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I. INTRODUCTION

With the ongoing improvements in laser technologies, in-
tensities are reached that make it important to test the com-
mon nonrelativistic approaches for light-matter interaction
against a full relativistic treatment based on the Dirac equa-
tion. In addition, the higher photon energies, envisaged with
the upcoming free-electron laser projects, will most probably
result in measurements on ions and then also the requirement
on the atomic structure description will call for a relativistic
treatment of the ion laser-pulse interaction. In spite of the
current large theoretical interest in the interaction of intense
short electromagnetic pulses with atoms, the relativistic
equations tend to be treated in a simplified manner, e.g., by
adapting a classical description �1� or by resorting to lower
dimensional �2–5� approaches. A recent review of the field
can be found in Ref. �6�. Here we present a full solution of
the time-dependent Dirac equation for hydrogenlike ions ini-
tially prepared in the ground state and subjected to short
electromagnetic pulses.

An important issue when the Dirac equation is treated is
the handling of its negative energy solutions. Dirac’s original
prescription was to consider the negative energy states to be
populated even in vacuum. The Pauli principle forces then
additional particles to occupy positive energy states. This
prescription is kept by quantum electrodynamics, but the in-
terpretation is slightly rephrased. An unoccupied negative
energy state represents now the presence of a positron and
annihilation is the physical manifestation of the transition of
an electron to such an empty state. Due to the possibility of
annihilation and its time reverse, pair creation, the number of
particles is no longer constant in time. Still, a new electron-
positron pair cannot be created if not an energy amount
equivalent to at least twice the electron rest mass energy is
available and one might therefore think that the process of
pair creation can be neglected under normal conditions.
However, there is always the possibility for creation and sub-
sequent annihilation of virtual electron-positron pairs. In a
practical calculation this is accounted for by the admixture of
negative energy states into the electron wave function, see
e.g., the discussion by Furry �7�. It was noted already by

Dirac �8� that these effects can be very important: “for a free
electron and radiation of low frequency, where the classical
formula holds, the whole of the scattering comes from such
intermediate states.” The phenomenon is discussed in more
detail by Sakurai �9� in connection with Thomson scattering:
“…it is absolutely necessary to take into account transitions
involving negative energy states if we are to obtain the cor-
rect non-relativistic results.” Yet, this is still today not always
recognized. We show below that virtual electron-positron
pairs greatly influence the interaction with a time-varying
electromagnetic field beyond the so-called dipole approxima-
tion when the interaction with the electromagnetic field is
described in the velocity gauge.

In this study we treat hydrogenlike ions. We use complex
rotation and investigate the probability for the systems to
remain in the ground state, as well as the ionization rate
during exposure to a short electromagnetic pulse. The theory
behind the calculation is recapitulated in Sec. II. The method
is described in Sec. III and finally the results are presented
and discussed in Sec. IV.

II. THEORY

We will follow the time evolution as governed by the
time-dependent Dirac equation;

i�
�

�t
� = HD� , �1�

where

HD = �c� · �p + eA���� + V + mc2�� ,

� � � 0 �

� 0
	, � � �I2 0

0 − I2
	 , �2�

where I2 is a 2�2 unity matrix and the Lorenz invariant
quantity � is defined as

� � k�x� = �t − k · r . �3�

A is the vector potential such that E=−�A /�t and
B=��A. We will work in the Coulomb gauge and A is thus
perpendicular to the wave vector of the electromagnetic field
k. Since the Dirac matrices � and � are 4�4 matrices, also
the wave function in Eq. �1� will have four components. The
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spatial part of it will have two components, often called the
large and small component, respectively. This refers to the
fact that for electrons that travel with nonrelativistic veloci-
ties the contribution from the large component to the prob-
ability density is 
1 /�2 larger than those from the small
component, where � is the fine structure constant.

Equation �2� is given in what is often called the velocity
form. Compared to its nonrelativistic counterpart,

i�
��NR

�t
= � p2

2m
+ V +

e

m
A��� · p +

e2

2m
A2�����NR, �4�

it has a compact structure. While Eq. �4� has one term linear
and one term quadratic in the vector potential, the relativistic
equation, Eq. �2�, has only a linear term, through which the
vector potential couples to the Dirac � matrix and thus to the
electron spin. Important for the findings presented below is
the fact that the interaction is nondiagonal with respect to the
large and small component of the relativistic wave function.
We will return to this point later. If the spatial variations of A
are neglected, only the electric component of the field can be
represented and we get the dipole approximation. The effects
accounted for within this approximation dominate the phys-
ics for a wide range of intensities and frequencies. The main
interest here is, however, effects that are beyond a nonrela-
tivistic treatment in the dipole approximation. When such
effects are accounted for through a refined treatment of the
nonrelativistic Schrödinger equation, Eq. �4�, it is customary
to distinguish between relativistic corrections and the correc-
tions that can be accounted for through a space-dependent
vector potential �i.e., magnetic effects, electric quadrupole
effects etc.�. For strong time-dependent electromagnetic
fields it is well known �10–12� that the dominating contribu-
tion of the latter kind comes from the so-called diamagnetic
term, 
A2, in Eq. �4�. Physically, the dominating effect is
due to the coupling of a fast electron, accelerated by the
electric component of the time varying field, with the mag-
netic component of the same field. Relativistic corrections,
on the other hand, are expected when the ponderomotive
energy �
eE0
2 /4m�2� approaches a substantial fraction of
the mass energy �mc2�. To account for such effects within the
framework of Eq. �4� one could for example make a Foldy-
Wouthuysen �13� type transformation of Eq. �2�, which will
lead to the nonrelativistic equation with the usual Breit-Pauli
corrections plus additional terms depending on the external
field. If, instead, we choose to work directly with the Dirac
equation, the dipole approximation is still obtained if the
space variations of the vector potential are neglected, but
there is no easy way to distinguish between diamagnetic cor-
rections and other corrections to it, and the relativistic effects
are now always present.

A. Dynamics and negative energy states

The question of how the negative energy eigenstates to
the Dirac Hamiltonian �2� should be treated is still today
giving rise to discussions. For example, Ref. �14�, which
presents a fully relativistic close-coupling method for elec-
tron collisions with atoms and ions, argues that negative en-
ergy eigenstates of the unperturbed Hamiltonian H0 should

be removed from the basis as long as the creation of real
positron-electron pairs �in the scattering process� is energeti-
cally out of reach. The argumentation refers to Dirac’s origi-
nal statement that the negative energy continuum is filled.
The conclusion reached in the present study is actually very
different. We find that, since the negative energy continuum
of the full, time-dependent Hamiltonian H�t� and the unper-
turbed one, H0, differ, exclusion of negative energy eigen-
states of H0 leads to inclusion of negative energy eigenstates
of the actual Hamiltonian H�t�.

It is constructive to start to look at the problem from a
mathematical point of view. A trivial but still very important
observation is then that only together do the negative
�E	−mc2� and positive eigenenergy states of Hamiltonian
�2� form a complete set. The distinction between negative
and positive energy states �positron and electron states� is
further not fixed, but changes with the field present �15�. If
we for example want to express the ground state of hydrogen
in a basis of hydrogenlike functions for any other charge than
unity, we need to allow also for negative energy eigenstates
of that Hamiltonian. Mathematically this is just a conse-
quence of the completeness of the full set of solutions, but
not of the positive energy solutions alone. Physically we can
understand that all states are altered when the external field
changes and thus that the Pauli blockade resulting from the
“filled negative energy sea” changes as well. Formally the
adjustment of the negative energy states �empty positron
states� is accomplished through the creation of virtual
electron-positron pairs, which in turn provides the possibility
for electron-positron annihilation, i.e., the transitions of elec-
trons into negative energy states.

Is the situation any different when we deal with a time-
dependent field? As long as we deal with a field much
smaller than the critical field needed for a substantial amount
of real pair production, Ecrit=m2c3 /e��1.3�1018 V /m
�3�106 a.u. �16�, we do not think so. The definition of
positive and negative energy states changes now at every
instance in time, and in our opinion the blockade imposed
from the “filled negative energy sea” changes consequently.
Support for this view can be obtained from early studies of
relativistic scattering theory �7�. Another supporting finding
was reported recently by Boca and Florescu �5�. Studying a
one-dimensional model atom exposed to an electromagnetic
pulse, they found that negative energy states of the field free
Hamiltonian may indeed be significantly populated during
the pulse, even when the ponderomotive energy of the elec-
tron was two orders of magnitude smaller than its rest mass
energy, whereas such states belonging to a basis of field
dressed states remain virtually unpopulated.

Still one might ask how large the effects from virtual
electron-positron pair creation can be. In the example above
where the hydrogen ground state is expanded in a basis set of
eigenstates of the Hamiltonian for a hydrogenlike ion, these
effects will be small and they will vanish in the nonrelativ-
istic limit. Here the situation is very different. It will be
demonstrated below, Sec. IV A, that if we neglect electron-
positron pair creation and annihilation, while sticking to the
definition of them given by the zero-field Hamiltonian, we
no longer get correct results in the nonrelativistic limit.

In order to illustrate the effects of different choices when
the negative energy states are excluded from the calculation
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we compare in Sec. IV A results obtained following two rea-
sonings. In the first case we simply remove all eigenstates of
H0 that have an energy less than −mc2 before propagation. In
the second case we diagonalize the full, time-dependent
Hamiltonian H�t�. The negative eigenenergies of this Hamil-
tonian are consecutively removed from the basis. Hence, in
the latter method diagonalization is necessary at every time
step, and the Hilbert space at hand changes in time.

III. METHOD

The solution of the Dirac equation is based on the method
by Salomonson and Öster, Ref. �17�, where a one-particle
Dirac Hamiltonian is discretized in a spherical box and on an
exponential radial mesh, ri=exi. Diagonalization of the re-
sulting matrix gives a finite radial basis set for each angular
symmetry �defined by �, j, and in principle also by mj�,
which is complete on the chosen grid. Keeping angular sym-
metries up to some maximum � and j, we have a basis set
that can be used to solve the time-dependent Eq. �1�. The
basis set may refer either to the Dirac Hamiltonian without
the time-varying field or to the full Hamiltonian �including
the time-varying field� at a particular instance in time. Both
approaches have been used and they lead naturally to tech-
nically rather different solutions of the time-dependent equa-
tion as will be discussed below. If the basis set refers to the
full Hamiltonian, it can be obtained either through a direct
diagonalization or through a stepwise procedure where the
first step gives the basis set with respect to it without the
time-varying field. In the second step this basis set is used to
diagonalize the full Hamiltonian. If no truncations of basis
sets are made, these two methods are equivalent, in principle
as well as in practice.

We have further imposed uniform complex rotation—
defined by r→rei
—for all the calculations presented here.
This has not been stated explicitly in the equations, but the
scaling with a complex phase should be considered as im-
plicit whenever the radial variable is referred to. The grid
discretization of the Dirac Hamiltonian �17� and complex
rotation has been combined earlier in a different context; see
Ref. �18� and references therein. The complex rotation has
here two important advantages. First, it ensures that the con-
tinuum can be covered by very few basis states within each
symmetry. Second, the transformation tends to “kill off” high
energy components of the wave function so that the rotated
wave function is described more easily than the true unro-
tated one on a finite grid �19�. The population of bound states
is, in principle, unchanged by the rotation, whereas informa-
tion about the ionized part of the system may be hard to
extract from the rotated wave function. Hence, this is an
ideal method for calculations of excitation and ionization
probabilities. One might be skeptical, though, to the use of
complex rotation in connection with functions that are peri-
odic in space, since such a function diverges exponentially
after rotation. This would indeed be a problem for a plane-
wave vector potential extending over the whole space, but
for an electromagnetic pulse the situation is much better
since the envelope kills the interaction in far off regions. For
instance, for a pulse with a Gaussian envelope we have

A 
 exp�− �� − �0�2/2�2�cos � → ei Im�−�� − �0�2/2�2�

� e−���t − �0�2+�kx�2cos�2
�−2��t−�0�kx cos 
�/2�2

�
1

2
�ei Re���e+kx sin 
 + e−i Re���e−kx sin 
� . �5�

It is seen that as 
x
 approaches infinity, the divergences in
the exponential factors in the carrier are “killed off” by the
term proportional to x2 in the exponential of the envelope
provided that 


	45°.

The atomic system is initially prepared in the ground
state. In Sec. III A we describe how the calculation of the
coupling to the electromagnetic field, causing excitation and
ionization, is done in practice.

A. Coupling to the electromagnetic field

The stationary solutions to the time-independent Dirac
equation, i.e., the eigenstates of Hamiltonian �2� with A=0,
for an electron in a spherically symmetric time-independent
potential may be written as

�n,
,j,m�r� =
1

r
� Pn,
�r�X
,j,m

iQn,
�r�X−
,j,m
	 , �6�

where


 � � l , j = l − 1/2
− �l + 1� , j = l + 1/2,

�
and

X
,j,m � �
ml,ms

�l
,m
,s = 1/2,ms
j,m�Yl
,ml
�r̂��ms

, �7�

i.e., the spinors X
,j,m are linear combinations of products of
spherical harmonics and spin eigenstates.

The vector potential A in the interaction term in Eq. �2�,
ec� ·A, is chosen to have the form

A��� = �E0

�
sin2���

�T
	cos�� + �� , � � �0,T��

0 , otherwise,
� �8�

with � defined in Eq. �3� and A0=E0 /�. The dipole approxi-
mation, in which the spatial dependence of the field is ne-
glected, is obtained by the substitution �→�t. Within this
approximation with polarization along the z axis the quantum
number m remains a good quantum number also in the pres-
ence of the field. This simplifies the numerical scheme con-
siderably. In this context, the couplings read

��n�,
�,j�,m
ec� · A
�n,
,j,m�

= − iecA�t���
0

�

Qn�,
�Pn,
dr�X−
�,j�,m
�z
X
,j,m�

− �
0

�

Pn�,
�Qn,
dr�X
�,j�,m
�z
X−
,j,m�	 , �9�

with angular factors
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�X
�,j�,m
�z
X
,j,m� = �− 1� j�−j+l
−m+s�2j� + 1��2j + 1��s���s�

� �l
�,l

��s j� l


j s 1
�

�� j 1 j�

m 0 − m
	�

s=1/2
, �10�

where the reduced matrix element �s���s� 
s=1/2=�6.
To go beyond the dipole approximation the full spatial

dependence of the vector potential, Eq. �8�, is needed. One
possibility is to expand the vector potential in plane waves of
the type exp��i��t−K ·r��. The spatial part may be further
expanded in spherical harmonics,

exp��iK · r� = 4��
�,�

��i��j��Kr�Y�,�
� �k̂�Y�,��r̂� , �11�

where j��Kr� is a spherical Bessel function of the first kind.
Hence, the total coupling, ec� ·A, may be calculated as a
sum of couplings of the type j��Kr�Y�,��r̂��q. The index
q= �1,0 corresponds to the polarization direction. Specifi-
cally,

��n�,
�,j�,m�
j��Kr�Y�,��r̂��q
�n,
,j,m�

= − i��
0

�

Qn�,
�j�Pn,
dr�X−
�,j�,m�
Y�,��q
X
,j,m�

− �
0

�

Pn�,
�j�Qn,
dr�X
�,j�,m�
Y�,��q
X−
,j,m�	 .

�12�

Numerical values for the spherical Bessel functions of com-
plex arguments are obtained by a combination of an analyti-
cal expression valid for small 
kr
 �20� and a numerical rou-
tine provided in Ref. �21�. By combining the spherical tensor
operators C�

� ��4� / �2�+1�Y�,� and the spin operator �q,

C�
��q = �

L=�−1

�+1

��,�,1,q
L,M��C� · ��M
L , M = � + q ,

�13�

the angular parts of the full coupling, Eq. �12�, may be writ-
ten

�X
�,j�,m�
�C
� · ��M

L 
X
,j,m�

= �− 1�2j−j�−m���2L + 1��2j + 1��2j� + 1�

��l
��C
��l
��s���s��l
� � l


j� L j

s 1 s
�

��� L j j�

M m − m�
	�

s=1/2
. �14�

We have thus obtained a multipole expansion of the interac-
tion with the vector potential expressed as a plane wave. The
different terms in the expansion can be classified according
to their angular structure in Eq. �14�. The electric dipole type
interaction is for example obtained with �=0 and L=1. If the

electric field is polarized in the z direction, we have in addi-
tion M =0 leading to the selection rule, m=m�, as discussed
above. Magnetic dipole type interactions are obtained with
�=1 and L=1, etc. If instead all possible interactions leading
to a transition from 

�j� to 

���j�� are included, there are
no longer any restrictions on which m state that can be popu-
lated. Hence, in such a treatment, the number of required
basis states is proportional to 2��max+1�2 as opposed to
2�max+1 in the dipole case �with jmax=�max+1 /2�. It is thus
clear that a substantial increase in computational effort is
required to consider all types of interactions. In addition the
evaluation of the couplings becomes more cumbersome.
Note finally that a Fourier expansion of the vector potential
describing an electromagnetic pulse as in Eq. �8� requires
infinitely many plane-wave terms and it is thus necessary to
resort to approximations. We will return to this issue in Sec.
III C.

B. Nonrelativistic treatment

In order to distinguish truly relativistic effects from higher
order multipole terms, cf. Eqs. �12�–�14�, predictions from
the Dirac equation, Eq. �1�, must be compared with those
from the Schrödinger equation, Eq. �4�. As was mentioned
above it has previously been demonstrated that in the high
intensity regime, the contributions beyond the dipole ap-
proximation come more or less exclusively from the diamag-
netic term �10–12�, 
A2, in the Schrödinger Hamiltonian,
Eq. �4�. Hence, for simplicity, we include in our nonrelativ-
istic calculation such contributions from this term only. If we
again use the expansion in plane waves and utilize Eq. �11�,
we find

��n�,l�,m�
NR 
e�iK·r
�n,l,m

NR �

= �− 1�m��4��2l� + 1��2l + 1��
�=1

lmax

i���l� � l

0 0 0
	

�� Rn�,l��r�j��Kr�Rn,l�r�dr

� �
�=−�

�

Y�,�
� �k̂�� l� � l

− m� � m
	 , �15�

where �n,l,m�r�=1 /rRn,l�r�Yl,m�r̂� are eigenstates to the un-
perturbed Hamiltonian. Alternatively, corrections to the di-
pole approximation may be found by expanding the interac-
tion to first order in the spatial coordinate of propagation, say
x �10,22�:

e2

2m
�A����2 �

e2

2m
��A��t��2 −

x�

c
�2A���

dA���
d�

�
x=0
� .

�16�

The couplings induced by x are then found as
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��n�,l�,m�
NR 
x
�n,l,m

NR � =
�− 1�l�−m�

�2
� Rn�,l�rRn,ldr�l��C1�l�

��� l� 1 l

− m� − 1 m
	 − � l� 1 l

− m� 1 m
	� .

�17�

For simplicity we have used the last procedure for the com-
parisons below.

C. How to incorporate nondipole effects

We will now return to the question of how the full inter-
action can be implemented in our propagation scheme. Ob-
viously, when using a time-independent basis representation
for the wave function, be it eigenstates to some time-
independent Hamiltonian or simply grid points in time, the
spatial dependence and the time dependence of the interac-
tion should preferably be separated to avoid calculations of
new couplings at every time step. We would thus like to
write the time-dependent interaction term

H��t,r� = ce� · A��� �18�

as

H��t,r� = �
n

cnHn
t �t�Hn

r�r� . �19�

Taylor or Fourier expansions are natural ways to achieve
such a separation.

For a pulse with high central frequency � and a duration
T that extends over several optical cycles, the carrier depends
more strongly on the spatial coordinate than the envelope
does. It may thus seem like a good approximation to neglect
the spatial dependence in the envelope and retain it only in
the carrier;

A��� �
E0

�
sin2��t/T�cos�� + �� . �20�

In this case the interaction may be written

H� �
ce

2�
� · E0 sin2��t/T� � �e−i��t+��eik·r + ei��t+��e−ik·r� .

�21�

Note that numerical problems may arise when combining Eq.
�21� with complex rotation. The reason is that the interaction
is no longer confined in space �there is no spatial dependence
in the envelope�, and for large distances the space periodic
function will diverge. In practice this imposes an upper limit
to the applied rotation angle 
. Another more fundamental
problem arising from Eq. �20� is that since the vector poten-
tial A no longer depends only on the Lorenz invariant quan-
tity �, the Lorenz covariance of the Dirac equation is lost.
The approximation in Eq. �21� is here used in connection
with the calculation of ionization rates in Sec. IV B below. It
is only meaningful to talk about a rate during a period in
time when the field amplitude is constant. Thus, if it makes
sense to calculate a rate, the approximation to neglect the

spatial dependence in the envelope is automatically justified.
As mentioned in Sec. III A, a more general method to

obtain the interaction on the form given in Eq. �18� would be
to make a full Fourier expansion of the interaction,

H� =
ce

�
� · E0�

n

cn exp�i
2�n

P
�	 , �22�

where the expansion coefficients cn are found from the field.
Since, in a real calculation, the Fourier expansion has to be
truncated, we will never obtain a true pulse but rather a train
of pulses. P determines the fundamental period of the Fou-
rier terms and at a first glance it may seem natural to choose
it such that it corresponds to the length of the pulse, P=�T.
T is here the pulse length and equals an integer number, N, of
cycles of the carrier wave, T=N2� /�. With P=�T the en-
velope in the vector potential, Eq. �8�, can be written exactly
with three Fourier terms and then the whole vector potential
requires only six terms with n= �N , � �N�1�. In order to
interact with one pulse only, the time propagation should
now be made from t=0 to t=T only. However, as the atom
gains spatial extension during the interaction, the true inter-
action time is in fact slightly longer than T. Now a problem
arises; if a longer propagation time is used then the next �and
nonphysical� pulse of the “pulse train” might interfere with
the dynamics. In principle this problem can be solved by
keeping enough terms in the Fourier expansion that there is a
clear dead time between the pulses so that the physical pulse
has time to leave the interaction region before the next pulse
enters it. We would thus like the pulse train to have a peri-
odicity longer than T, or equivalently we would like to use
P��T. The drawback now is that with such a choice the
vector potential can no longer be expressed with a finite
number of Fourier terms, and for a reasonable representation
of, e.g., a pulse of five optical cycles at least 20 terms are
needed. In reality the effect we miss if the interaction time is
not increased is rather small. This can be understood from
the fact that the drift of the electron, caused by the electric
field, is of the order of a few Bohr radii for the fields studied
here, and thus the needed increase in interaction time is
around 1/137 a.u. In view of the complexity of the just dis-
cussed improved scheme and also of the fact that the spatial
extension in the direction of the pulse is very small, the
present calculation is made with P=�T and is propagated
until t=T. The reason that the spatial extension in the propa-
gation direction is very small is that it is driven by the mag-
netic field, while the electric field drives the electron in a
direction perpendicular to the propagation direction.

From this consideration we expect that the introduced er-
ror in the final wave function should be of minor importance.
Still, for high intensities and short pulses, it can be challeng-
ing to find the correct ionization probability since the popu-
lation of Rydberg states may be somewhat modified by the
fact that the Hamiltonian at the time T does not completely
coincide with the unperturbed one. The predicted population
of the ground state, which is well localized, should, however,
not suffer from this problem.
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D. Time propagation

Two different schemes have been used to solve the time-
dependent Dirac �or Schrödinger� equation. In the first
scheme the wave function is expanded in eigenstates, �0, to
the time-independent Hamiltonian, H0,

��t� = �
k

cn�t��k
0. �23�

Equation �1� is now transformed to an equation for the c
coefficients, which in matrix form reads

ċ = −
i

�
�H0 + �

r=1

R

fr�t�Hr��c , �24�

where Hn
��� are matrices and c�t� is a vector containing the

expansion coefficients of the wave function. The number of
terms in the perturbation, R, is one in the dipole approxima-
tion, two for Eq. �21� as well as for the nonrelativistic ap-
proximate account of effects beyond the dipole approxima-
tion, Eq. �16�, and six for the pulse train approach described
in connection with Eq. �22�. Equation �24� has been solved
with an adaptive step Runge-Kutta method, which has the
advantage that the results it provides are “always” accurate.
The downside of this method is that it may be slow when
energies, i.e., diagonal elements of H0, with large absolute
values are involved. With this scheme it is hard to avoid
inclusion of negative energy states to H�t�, but it is straight-
forward to remove negative energy states with respect to
H0—it is just to omit them from expansion �23�. In fact
inclusion of negative energy states to H0 is here hard to
combine with complex rotation since the energies of such
states have positive imaginary parts, which would cause the
wave function to blow up when propagated.

In contrast, truncation of negative energy states of the
perturbed Hamiltonian H�t� is readily done with our second
approach to the time propagation. We work then directly
with the propagator

��t + �t� � e−iH�t��t/���t� �25�

and utilize the field dressed eigenstates � j�t�, with eigenval-
ues Ej�t�, of the full Hamiltonian at a specific time, H�t�, to
express the exponentiation of the Hamiltonian,

e−iH�t��t/� = �
j

e−iEj�t/�
� j�t���� j�t�
 . �26�

Diagonalization of H�t� to obtain the set � j is here done at
every time step; see Ref. �19� for further details. Negative
energy states of H�t� can now be excluded just by adjusting
the sum in Eq. �26�. An important point here is that, although
negative energy states of the full Hamiltonian are excluded,
it allows a certain admixture of negative energy states of H0.
As the method relies on Eq. �25�, convergence in �t must be
checked carefully and naturally the method quickly becomes
very costly when large basis sets are at hand. Therefore it is
crucial to keep the number of basis states low, but still ad-
equate. To this end, complex rotation is very useful.

When the second approach is combined with complex ro-
tation numerical problems might arise since there is a possi-
bility for the magnitude of the �rotated� wave function to

increase over certain time periods. This behavior can be
traced back to the anti-Hermitian part of the scaled interac-
tion as noted in �23� and discussed in �19�. The problems
arise if the magnitude blow up beyond what is numerically
stable, which might happen if 
 is chosen too large. Hence,
the rotation angle must be chosen increasingly moderate as
the intensity of the field increases—at the expense of having
to include more radial points in the grid.

IV. RESULTS AND DISCUSSION

A. Negative energy states and nondipole effects

In Fig. 1 we show the convergence of the probability for a
hydrogen atom to remain in the ground state after being ex-
posed to an electromagnetic pulse with central frequency �
=2.0 a.u., which corresponds to a photon energy of 54.4 eV,
a peak electric field strength E0=30 a.u., corresponding to a
peak intensity of 3.16�1019 W /cm2, and a pulse duration T
that corresponds to N=5 optical cycles �
380 as�. It is
known from calculations performed in the Kramers-
Henneberger frame that effects beyond the dipole approxi-
mation are significant for such a pulse �22�, but since the
ponderomotive energy is only 
0.3% of the electron rest
mass energy, relativistic effects are expected to be small.
Hence comparison with the time-dependent Schrödinger
equation seems reasonable. The relativistic survival probabil-
ity of the ground state is calculated with two different imple-
mentations of the field: the dipole approximation and the
pulse train implementation discussed in connection with Eq.
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Dip., TDSE
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FIG. 1. �Color online� The convergence with respect to �max of
the probability to remain in the initial state �the ground state� for a
hydrogen atom exposed to a laser pulse of a maximum electric field
strength E0=30 a.u. �
3.16�1019 W /cm2�, a central frequency
�=2 a.u. �corresponding to a photon energy of 54.4 eV� and a
duration of five optical cycles �corresponding to 380 as�. For the
relativistic calculations four different approaches have been applied.
Specifically, calculations have been performed with and without the
dipole approximation �“Dip./N.D.”� and both including and exclud-
ing negative energy states �“NES”� of the unperturbed Hamiltonian.
The �max-converged nonrelativistic results �”TDSE”� have also been
included as lines for comparison �thin black curves�.
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�22�. Furthermore, both forms of the Hamiltonian have been
implemented using each of the two ways of excluding nega-
tive energy states discussed in Sec. II A.

Figure 1 has several interesting features—the most inter-
esting one being that beyond the dipole approximation the
result coincides with the result within the dipole approxima-
tion when negative energy states of H0 are excluded. This is
in marked contrast to the nonrelativistic result which shows a
substantial contribution from effects beyond the dipole ap-
proximation. When negative energy states are included, how-
ever, the converged result agrees very well with the nonrel-
ativistic one. In other words, these states are absolutely
necessary in order to account for nondipole effects. This con-
clusion is substantiated in Fig. 2. Here the total population of
negative energy states, with respect to H0, is plotted as a
function of time. Note that this quantity is not physical in the
sense that it depends on both gauge and rotation angle 
,
which is 10° in this case. However, as this “population” is
rather significant during the interaction, it still serves to il-
lustrate that the result of a calculation may depend on
whether they are included or not. Higher population of nega-
tive energy states is seen for stronger fields �2,5�. The distri-
bution in negative energy states of H0 is strongly concen-
trated just below the barrier at −mc2, but at higher intensities
a “tail” extending a few atomic units into the negative energy
continuum is seen during interaction. To some extent this is a
situation analogous to that for the inclusion of high partial
waves, �. Even when only modest � values are found to be
populated after the pulse, high � values might be required
during the pulse for a correct description of the dynamics,
and the needed maximum � is gauge dependent. Mathemati-
cally the substantial population of negative energy states can
be understood from the fact that the interaction term is non-
diagonal with respect to the upper and lower component of
the wave function. A clear illustration of what happens is
obtained if we consider the possibility to get an admixture of
a virtual state m into the wave function describing an elec-
tron in state a. In second-order perturbation theory the state

m will contribute to the energy of the electron in state a as

�E 
 �
m

�a
ec� · A
m��m
ec� · A
a�
Ea − Em

. �27�

If m is a positive energy state, the whole contribution is of
order unity �in a.u.�. The factor c2 in the nominator compen-
sates the radial integrals, which are small since the Dirac �
matrices mix the large and small components of the relativ-
istic wave function. If m is a negative energy state, on the
other hand, there are contributions to the radial integrals that
are much larger, of the order unity. This is because the large
and small components are found at opposite places in the
eigenfunctions for positive and negative energy states. Now
the energy denominator is of the order 2mc2, but this is com-
pensated by the factor c2 in the nominator and again the
whole contribution is of the order unity. We see thus that
when it comes to virtual states the role played by the nega-
tive energy states can be as important as that of the positive
energy states. Note that although the expression in Eq. �27� is
valid for both positive and negative energy states, they cor-
respond to rather different time ordered Feynman diagrams.
While the expression with a positive energy state, m, de-
scribes the fluctuation from a to m and back again, that with
a negative energy state is describing the process when the
excitation of an electron from the negative state m happens
first. This creates a virtual electron-positron pair in addition
to the already present electron; see Fig. 3. In a second step
this electron annihilates the positron �24�.

We emphasize that the contribution from virtual pairs de-
pends on which Hamiltonian we use to distinguish between
electrons and positrons. If we instead use the instantaneous
Hamiltonian H�t� for this purpose, the contributions from
virtual electron-positron pairs are minimal when ���2mc2.
A clear manifestation of this is that when the time-dependent
Dirac equation is solved with the parameters given above,
the population of negative energy states of H�t� is zero to
machine accuracy �if the time evolution is made with a small
enough step� even if they are not actively removed. As men-
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FIG. 2. The population of negative energy states of the unper-
turbed Hamiltonian H0 during the electromagnetic pulse for the
same case as in Fig. 1. Although this quantity depends on the rota-
tion angle 
, which is 10° here, it demonstrates that population of
such states is significant and may very well influence the dynamics
of the positive energy states. The pulse itself is shown in the upper
right corner

FIG. 3. Feynman diagrams describing electron-positron pair cre-
ation and the subsequent annihilation of the positron by another
electron. In the left diagram the first photon �lower� is absorbed and
the second is emitted. In the diagram to the right the situation is the
opposite. If the photon energy would match the total energy of the
two created particles, the left diagram would describe real pair cre-
ation. Far from resonance �i.e., when ���2mc2� the two diagrams
might be of equal importance.
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tioned, a similar conclusion was drawn by Boca and Florescu
�5�.

The importance of negative energy states, or virtual
electron-positron pair creation, for certain processes has been
observed before. In Ref. �9� Sakurai illustrates what happens
very clearly. Thomson scattering, in which a highly energetic
photon scatters off a free electron, is described to lowest
order perturbation theory within the scope of both the
Schrödinger equation and the Dirac equation. The nonrela-
tivistic treatment describes the process as a first-order inter-
action through the diamagnetic term, whereas it is necessary
to include second order in the relativistic description. More-
over, only when negative energy states are included in the
sum over intermediate states is the cross section obtained
from the Schrödinger equation reobtained. In other words, if
negative energy states of the unperturbed system are left out
altogether, the Dirac equation is not able to describe dynam-
ics that arises from the diamagnetic term in the analogous
Schrödinger representation �4�. Since this term, e2 /2mA2,
only depends on time in the dipole approximation, it is at this
level irrelevant for the dynamics. We also see numerically
that inclusion of negative energy states is not crucial for the
time-dependent Dirac equation within the dipole approxima-
tion. However, the diamagnetic term gives by far the largest
contribution beyond the dipole approximation, and indeed, as
is seen in Fig. 1, the relativistic nondipole results coincide
with those from a nonrelativistic calculation only when nega-
tive energy states are included.

Figure 4 may serve to illustrate this phenomenon further.
It shows the lower part of the eigenenergy spectrum for a
hydrogen atom as a function of the magnitude of a homog-
enous external vector potential. These eigenenergies, which
do not represent any physical quantity by themselves, are
relevant for the time evolution of a system exposed to a
time-dependent vector potential. The dash-dotted curves
show the lowest eigenenergies of the Schrödinger Hamil-
tonian, cf. Eq. �4�—including the diamagnetic term. The full
curves, on the other hand, are obtained from the eigenener-

gies of the Dirac Hamiltonian, cf. Eq. �2�, when diagonalized
within a basis of eigenstates of H0 corresponding to positive
energies only—plus the nonrelativistic diamagnetic term,
e2 /2mA2. As the curves coincide only when this term is
added, it is clear that the Dirac representation without nega-
tive energy states does not feature the analog of the diamag-
netic term in the Schrödinger representation. In other words,
phenomena that in the nonrelativistic representation involve
this interaction term cannot be represented in a relativistic
treatment unless negative energy states of H0 are included in
the basis.

It may seem odd that even though the results in Fig. 1
converge toward the same value in the dipole approximation,
the convergence is quite different depending whether nega-
tive energy states of H0 are included or not. I. e., for a cal-
culation which is not convergent in �max, the truncation af-
fects the two representations differently. This may be related
to the fact that the correspondence with the diamagnetic term
in the nonrelativistic case requires an adequate representation
of the physical space. There is no obvious reason why the
correspondence between the diamagnetic term and the inclu-
sion of negative energy states should prevail in an incom-
plete description such as the one we have with truncation at
a low �max. It is hard to draw a clear conclusion regarding in
which case, with or without negative energy states, the con-
vergence is fastest in the dipole approximation since the con-
vergence pattern varies with field strength and frequency.

It is also worth noting that there is a practical aspect to the
inclusion or truncation of negative energy states. When
eigenstates with a very large energy magnitude are important
for the time propagation, Eq. �25� indicates that a corre-
spondingly smaller time step should be required. When nega-
tive energy states are included and important, one would
suppose that the required time step would be �t�1 /2mc2. A
full inclusion of negative energy states thus causes computa-
tional difficulties, at least if they are �virtually� populated.
Even when they are not virtually populated with a short
enough time step, a larger step size might result in spurious
population. In this respect the definition of negative and
positive energy states with respect to the instantaneous H�t�
has an advantage over that with respect to H0�t�; with the
former definition negative energy states can safely be ne-
glected �as long as the intensities used are not enough for
real pair production�, while their inclusion is called for in the
latter case. It is sometimes argued �3� that if the studied
intensities are too low to allow for real pair production, nega-
tive energy states are not populated and a larger �t is al-
lowed. From the above considerations, this point of view is
not completely justified.

As has been mentioned, the contribution from virtual
electron-positron pairs is gauge dependent. It is thus interest-
ing to discuss what the situation regarding negative energy
states would be if the interaction with the electromagnetic
field were studied in the length gauge. We follow here Ref.
�25� and obtain the length gauge expression when HD, Eq.
�2�, is transformed according to

UHDU† + i�
�U

�t
U† �28�

with
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FIG. 4. �Color online� The lowest eigenenergies for a system
“exposed to” a homogenous vector potential obtained in two ways.
The dash-dotted curves are constructed from the lowest eigenener-
gies of the Schrödinger Hamiltonian including the diamagnetic
term, cf. Eq. �4�. The full curves are obtained through diagonaliza-
tion of the Dirac Hamiltonian, Eq. �2�, excluding states correspond-
ing to negative energies �”NES”� of the unperturbed Hamiltonian,
and then adding the diamagnetic energy of the Schrödinger equa-
tion, e2 /2m2A2.
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U = exp� ie

�
A · r	 . �29�

The field interaction term in Eq. �2�, ec� ·A, is then replaced
by

er · E + ec�� · k��r ·
dA

d�
	 . �30�

Here an electric field term identical to the one in the nonrel-
ativistic length gauge Hamiltonian appears, but there is now
also an additional term. This term is proportional to the mag-
netic field and again we have a term nondiagonal with re-
spect to the large and small component of the wave function.
As was discussed above, important contributions beyond the
dipole approximation arise when the electron is accelerated
to high velocities by the electric field and then interacts with
the magnetic field. In the length gauge such contributions
would arise from the cross terms between the two operators
in �30�. Looking again at the matrix elements involved we
have in analogy with Eq. �27�

�E 
 �
m

�a
er · E
m��m
ec�� · k��r ·
�A

��
	
a�

Ea − Em
. �31�

It is easy to see that for positive energy states, m, the first
matrix element is large, but the second is suppressed. For
negative energy states, m, the situation is the opposite; it is
the first matrix element that is suppressed and the second that
is large. However, the energy denominator is in the second
case large, 
2mc2, and the whole contribution is thus a fac-
tor �2 �with � being the fine structure constant� smaller than
when m is a positive energy state. Thus, negative energy
states are here not contributing in leading order but in rela-
tive order �2, which is the same order as relativistic effects in
general.

It might be possible to push the contributions from virtual
electron-positron pairs even further away. Consider the alter-
native transformation

U = exp�1

2
��mc2�−1�ec� · A�� = exp� e

2mc
�� · A	 ,

�32�

where the exponent is half the ratio of the interaction energy
over the mass energy. The result of this transformation on the
wave function cannot be written in closed form, but expand-
ing it in terms of the aforementioned ratio we find in leading
order that the interaction may be written

H� =
e

m
�A · p +

e2

2m
�A2 +

e�

2m
�� · B + O��

ec� · A

mc2 	 .

�33�

Here all the nonrelativistic velocity gauge operators, includ-
ing the diamagnetic term, reappear although still in the
framework of the four-component Dirac equation. Also the
spin-dependent interaction is here easily recognized. Note
that the first three terms are all diagonal with respect to the
small and large components of the wave function and we

expect very small contributions from virtual electron-
positron pairs �negative energy states�. Again this underlines
the close connection between these contributions and the dia-
magnetic term.

B. Relativistic effects for systems of high nuclear charges

Relativistic effects arise when the atomic system is ex-
posed to external fields which drives the electron up to rela-
tivistic velocities. In addition, highly charged ions are “in-
trinsically relativistic” in the sense that the Coulomb
potential alone causes the energy level of the atom to deviate
strongly from the Bohr formula. When such a system is ex-
posed to strong external fields, a relativistic treatment should
be necessary in order to describe the dynamics.

When we study the dynamics for hydrogenlike systems of
different nuclear charges Z, we may scale the field param-
eters such that the dynamics becomes analogous for every
nuclear charge. As is well known, the time-dependent
Schrödinger equation, for a time independent Hamiltonian,
remains the same for any Z if the time t and position r are
substituted by t̃�Z2t and r̃�Zr, respectively. Furthermore,
the addition of a time-dependent perturbation within the di-
pole approximation preserves this Z dependence if the elec-
tric field strength, E0, and the central frequency of the field,
�, are also scaled. Specifically, they should be substituted by

Ẽ0 = E0/Z3,

�̃ = �/Z2, �34�

respectively, cf. �1�. The Dirac equation reproduces the scal-
ing of the Schrödinger equation only in the nonrelativistic
limit. Hence, any deviation from properly scaled predictions
from a solution of the time-dependent Schrödinger equation
in the dipole approximation for, e.g., hydrogen is either a
relativistic effect or a magnetic one.

Figure 5 shows the ionization rate for various hydrogen-
like ions exposed to monochromatic fields with �
=1.0Z2 a.u. �i.e., with �̃=1.0 a.u.�. The nuclear charges fol-
low the noble gas sequence, except for Z=1 and 70. Of

course, when Ẽ0 and �̃ of Eq. �34� are held fixed, the true
field parameters become rather unrealistic for the higher
nuclear charges. However, we still find these calculations
interesting as they say something about to what extent rela-
tivistic effects become important as the nuclear charge in-
creases.

We will start by discussing the results obtained within the
dipole approximation. These correspond to the full and the
dashed curves in Fig. 5. Here the rates are found via an
exponential fit to �n
cn
2 of Eq. �23�. Note that due to the
complex rotation, this sum is for the most part a decreasing
function in time. For these calculations the negative energy
states of H0 have been removed in the relativistic version
�which does not affect the result within the dipole approxi-
mation as discussed above�, and hence the dynamics can be
resolved by the Runge-Kutta method. The rotation angle 
 is
here 15°. This method of obtaining ionization rates is
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described in detail in Ref. �19�. The pulse has a constant
amplitude between a two-cycle ramping on and off.

It is seen that the system features stabilization; the ioniza-
tion rate is not monotonously increasing with the amplitude
of the electromagnetic field. A clear and pronounced stabili-

zation peak is seen near Ẽ0=1.0 a.u. for all nuclear charges.
Furthermore, within the dipole approximation, we do not see
any significant differences between relativistic and nonrela-
tivistic calculations until we reach Z=36. Beyond this
nuclear charge, however, the stabilization peaks for the rela-
tivistic calculations are increasingly shifted outwards relative

to Ẽ0. This may be understood in the context of high fre-
quency Floquet theory �26�. According to this formalism, a
sufficient criterion for stabilization may be written as

�� � 
W��0�
 , �35�

where the parameter �0�eE0 /m�2 is the amplitude of the
quiver motion of a free classical electron. W is the effective
�or dressed� ground-state energy in the high frequency limit.
It is shown in Ref. �26� to increase from the true ground-state
energy toward zero as �0 increases. Since the relativistic
ground-state energy is lower than the nonrelativistic one
�presumably also its effective ground-state energy W for all
�0�, a higher value of the electric-field strength is necessary
to satisfy condition �35� than in the nonrelativistic case,
which explains the observed shift.

When it comes to the magnitude of the ionization rates,
we see that the ones obtained via the Dirac equation are
lower than the ones obtained with the Schrödinger equation
for Z=36 and 54, whereas they are more or less equal for
Z=70, and for Z=86, the relativistic ionization rate reaches a

higher value than the nonrelativistic one. The latter situation
seems to be more easily understood since absorption of one
photon of energy �� brings the photoelectron closer to the
threshold, where the density of states is high, in the relativ-
istic case. However, for slightly lower nuclear charges, this
effect is seen to be dominated by some other effect—
possibly one related to the increased inertia of the relativistic
electron induced by the external field.

Although the dynamics in the hydrogen case �Z=1� is
well described within the dipole approximation, cf. �27�, it is
expected that this approximation will eventually break down
as Z increases. This can be seen from classical consider-
ations; the translation of the electron due to the magnetic
field per optical cycle should be of the order e2E0

2 /cm2�3

=e2Ẽ0
2 /cm2�̃3. In other words, this translation is unaffected

by Z when �̃ and Ẽ0 are held fixed. However, the extension
of the initial state and the wavelength of the external field is
shortened by a factor Z−1 and Z−2, respectively, and therefore
the relative importance of the magnetic translation increases.

The results from solving the Dirac equation beyond the
dipole approximation are indicated in Fig. 5 by black circles.
Indeed it is clearly seen that the ionization rates differ from
the ones predicted in the dipole approximation for higher
nuclear charges. As mentioned, since the ionization rate is a
quantity extracted during the interaction with the pulse at
maximum, it cannot be sensitive to whether the spatial de-
pendence of the envelope is included or not. Hence, the in-
teraction Hamiltonian of Eq. �21� should be adequate. For
these calculations the method corresponding to Eq. �26� has
been used �including negative energy states of H0�. The ro-
tation angle is here 2°. As these calculations are considerably
more complicated than the ones performed in the dipole ap-
proximation, precise conclusions about the ionization dy-
namics with the full interaction are hard to draw at this point.
However, it is clearly seen that inclusion of the magnetic
field increases the overall ionization rate.

It should be noted that for the higher nuclear charges, and
correspondingly higher photon energies, production of real
electron-positron pairs, which is not accounted for by the
present method, becomes more and more plausible and may
possibly take place for the most intense fields considered
here. For instance, an energy of 4.6��, i.e., only five pho-
tons, is necessary to create a real electron-positron pair for
Z=86.

V. CONCLUSIONS

We have demonstrated that in order to describe dynamics
of an atomic system exposed to strong external light sources
using the time-dependent Dirac equation in the velocity
gauge, the negative energy states of the unperturbed Hamil-
tonian H0 must be included in the representation. If these
states are excluded, the time-dependent Dirac equation is un-
able to give the correct results—even in the nonrelativistic
limit. We argued that the “filled sea” of negative energy
states should be associated with the time-dependent Hamil-
tonian at each time—not with the unperturbed one �H0�.

It was seen that the dynamics arising from the negative
energy states of H0 is related to the diamagnetic part of the
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FIG. 5. �Color online� The ionization rate of hydrogenlike sys-
tems exposed to a monochromatic laser of photon energy ��
=1.0Z2 a.u., where Z is the nuclear charge, as functions of the
amplitude E0 of the electric field. The field on the x axis is given in

units of Z3 a.u., i.e., the x axis corresponds to Ẽ0 of Eq. �34�, and the
rates on the y axis are given in units of Z2 a.u.. The full �blue�
curves are the results of relativistic calculations, whereas the dashed
�red� curves stem from nonrelativistic calculations—both within the
dipole approximation. The black circles are the results from relativ-
istic calculations beyond the dipole approximation.
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corresponding nonrelativistic Hamiltonian. Hence, exclusion
of negative energy states of H0 still gives correct results
within the dipole approximation.

The situation for other gauges was briefly discussed. It
seems that creation of virtual electron-positron pairs is of
less importance in certain alternative descriptions of the in-
teraction, e.g., in length gauge.

Finally, we used the relativistic formalism to study the
ionization rates for various hydrogenlike systems, with the
external field scaled with the nuclear charge to give identical
rates in the nonrelativistic limit in the dipole approximation.

Relativistic effects were seen for higher charges. These were
explained in terms of relativistic shifts in the effective bind-
ing energy. Magnetic effects were seen to contribute to en-
hance the ionization rate.
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