparison of the
total ionization probability calculated from the energy and
angle integration of the electron spectra �Eq. �28�� and that
obtained from the normalization integral of the wave func-
tion after the pulse, Eq. �33�. The results are summarized in
Table II. As one can see, the agreement is quite good, within
1% for short pulses and about 2% for the longer pulse.

Figure 1 shows the high-resolution low-energy part of
angle-integrated electron spectra for the 20 optical cycles
laser pulse at the peak intensity 5�1013 W /cm2. The results

do not show any noticeable dependence on CEP for this
rather long pulse duration. The energy spectrum exhibits the
well-known ATI structure with the peaks separated by a pho-
ton energy �. To the right of each main peak, one can see
several smaller subpeaks. In Ref. �22� appearance of sub-
peaks was attributed to the rapidly changing ponderomotive
potential in the short laser pulse. Our comment is that this
substructure is well understood for longer pulses and has an
interference nature �see, e.g., Ref. �23��. Within the adiabatic
approach �23�, it is interpreted as a result of coherent sum-
mation of the two contributions which come from the leading
and trailing edges of the pulse envelope. Interference
maxima correspond to the particular points on the pulse en-
velope �or time moments�. Since the intensity is different for
these points, the ponderomotive and ac Stark shifts are also
different and smaller than those at the top of the envelope.
Hence the subpeaks are shifted to the right with respect to
the main peak. The same explanation holds for short pulses
as well, so far one can separate the carrier and the envelope.

The differential ionization probability �Eq. �20�� for the
same laser pulse parameters is shown in Fig. 2 as a polar
surface plot. The radial distance on the plot represents the
energy, and the angle points to the direction where the elec-
tron is ejected. The color �density� corresponds to the values
of the differential ionization probability; the color �density�
scale is logarithmic. The rings on the plot represent the main

TABLE I. Populations of the ground and the first two excited
states of H after the 20 optical cycles laser pulse with the peak
intensity 5�1013 W /cm2. Calculations are based on Eq. �5� �A�
and Eq. �18� �B�. The number in parentheses indicates the power of
10.

State

Population after the pulse

A B

1s 0.998561 0.998563

2s 0.699�−06� 0.694�−06�
2p 0.937�−06� 0.938�−06�

TABLE II. Total ionization probability calculated from the norm
of the wave function after the pulse, Eq. �33� �A� and by integration
of the electron distributions, Eq. �28� �B�, for different pulse dura-
tions, intensities, and CEP.

Intensity
�W /cm2� Number of cycles

CEP
�deg�

Total ionization probability

A B

5�1013 20 Any 0.00141 0.00144

1�1014 4 0 0.00680 0.00675

1�1014 4 45 0.00696 0.00699

1�1014 4 90 0.00700 0.00706

1�1014 4 135 0.00687 0.00688
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FIG. 1. Electron energy spectrum for the 20 optical cycle laser
pulse with the peak intensity 5�1013 W /cm2.
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ATI peaks and their satellites. The inner ring corresponding
to the first ATI peak exhibits radial stripe structure. The ra-
dial stripes have been discussed in the literature �9,24�; they
are related to the nodal directions in the angular spectra. The
number of the stripes is equal to the dominant value of the
angular momentum in the final state plus one �24�. Figure 2
reveals six radial stripes and suggests that the dominant an-
gular momentum for the specified laser-pulse parameters is
equal to 5. As one can see from Fig. 2, the angular depen-
dence of the differential probability shows almost perfect
forward-backward symmetry. This is typical for long laser
pulses; the symmetry is exact for the continuous wave �25�.
The symmetry in the ionization probability can be observed
also at the angle 90°. The rings corresponding to odd number
of absorbed photons have nodes in this direction since the
final state contains only odd angular momenta. The rings
corresponding to even number of absorbed photons do not
have nodes at 90°. Again, for the pulse of finite duration this
symmetry holds only approximately; the longer the pulse, the
more perfect symmetry can be observed.

For the laser pulses with 4 optical cycles, the calculations
were carried out at the peak intensity 1�1014 W /cm2. Short
pulses manifest significant dependence of the differential and
total ionization probability on CEP and broken forward-
backward symmetry in the angular distributions. In Fig. 3,
we present the high-resolution low-energy part of the angle-

integrated differential ionization probability. As one can see,
although the energy spectrum has ATI peaks, it does not
exhibit equally spaced peak structure with the separation be-
tween the peaks equal to the carrier frequency, which is ob-
served for the longer pulse �Fig. 1�. This is because the pulse
field contains the combination frequencies ��� /N. For N
=4, these combination frequencies differ significantly from
the carrier frequency. The energy spectrum can exhibit struc-
tures related to the carrier frequency as well as to the com-
bination frequencies. The height and the position of the
peaks in the spectrum depend on CEP. While the position of
the most prominent peaks does not change much when CEP
varies, their height changes significantly. In particular, the
first and largest peak located just above the threshold is more
than two times higher at �=	 /2 than at �=0. CEP values
correspond to the height of the first peak in the same order as
they correspond to the total ionization probability �Table II�.
Note that for the second peak in the spectrum located ap-
proximately at 0.042 a.u., this order is reversed.

The polar surface plots of the differential ionization prob-
ability for 4 optical cycles pulses are presented in Figs. 4 and
5 for the CEP values 0 and 	 /2, respectively, and energy
scale up to 5 a.u. The high-order ATI plateau is clearly seen
in the energy interval between 1.5 and 3.5 a.u. where the
probability distributions do not decrease with the increase in
the energy, and noticeable fraction of electrons is ejected
under large angles, which is a manifestation of the presence
and importance of rescattering �7� for this region in the elec-
tron energy distributions.

In Fig. 6, we show the electron energy spectra from the
high-order ATI of the atomic hydrogen at the peak intensity
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FIG. 2. �Color online� Energy-angle polar surface plot for the 20
optical cycle laser pulse with the peak intensity 5�1013 W /cm2.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Electron energy (a.u.)

0.00

0.02

0.04

0.06

0.08

D
if

fe
re

nt
ia

li
on

iz
at

io
n

pr
ob

ab
ili

ty
(a

.u
.-1

)

FIG. 3. �Color online� Electron energy spectrum for the 4 opti-
cal cycle laser pulse with the peak intensity 1�1014 W /cm2. The
carrier-envelope phase is 0 �solid black line�, 	 /4 �long dash red
line�, 	 /2 �dot-dash green line�, and 3	 /4 �short dash blue line�.
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The carrier-envelope phase is 0.
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2�1014 W /cm2. At this intensity, the plateau part of the
energy spectrum is long enough and well shaped. While the
absolute values of the differential ionization probability are
different for the pulse durations of 4 and 20 optical cycles,
respectively, the cutoff positions in the spectra are the same.
According to the semiclassical predictions �26�, the cutoff is
expected at the energy approximately equal to 10Up �Up is
the ponderomotive potential; for linearly polarized laser
fields, Up=F0

2 / �4�2��. At the intensity 2�1014 W /cm2,
10Up�4.4 a.u., and this value is in good agreement with
our calculations, as one can see from Fig. 6.

Since the forward-backward symmetry does not hold for
short laser pulses, the projection of the total momentum car-
ried by the emitted electrons on the polarization direction of
the field does not vanish and depends on CEP. In Fig. 7 we
show the CEP dependence of the total momentum �kz� and
total energy �E� carried by the electrons. These quantities are
defined as follows:

�kz� = �
0

�

dE� d�
2E cos �
�2P

�E � �
, �36�

�E� = �
0

�

dE� d�E
�2P

�E � �
. �37�

As one can see, the maximum energy is transferred to the
electrons at CEP equal to 	 /2 and 3	 /2 �the same CEP
values correspond to the largest total ionization probability,
see Table II� while the maximum momentum is observed at
�=	 /4 �in the backward direction� and at �=5	 /4 �in the
forward direction�. Since the laser pulse does not transfer any
momentum to the electrons �zero-net-force condition�, the
recoil must be experienced by the atomic core. In principle,
this phenomenon can be observed in the experiments and
may help in CEP measurements.

IV. CONCLUSION

We have presented a method for calculations of electron
distributions after above-threshold multiphoton ionization.
The method makes use of the transition to the Kramers-
Henneberger frame of reference where the interaction with
the laser pulse is represented by an oscillating atomic core
potential. Because the interaction potential is localized in
space in the vicinity of the atomic core, only the core part of
the time-dependent wave packet is required to calculate the
ionization amplitudes and differential probabilities. As our
study of ATI of the hydrogen atom shows, the method pro-
vides high accuracy in practical calculations including subtle
effects related to the CEP dependence of the total ionization
probability and the electron energy spectra. In particular, we
predict a nonzero CEP-dependent total momentum gained by
the electrons as a result of the interaction with the laser
pulse.

For the hydrogen atom, we used the final-state wave func-
tions which are available in the analytical form. Application
of the method to analysis of ATI processes in many-electron
atomic and molecular systems described with model poten-
tials or within the framework of the self-interaction-free
time-dependent density-functional theory �TDDFT� �27� will
require construction of the proper final-state wave functions.
The problem reduces to solution of the time-independent
Schrödinger equation for continuum states with correct
asymptotic behavior. Although the task is not simple, we
expect the computational effort will be less than when solv-
ing the time-dependent Schrödinger equation. The work on
the extension of the present approach to study of ATI pro-
cesses of many-electron atomic and molecular systems using
self-interaction-free TDDFT methods is currently in
progress.
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