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In the preceding paper [T. Fab¢i¢, J. Main, and G. Wunner, Phys. Rev. A 79, 043416 (2009)] “restricted
Gaussian wave packets” were introduced for the regularized Coulomb problem in the four-dimensional
Kustaanheimo-Stiefel coordinates, and their exact time propagation was derived analytically in a fictitious-time
variable. We now establish the Gaussian wave-packet method for the hydrogen atom in static external fields. A
superposition of restricted Gaussian wave packets is used as a trial function in the application of the time-
dependent variational principle. The external fields introduce couplings between the basis states. The set of
coupled wave packets is propagated numerically, and eigenvalues of the Schrodinger equation are obtained by
the frequency analysis of the time autocorrelation function. The advantage of the wave-packet propagation in
the fictitious-time variable is that the computations are exact for the field-free hydrogen atom and approxima-
tions from the time-dependent variational principle only stem from the external fields. Examples are presented

for the hydrogen atom in a magnetic field and in crossed electric and magnetic fields.
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I. INTRODUCTION

The hydrogen atom in a static magnetic field [1-5] and in
crossed electric and magnetic fields [6—-16] is a nonintegrable
system which can be accessed both experimentally and theo-
retically and has attracted much attention during recent de-
cades. Exact quantum spectra of the system can be obtained
by numerical diagonalization of the Hamiltonian in a large
Sturmian-type basis set. Nevertheless, the atom has served as
an example system for the development and verification of
alternative quantization methods, e.g., semiclassical closed-
orbit theory [17,18], periodic-orbit theory [19,20], and cycle-
expansion techniques [21].

Another alternative to large quantum computations is the
application of the time-dependent variational principle
(TDVP) [22]. For a wave packet depending on a set of varia-
tional parameters the time-dependent Schrodinger equation
is transformed to a system of ordinary differential equations
for the variational parameters. Quantum spectra can be ob-
tained by a frequency analysis of the time autocorrelation
function of the wave packet. The method was established by
Heller [23,24] for single or coupled Gaussian wave packets
(GWPs). It is well suited for nonsingular smooth potentials
but certainly far from ideal for atomic systems with singular
Coulomb potentials.

The wave-packet dynamics in atomic systems has been
studied for the field-free hydrogen atom [25-27] and in par-
ticular for the atom in time-dependent external fields, e.g.,
microwaves or short laser pulses. While the Rydberg wave
packets are usually dispersive, the possible existence of non-
dispersive coherent states has been demonstrated for the hy-
drogen atom in microwave fields [28,29].

In the preceding paper [30] we have established the
Gaussian wave-packet method for the Coulomb problem.
Using the Kustaanheimo-Stiefel (KS) regularization the sin-
gular Coulomb problem was transformed to the four-
dimensional (4D) harmonic oscillator with a constraint. We
introduced the set of restricted Gaussian wave packets obey-
ing that constraint by confining the space of the Gaussian
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parameters. The exact propagation of the restricted GWPs in
a fictitious-time variable could be derived analytically.

In this paper we extend the fictitious-time wave-packet
propagation to the hydrogen atom in static external electric
and magnetic fields. A superposition of restricted GWPs is
used as the variational trial function. The time-dependent
variational principle is applied in such a way that the wave-
packet dynamics is exact for the field-free hydrogen atom
and couplings between the GWPs are only induced by the
external fields. In the presence of a single external homoge-
neous field the rotational symmetry of the hydrogen atom is
preserved and one component of the angular momentum, say
l,, is conserved. In that case we employ the modified two-
dimensional (2D) Gaussian wave packets with well-defined
magnetic quantum number m introduced and discussed in
Ref. [30] and perform computations in the subspaces of the
different magnetic quantum numbers m separately. In crossed
fields the cylindrical symmetry is broken and computations
are performed in the basis of the restricted three-dimensional
(3D) GWPs without well-defined angular momentum quan-
tum numbers.

The fact that the wave-packet propagation is exact for the
pure Coulomb problem might imply that the external fields
are treated as a perturbation and the method does not work
well beyond the perturbative regime. However, this is not the
case. The dynamics of wave packets is exact to all orders in
the field strengths within the allowed set of trial wave func-
tions, i.e., the variational approximation only concerns the
restriction of the Hilbert space. The power of the method will
be demonstrated by application to the diamagnetic hydrogen
atom in the strong nonperturbative regime at the field-free
ionization threshold.

The paper is organized as follows. In Sec. II we introduce
the regularization and scaling of the Hamiltonian with exter-
nal fields and discuss the general idea of how to obtain quan-
tum spectra by frequency analysis of the fictitious-time au-
tocorrelation function of the propagated wave packets. In
Sec. III the time-dependent variational principle is explained.
The equations of motion for the variational parameters are
derived for the superposition of restricted 3D and modified
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2D GWPs, and the numerical time propagation of coupled
wave packets is discussed. Results for the diamagnetic hy-
drogen atom and the atom in crossed electric and magnetic
fields are presented in Sec. IV. Concluding remarks are given
in Sec. V.

II. REGULARIZED HYDROGEN ATOM
IN EXTERNAL FIELDS

In the preceding paper [30] the fictitious-time wave-
packet dynamics has been discussed for the field-free hydro-
gen atom. We now consider the atom in external electric and
magnetic fields. For perpendicular fields with the electric and
magnetic fields along the x and z axes, respectively, the
Hamiltonian in the three-dimensional coordinates reads (in
atomic units with Fy=5.14X10° V/cm and B,=2.35
X105 T)

1, 1 1 1
Hy=—p?——+—Bl_+-B*(x®+y?) + Fx. (1)
2 r 2 ° 8

The starting point for our investigations is the Schrodinger
equation in the 4D Kustaanheimo-Stiefel coordinates u with
X=UUs—Uylly, Y=U ly+Usls, and z=%(u%+u§—u§—ui). In-
troducing scaled coordinates and momenta u—nltfu, p,
— n’p, and following the procedure of Sec. I in [30], we

obtain
Hi= {%pi + [— n:E + %(ngffB)z(u% +ud) (U3 + ud)
+ nszF(ulL@ - u2u4)]u2
# S Bllpa 1))+ 1)

+ (Uspy — ugps) (Ui + M%)]} U=2nggih. (2)

In KS coordinates physical wave functions must fulfill the
constraint

(Uapy = uypy — Ugps + uzpy) Y= 0. (3)

By choosing constant parameters,

@=-ngE, B=ngB, {=niF, (4)
Eq. (2) becomes an eigenvalue problem for the effective
quantum number n.g. For a set of parameters («,3,{) and a
given eigenvalue n.y; the energy and field strengths of the
physical state are obtained from Eq. (4). The quantized en-
ergies and field strengths are located on lines with constant
E/B and E/F*".

In analogy with the field-free hydrogen atom in [30] we
can extend Eq. (2) to the time-dependent Schrédinger equa-
tion in the dimensionless fictitious time 7 by the replacement,
2nefin(%, viz.
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Al
i—y=\=p,+V|y=|-ZAs+V]y=(T+ V)¢, (5)
ar 2 2

where V is defined via Eq. (2) as the sum of a harmonic
potential and the contributions of the external fields. For the
field-free hydrogen atom, i.e., a harmonic potential V, wave
packets can be propagated analytically in the fictitious time
[30].

Our goal for the hydrogen atom in external fields is to
compute the propagation of an initial wave packet (0) by
applying the time-dependent variational principle. To this
end the wave function is assumed to depend on a set of
appropriately chosen parameters whose time dependence is
obtained by solving ordinary differential equations. The an-
satz for the wave function depends on the symmetry of the
problem. For the hydrogen atom in crossed fields we choose
a superposition of N restricted Gaussian wave packets [30],

N

W)=, ety (o], 6)
k=1

with the symmetric width matrices,

a 0 a, a,

M
0 a, a, —a,

A= S , (7
a a, a, O
a, —a, 0 a,

depending on the four parameters (a,,a,,a,,a,) and with y
determining the normalization and phase of the restricted
GWPs. The special form of ansatz (6), which depends on, in
total, 5N time-dependent variational parameters (instead of
15N complex parameters for the most general superposition
of Gaussian wave packets in a 4D coordinate space) guaran-
tees that the wave function obeys constraint (3).

The hydrogen atom in a pure magnetic field, i.e., {=0, is
cylindrically symmetric around the z axis, and the angular
momentum component /,=m is an exact quantum number.
For wave packets with given m quantum number we use the
ansatz

N

(1) = ()Y, A Durn(nlpime
k=1

N
= (pv)"> ek (P24 y (D) oime, ®)
k=1

with the diagonal form of the matrix A obtained by setting
a,=a,=0 in Eq. (7), and_semiparabolic coordinates u
=\J'u%+ u%:y":z and v= \/u§+ui=\«"rTz are introduced.
Wave function (8) thus depends on a set of 3N time-
dependent variational parameters. As the paramagnetic term
is constant this term can be absorbed by an energy shift £
—E'=E-mB/2. In semiparabolic coordinates the kinetic
and potential terms in Eq. (5) for the diamagnetic hydrogen
atom then take the form
1

. (a2 1o m> & 14 m2> ©)
=——| S+ -+ —S+——-—7],
2\ou?  pop pr o I wiv VP
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V=oalu®+ V2)+%,82(,U,4V2+,u,21/4). (10)

Once the time-dependent wave packets [Eq. (6) or Eq.
(8)] are determined the eigenvalues né’t)f of the stationary
Schrddinger equation [Eq. (2)] and thus quantum spectra of
the hydrogen atom in external fields are obtained by a fre-
quency analysis of the time signal

) = O ) = 3 e, (1)

with the amplitudes c¢; depending on the choice of the initial
wave packet. The advantage of using the fictitious time 7 is
that the computations are exact for the field-free hydrogen
atom and approximations from the time-dependent varia-
tional principle only stem from the external fields. By con-
trast, wave-packet propagation in the physical time ¢ is a very
nontrivial task even for the pure Coulomb potential.

III. TIME-DEPENDENT VARIATIONAL PRINCIPLE

The propagation of the wave packets investigated in this
paper is based on the application of the time-dependent
variational principle. For the convenience of the reader we
first give a brief general introduction to the TDVP which is
then applied to the special form of trial functions (6) and (8).
The formulation of McLachlan [22], or equivalently the
minimum error method [31], requires the norm of the devia-
tion between the right-hand and the left-hand side of the
time-dependent Schrodinger equation to be minimized with
respect to the trial function. The quantity

I=ligp(r) - Hy(0)|* = min (12)

is to be varied with respect to ¢ only, and then =g is
chosen, i.e., for any time 7 the fixed wave function ¢(r) is

supposed to be given and its time derivative ¢Az) is deter-
mined by the requirement to minimize /. The equality /=0 is
provided by the exact solution of the Schrodinger equation,
while I in general takes positive values if  is constrained by
the functional form of . The wave function ¢(z) is assumed
to be parametrized by a set of complex parameters z(z)
=[z,(0),....z, (0], Y(t)=¢{z(z)]. For brevity the arguments
of the wave function are dropped in the following. For pa-
rametrized trial functions the variations in 6¢ carry over to
variations in 6z, and the variation leads to the equations of

motion
<—a¢|i¢—H¢> =0, (13)
0z

which can be written in matrix form
iy d J
Ki=-ih with K= —w|—"/’ , h= —‘/’|H¢ :
Jz Jz oz

An illustration of Eq. (13) is presented in Fig. 1. Here the
manifold of approximation M, consisting of all possible con-
figurations (z), is plotted schematically as a 2D surface in

(14)
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FIG. 1. Sketch of the manifold M of approximation of the trial
wave function ¢/(z). The variational evolution of the trial function
denoted by the arrow with the white arrowhead is obtained as the
projection of the exact time evolution —iH, denoted by the arrow
with the black arrowhead, onto the tangent space 7,M of the mani-
fold M in the point .

the Hilbert space. The tangent space of the manifold in the
point ¢ is a linear vector space and is spanned by the deriva-
tives %,k= 1,... N The tangent space is denoted by M
in Fig. 1. According to the Schrodinger equation the exact

time derivative i is given by —iH, denoted by the arrow
with the black arrowhead. In general the exact time deriva-
tive does not lie in the tangent space; otherwise the trial
function would be an exact solution of the Schrédinger equa-
tion. The variational approximation to the exact time deriva-
tive is given by that vector of the tangent space which has
minimal deviation from the exact one. This is the orthogonal
projection of the exact time derivative onto the tangent
space, denoted by the arrow with the white arrowhead in Fig.
1.

For parametrized wave functions the variational principle
[Eq. (12)] simply reduces to a quadratic minimization prob-
lem where the gradient of / with respect to the time deriva-
tives of the parameters must be zero;

a—_Iz , k=1,....n,, (15)

(9Zk
and the TDVP leads to a reduction of the Schrodinger equa-
tion to a system of ordinary first-order differential equations
of motion for the parameters z(r). The matrix Eq. (14) must
be solved numerically after each time step of integration for
the time derivatives Z if a numerical algorithm for ordinary
differential equations, e.g., Runge-Kutta or Adams, is used.

We now apply the time-dependent variational principle,
first in Sec. IIT A to the trial function [Eq. (8)] of the dia-
magnetic hydrogen atom, and then in Sec. III B to the trial
function [Eq. (6)] of the hydrogen atom in crossed electric
and magnetic fields. For Gaussian-type trial functions it is
convenient to split the Hamiltonian into the kinetic and po-
tential parts, i.e., H=T+V, and to apply Eq. (13) in the form

9. _(
< . |z¢—T¢> = < o IV¢>. (16)

Note that the variational approach substantially differs from
a perturbative treatment of the hydrogen atom in external
fields and is valid even in the strong nonperturbative regime.

043417-3



FABCIC, MAIN, AND WUNNER

A. Diamagnetic hydrogen atom

For the time-dependent wave packets of the hydrogen
atom in a homogeneous external magnetic field with given m
quantum number, we use ansatz (8) which can be written in
the form

N
w’m = lﬂm(Z) = E gm(yk), (17)
k=1
with the basis states

2(y) = (uw) e (18)

As already mentioned, the cylindrical symmetry of the sys-
tem is accounted for by setting a,=a,=0 and only the time-
dependent parameters z=(y',...,y"), with y=(y,a,.a,) re-
main. The evolution of the basis states is obtained by the
TDVP. The variational equations of motion are set up by
evaluating Eq. (16). First we let the time derivative and the
Laplacian act on the basis states [Eq. (18)] to obtain

0
i— —T k’
(l P )gm(y x)

=[- 3 +2i(d}, + al) (1 + |m])

= (dy + 20 ) = (dy +2(a,)) 11, (¥ %)
1

= {vé 5 (Va? + V’;ﬁ}gm(y’:x) (19)

for k=1,...,N. Equation (19) defines the coefﬁc1ents vo, V",

and Vk as functlons of the parameters a and a and the tlme
derlvatlves W, a , and a . The equatlons of motlon can be

written as
== 2(d)P -V (200)
=—-sla,) - 9 W a
b=—2(d})* - EV’;, (20b)
)'/‘=2i(ak +ak) 1+ |m|)—v]6, (20c¢)
with k 1,...,N, and the yet unknown coefficients Vk Vk,

and Uo Note that the equations of motion [Eq. (20)] are in
general coupled through the coefficients v’é, V’;, and V,,
which become time dependent in the presence of anharmonic
potentials. They must be determined from a system of linear
equations, which follows from Eq. (16) when inserting trial
function (17). Using the derivatives of the basis states [Eq
(18)] W1th respect to the variational parameters, viz. —gm
=igh, &a“ gk =ip2gk and ng—wzgm, Eq. (16) of the TDVP
finally yqelds the matrix equation

N
1 1
G ehuh+ ablale Vi ek eV
k=1
N

= (gl V(. v)lgh),
k=1
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N
1 1
> <<gfnluzlg,’;>v'6 + 5<gﬁnlu4lg'fn>VfL + 5<gf,,lﬂzvzlgf;>V’£>

k=1

N
=2 (g |2V, v)|gb),
k=1

N
1 1
S (el + 2l bV« Seeblleov

k=1
N

= > (gh [P V(. v)|gh), (21)

k=1

where the index /=1, ...,N runs over all basis states and the
notation gkmEgm(yk) is used. The potential V(u,v) for the
diamagnetic hydrogen atom is given in Eq. (10). All integrals
in Eq. (21) can be obtained analytically and are presented in
Appendix A. The set of Eq. (21) is a 3N-dimensional Her-
m1t1an positive semidefinite linear system for the coefficients
vo, Vk Vk and k=1, ...,N and must be solved, e.g., using a
Cholesky decomposmon [32] of the left-hand side matrix, at
every time step when numerically integrating the equations
of motion [Eq. (20)]. Technical remarks for the time propa-
gation of coupled wave packets via the numerical integration
of Eq. (20) will be given in Sec. III C.

B. Hydrogen atom in crossed fields

The rotational symmetry of the hydrogen atom in a mag-
netic field as discussed in Sec. III A is broken when an ad-
ditional electric field with a different orientation is applied.
In crossed fields none of the three degrees of freedom can be
separated. The paramagnetic term that contributed only a
constant energy shift within the subspace of constant m in
the diamagnetic hydrogen atom must now be taken into ac-
count since [, is not conserved. The evolution of wave pack-
ets is determined by the time-dependent Schrodinger equa-
tion [Eq. (5)] with T given by minus one-half times the
Laplacian in the 4D Kustaanheimo-Stiefel coordinates and V
defined via Egs. (2) and (4) as

1
V=au’+ 5;3[(“1172 — uop) (145 + u3)

+ (uspy — ’441’3)(“% + u%)]

1
+ gﬂz(u% + u%)(u% + uﬁ)u2 + L(ugus — upugu®. (22)

As trial functions for the time-dependent variational prin-
ciple we use the superposition

N
z) =2 g(yh), (23)
k=1

where
(ak
gk = g(yk) — ez(uA u+)/‘) (24)

are the restricted Gaussian wave packets derived in the pre-
ceding paper [30], which depend on the 5N time-dependent
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variational parameters y*=(9f, a ,ak,d* ak) [see Eq. (7)],
combined in the parameter vector z= (y RN M), The equa-
tions of motion for the variational parameters are obtained by
evaluating the TDVP in Eq. (16) for trial function (23). The
procedure is similar to that in Sec. IIl A. Letting the time
derivative and the Laplacian act on a restricted GWP, Eq.
(24) yields

J .
(iﬁ_ - T)gk = (—udfu — # = 2u(Ah%a + i tr AF) gk
T

= (vf‘) + %uV’gu)gk (25)

and defines a scalar vf and a 4 X4 matrix V5 as the coeffi-
cients of the polynomial in u for each GWP, with &
=1,...,N, ie., vh=i tr A*= 3/ and V&/2=—-A%-2(A%)2. Since
the special structure of the matrices A¥ in Eq. (7) is main-
tained in the squared matrices (AX)? that structure carries
over to the 4 X4 complex symmetric matrices V’; due to their
definition in Eq. (25). Therefore, they have only four inde-
pendent coefficients V Vk V and Vk in the notation of Eq.
(7). The equatlons of motlon for the var1at10nal parameters
yi=(9, aM,ak as ak) k=1,...,N can be written as

1

Ak =—-2(A%)? - Ev’;, (26a)

V=it AF—vf, (26b)

where the time-dependent parameters (vg, VZ, V";, Vfc Vly‘) are
obtained at every time step by solving a linear set of equa-
tions. Using the derivatives of the restricted GWPs with re-
spect to the variational parameters,

ag agt o . 98,
=ig", ——=iluy+us)g", —=i(us+uyg",
B'}/C g z?a]’; ( 1 2)8 (?alfj ( 3 4)8

k . k &gk . k
s 21(1,{1143 - u2u4)g s K= 21(M1M4 + M2M3)g P
da, da,

(27)

the required linear set of equations is derived from Eq. (16)
as

1
Ilk k+Ilk
125 ¥

N
>0,

k=1

Vo B Ve I 1

N 1
>\ vo+ IV, + I

>~
Il
—_

N
2 Iv2’
3

N
5 332Vk+1 AGED AU S

1 1
Ik Ik Ik
I 0+1242Vk [345‘/};*'144‘/};"'145

)-
et -
)-
)-

: 1
(et g

k=1
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N N
1 1
Ik k , qlk Ik Ik Ik Ik
> (11500 IstVI;+[355Vi+I45V§+155V$> =2 Iys,
=1 k=1
(28)
with [=1,...,N. All integrals I in Eq. (28) are defined and

listed in Appendix B. The potential [Eq. (22)] for the hydro-
gen atom in crossed electric and magnetic fields, including
the paramagnetic contribution, enters the integrals on the
right-hand side of Eq. (28). The linear set of Eq. (28) is
Hermitian positive semidefinite [see Eq. (21) for the diamag-
netic hydrogen atom] and can be solved using a Cholesky
decomposition of the left-hand side matrix.

C. Numerical time propagation of coupled wave packets

An initial wave packet given as the superposition of basis
states in Eq. (17) or Eq. (23) can be easily propagated for the
field-free hydrogen atom because the basis states remain un-
coupled and the time dependence of the basis states is known
analytically [30]. The external fields lead to couplings be-
tween the basis states, and the time-dependence of the varia-
tional parameters must be determined numerically. The setup
of the equations of motion has been discussed in Secs. IIT A
and III B. The numerical integration, however, of Egs. (20)
and (26) is nontrivial and further remarks are necessary.

1. Time propagation of the width matrices

For better numerical performance it is advantageous
[31,33] to introduce, for each width matrix A, two auxiliary
time-dependent 4 X 4 matrices B and C in such a way that

1
= EBC‘I. (29)

The equations of motion [Eq. (26a)] and similarly Egs. (20a)
and (20b) are then replaced with the equivalent differential
equations

B*=-VACF,

Ck=Bt, (30)

with the initial values B(0)=2A(0) and C(0)=1. In the case
of the diamagnetic hydrogen atom the matrices A and V, are
diagonal with diagonal elements {a,.a,.a,.a,} and
V4V, V., V,}, respectively. The matrices B and C have the
same structure, and thus the total number of parameters per
basis state that must be integrated (including the scalar )
increases from three parameters (y,a,,a,) to five parameters
(¥.by.by.cpn)).

For crossed fields the increase in the number of param-
eters is even more rapid. In that case the matrices B and C
are no more complex symmetric. Without taking care of the
special structure [Eq. (7)] of matrix A, the introduction of B
and C matrices would require the integration of 32 complex
parameters per GWP in the two matrices B and C instead of
four complex parameters in the width of matrix A. However,
the special structure of the matrix A can be exploited to halve
the number of independent parameters from 32 to 16 in ma-
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trices B and C. Details are given in Appendix C.

When integrating the equations of motion most of the
computational effort is invested in solving the set of 3N lin-
ear Eq. (21) or the 5N linear Eq. (28) at each time step. The
dimension of those equations is not affected by the introduc-
tion of auxiliary matrices B and C, and thus the increase in
the number of parameters in the differential Eq. (30) does not
imply a significant increase in the total computing effort. In
fact, due to the better numerical behavior of Eq. (30) as
compared to Eq. (26a) and Egs. (20a) and (20b), larger step
sizes of the numerical integration are possible and the total
computing time is decreased.

2. TDVP with constraints

The equations of motion resulting from the TDVP espe-
cially for a large number of coupled GWPs become badly
behaved from time to time during the integration. In the gen-
eral formulation of the TDVP at each time step the linear set
of Eq. (14) must be solved for the equations of motion of the
variational parameters, i.e., the time derivatives Z. In the
course of integration, depending on the number of coupled
GWPs, it will happen sooner or later that the matrix K in Eq.
(14) associated with the set of linear equations becomes ill-
conditioned, or even numerically singular. As a result the
time step of the integration routine becomes extremely small,
rendering the method of GWP propagation impracticably
slow. In the worst case the wave-packet propagation can
stick completely.

Matrix singularity problems arise from overcrowding the
basis set, i.e., from situations where fewer GWPs would be
sufficient to represent the wave function. On the other hand
for an accurate approximation of the wave function it is de-
sirable to have a large number of adjustable parameters.
However, there is a discrepancy between the number of
GWPs necessary to yield accurate results and the maximum
number of GWPs that can be propagated using the TDVP
without numerical difficulties [34]. There exist different pro-
posals to overcome this numerical problem [31,34-40]. Here
we adopt the constrained time-dependent variational prin-
ciple [40], where inequality constraints of the form

k=1,23,...
(31)

fiz,z") = fi(z2,,2) = fi(Z) = frmin [ R,

are taken into account in the variational process, and com-
plex quantities are split into their real and imaginary parts
denoted by the subscripts r and i, respectively, and thus z
=(z,,z;). The functions f; must be chosen in such a way to
prevent the matrix K from becoming singular. As long as
fi(z,,2;) > fi min for all k, all parameters evolve according to
Eq. (14) without being affected by the constraints. However,
when fi(z,,2,) =fi min and f,(z,,2;) <0 for, say, k=1, ...,j we
introduce Lagrangian multipliers and obtain an extended set
of linear equations;

K M"\(z h  _ [k, -k
_ = , with K= ,
M 0 A 0 K, K,

PHYSICAL REVIEW A 79, 043417 (2009)

H—(h") 32
-\ ) (32

where the matrix K and the vector h are the complex quan-
tities of Eq. (14). The Lagrangian multipliers are N € R/ and

M=2 with f=(f),....f;) is a real valued jX 2n, matrix.
Details of the implementation of the constrained TDVP are
given in [40]. If no constraint is active, i.e., j=0, then Eq.
(32) obviously reduces to the real formulation of Eq. (14).

IV. RESULTS AND DISCUSSION

In this section we present examples for the fictitious-time
wave-packet propagation of the hydrogen atom in external
fields. Autocorrelation functions between the initial and time
propagated wave packets are computed. Quantum spectra are
obtained by the frequency analysis of the autocorrelation
function and compared with numerically exact diagonaliza-
tions of the Hamiltonian.

It turns out that a sensible choice of an appropriate initial
state ¢(0) is crucial for the successful application of the
TDVP. For an unreasonable choice the numerical problems
discussed in Sec. III C 2 occur for few basis states already,
and bad unconverged results are obtained. The conventional
way to construct an initial wave packet by placing a certain
number of unrestricted GWPs at various positions in coordi-
nate and momentum space is not possible for the restricted
GWPs in the KS coordinates. In the calculations of the dia-
magnetic and the crossed fields hydrogen atom we achieved
optimal results by first choosing only one 2D or 3D Gaussian
wave packet in the physical coordinates, which was then
expanded in a set of N restricted GWPs as explained in Ref.
[30] for the field-free hydrogen atom. The external fields lead
to couplings between the basis states and imply a compli-
cated time development of the initial state as compared to the
field-free hydrogen atom, where the wave-packet propaga-
tion is periodic in time [30].

A. Diamagnetic hydrogen atom

The initial wave function is most conveniently chosen to
be a GWP in parabolic coordinates

WE, 1) = Ae(E = 804 ~(n = o) 4o)eipe (6=t +ipy (-m0)
(33)

with center (&, 7,), width o and mean momentum (p & p,}o).
The GWP is expanded in terms of the basis states [Eq. (18)]
according to the procedure described in detail in Ref. [30],
including the Monte Carlo technique with importance sam-
pling. The procedure yields the initial values of the varia-
tional parameters )/‘,a’;,a’,‘,, k=1,...,N.

However, it is not realistic to propagate several thousands
of basis states numerically with the full coupling. Reliable
results are obtained by far fewer basis states than used in the
expansion and propagation of the GWP [Eq. (33)] in the
field-free hydrogen atom [30]. Reasonable numbers of basis
states are in the range of N=10-100. A numerical example is
presented for the magnetic quantum number m=0, where N
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=70 basis states are used for the expansion and propagation.
The damping factor € is set to €=0.1

Each basis state has three variational parameters
)/‘,a';,a’;, and therefore N basis states require the solution of
a 3N X 3N matrix equation after every integration step, and
the usual numerical problems mentioned in Sec. III occur
with increasing number of basis states. It turns out that con-
straints on the imaginary parts of the phase parameters of the
form Im ¥ = y,,,,=—4.5; k=1,...,N are suitable to regular-
ize the equations of motion with regard to a fast integration.
These constraints present simple lower bounds on the ampli-
tudes of the wave packets and avoid matrix singularities
caused by extremely large overlapping wave packets.

The accuracy of expansion (33) of the GWP with only
N=70 basis states is very good. The time evolution of the
wave function is shown in Fig. 2. The probability density
plp.z)|* for six different times 7=0.4,0.8,1.2,3.0,5.0,
7.0 is shown. The parameters of the potential in Hamiltonian
(10) are set to @=0.5 and B=0.2. The 7 periodicity of the
evolution of the wave function that is present in the field-free
hydrogen atom is destroyed now.

The autocorrelation function of the propagation can be
used to extract spectral information by Fourier transforma-
tion or harmonic inversion [41-45] of the time signal. The
center of Gaussian (33) is py=6,zp=0 and the initial mean
momentum is chosen in such a way that states around an
effective quantum number of n ;=6 are excited.

To reduce the density of states the autocorrelation func-
tion is separately computed for the subspaces of even and
odd parities by taking the symmetrized and antisymmetrized
states i (p,2)=t(p,2) = y(p,—z). The autocorrelation
function C*(7)=(¢, (0)| ¢ (7)), is shown in Fig. 3(a) for
symmetrized states and in Fig. 3(b) for the antisymmetric
states. The spectral results for the diamagnetic hydrogen
atom, obtained from the time signals are plotted in Fig. 4. A
harmonic inversion has been employed. The amplitudes of
the peaks are determined by the magnitude of the overlap
between the eigenstates, denoted by |n.), and the initial
states ¢, (0) in Figs. 4(a) and 4(b), respectively. The ampli-
tudes are plotted with red lines in the upper panels. The
numerically exact eigenvalues of the diamagnetic hydrogen
atom are plotted with blue lines in the lower panels for com-
parison. The agreement of the positions is excellent. The
highest amplitudes are located in the region n.;=~ 6 accord-
ing to the choice of the input parameters of the initial GWP
in Eq. (33). The multiplicity of the states with even or odd z
parity resulting from the same principle quantum number 7 is
determined by the number of positive and negative eigenval-
ues (=1)"*" of the z-parity operator acting on the spherical
harmonics Y,,,(0, ¢) with [<n.

The values of the parameters a=0.5 and 8=0.2 used for
this computation still present a mainly harmonic system with
a perturbation for low energies. As mentioned above the dy-
namics of wave packets is exact to all orders in the field
strengths within the allowed set of trial wave functions, i.e.,
the variational approximation only concerns the restriction of
the Hilbert space. Therefore, the method is not restricted to
the perturbative regime but even allows for the computation
of eigenvalues in the strong anharmonic regime. Figure 5
presents results at the field-free ionization energy E=a=0

PHYSICAL REVIEW A 79, 043417 (2009)

plyl* 1=0.8

10 10
0 ‘8 100,70 ‘8 100,

FIG. 2. (Color online) Fictitious-time evolution of the state [Eq.
(33)] with py=6.0,7p=0 and a nonzero initial mean momentum.
The wave function is plotted for different values of the dimension-
less fictitious time 7. The initial wave packet gradually becomes
delocalized. Lengths are given in scaled atomic units n.ga with ag
the Bohr radius [see Eq. (2)].

and B=0.5 for (a) even parity and (b) odd parity. A number
of N=90 basis states was used in the computation.

In the presence of the magnetic field these states at the
field-free ionization energy E=0 are still bound. The agree-
ment between the eigenvalues computed variationally (red
lines) and the numerically exact results (blue lines) is very
good. The related field strengths are easily obtained from Eq.
(4) by B=pB/n%;. The underlying initial wave packet [Eq.
(33)] is initially centered at py=4.39,zp=1 and has zero
mean momentum. As mentioned above the position, momen-
tum, and width of the initial GWP determine the spectral
region for n.; where strong peaks are expected. However,
within that region some eigenstates |n. ) can be near or-
thogonal to the initial GWP and thus have nearly zero am-
plitude. Indeed, some lines are lacking in the variational
computation. The missing states can be revealed by choosing
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FIG. 3. (Color online) Real part of the autocorrelation function
C(1)=(¢y (0)| ¢y (7)) for the GWP [Eq. (33)] with the center p
=6.0,z0=0. Signal of the projected state with (a) even parity and (b)
odd parity. The fictitious time 7 and the signal C(7) are in dimen-
sionless units.

several initial GWPs, which have larger overlap with those
states. An example of the influence of the chosen initial
GWP on the peak amplitudes will be given in Sec. IV B for
the hydrogen atom in crossed electric and magnetic fields.

B. Hydrogen atom in crossed fields

For the hydrogen atom in crossed electric and magnetic
fields the propagation of 3D GWPs is computed starting
from the time-dependent Schrodinger Eq. (2) with param-
eters =0.5, £=0.05, and {=0.01 in Eq. (4). The choice of

0.3

g

0.2 r
0.1 r

'L [l

0.3

l<wgInest >|

¥
LI

G

0.2 r
0.1 r

: N A
12 14

Neff

[<Wolnes >|

FIG. 4. (Color online) Spectra with (a) even and (b) odd z pari-
ties extracted from the autocorrelation function C :(’T)=<lﬂ0i (7
=0)| wg(r» computed from the evolution of the wave function [Eq.
(33)] plotted in Fig. 2. The amplitudes (red lines in the upper pan-
els) are given by the magnitude of overlap between the initial wave
function and the respective eigenstates. For comparison the posi-
tions of the numerically exact eigenvalues obtained from a diago-
nalization are plotted with blue lines in the lower panels of the
figures. The related eigenenergies and the magnetic field strength
follow simply from Eq. (4). The effective quantum number n. and
the overlap matrix elements are in dimensionless units.
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FIG. 5. (Color online) Effective quantum numbers n at the
field-free ionization threshold E=a=0 for states of (a) even and (b)
odd parities. The propagation involves N=90 basis states. The
variational results (red lines in the upper panels) are in excellent
agreement with the exact time-independent results (blue lines in the
lower panels). The effective quantum number n.g and the overlap
matrix elements are in dimensionless units.

an appropriate initial state /(0) is very important for the
successful application of the TDVP. We achieved optimal
results by first choosing one 3D Gaussian wave packet in
physical Cartesian coordinates with the center x, and width
o in position space and center p, in momentum space,

- Xo)2

(x) = 2ma?) 4eXp{— ()(7 +ipg- (x— Xo)},

(34)

which is then expanded in a set of N restricted GWPs. The
external fields lead to couplings between the basis states, and
the time-dependence of the variational parameters must be
determined by the numerical integration of Eq. (26). For bet-
ter numerical performance we resort to the TDVP with con-
straints [40] mentioned in Sec. IIT C 2. As for the diamag-
netic hydrogen atom constraints of the form Im ¥ =1y, =
—4.0, k=1,...,N are imposed on the imaginary parts of the
phase parameters 7*. Once a time-dependent wave packet
[Eq. (6)] is determined the eigenvalues n.g of the stationary
Schrédinger equation [Eq. (2)] are obtained by the frequency
analysis of the time signal [Eq. (11)] with the amplitudes c;
depending on the choice of the initial wave packet. In per-
pendicular crossed fields the z parity is conserved. Spectra
with even and odd z parities obtained from the Fourier trans-
forms of the autocorrelation  functions C¥(7)
=(4r"(0)| " (7)) of the parity projected wave packets are
shown in Fig. 6. In Figs. 6(a) and 6(b) the eigenvalues with
even parity and odd parity, respectively, are plotted. The
green and red lines result from the propagation of two dif-
ferent 3D GWPs with 0=3.5, €=0.15, and the same initial
position x,=(6,0,0) but different initial mean momenta py
=(0, +1/y2,1/42), respectively. A number of N=41 and
N=31 basis states were coupled in the calculations. The line
widths, i.e., the resolution of the spectra, is determined by
the length of the time signal 7,,,,. The eigenvalues obtained
by numerically exact diagonalizations of the stationary
Hamiltonian [Eq. (2)] are shown by the blue lines. The line-
by-line comparison shows good agreement between the exact
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FIG. 6. (Color online) Spectra with (a) even and (b) odd z pari-
ties of Hamiltonian (2) with @=0.5, 8=0.05, and {=0.01 obtained
from the propagation of two different 3D GWPs. Green and red
lines (upper panels in the figures): x¢=(6,0,0), po
=(0, = 1/y2,1/42), respectively. The eigenvalues are extracted
from the autocorrelation function by the Fourier transformation.
The peak positions agree very well with the numerically exact ei-
genvalues of the effective quantum number marked by blue lines in
the lower panels of the figures. The related eigenenergies and the
field strengths follow from Eq. (4). The effective quantum number
negr and amplitudes are in dimensionless units.

spectrum and the results obtained by the wave-packet propa-
gation. The amplitudes of levels indicate the excitation
strengths of states with higher or lower angular momentum /,
by the two initial wave packets rotating clockwise or anti-
clockwise around the z axis.

V. CONCLUSION

The Gaussian wave-packet method is known to be well
suited for systems with nonsingular smooth potentials but
not so for systems with singular potentials such as the Cou-
lomb potential. Therefore so far it failed when applied to
atomic systems. Using the Kustaanheimo-Stiefel regulariza-
tion of the Coulomb potential and introducing a fictitious-
time variable, we have now made it applicable to atomic
systems by using restricted GWPS and the time-dependent
variational principle. The special appeal of the GWP method
lies in the fact that relatively low numbers of time-dependent
basis states are sufficient to derive the spectrum as compared
to time-independent matrix diagonalizations. The advantage
of using the fictitious time is that the computations are exact
and analytical for the field-free hydrogen atom, which means
that for perturbed atomic systems only the deviation of the
potential from the Coulomb part must be taken into account
in the variational approximation. We have shown that the
method can be especially adapted for systems with, e.g., cy-
lindrical or spherical symmetries.

Quantum spectra of the hydrogen atom in static external
fields can nowadays be computed quite efficiently by matrix
diagonalization of the Hamiltonian in a sufficiently large ba-
sis set, and thus the method proposed in this paper might
appear to be rather specific as an alternative tool for studying
this system with complex dynamics. However, quantum
computations for many-body Coulomb systems are certainly
a nontrivial task. The topic of wave-packet dynamics in sys-

PHYSICAL REVIEW A 79, 043417 (2009)

tems with Coulomb interactions covers a large body of prob-
lems ranging from atomic physics to physics of solid state,
where Coulomb interaction plays an important, often crucial,
role. In many-body physics, in particular, in the physics of
solid state, theoretical methods well suited for studying the
effects stemming from Coulomb interactions are still lacking.
The majority of the available methods, e.g., the method of
pseudopotentials in atomic physics and the Fermi- and the
Luttinger-liquid theories for solid conductors, are basically
indirect and substantiated neither from the theoretical nor
from the experimental side. For this reason they still remain,
to a certain extent, disputable. In the present paper we have
successfully applied the Gaussian wave-packet method to
Coulomb systems with two and three nonseparable degrees
of freedom. If the method can be further extended to larger
systems with more degrees of freedom it will allow for a
wide range of future applications in different branches of
physics.

APPENDIX A: INTEGRALS FOR THE DIAMAGNETIC
HYDROGEN ATOM

With the basis functions g,, defined in Eq. (18) and using
the notation aMEa’;—(aiL)*, a,=d'—(d)*, y=y~(»)*, and
m=0, the absolute value of the magnetic quantum number
the integrals in Eq. (21) take the form

(&l f (. v) gy
_ 4ﬂ2f dMJ dv(pv 2m+lf(M2’ V2)ei(awu2+a,,v2+y)’
0 0

(A1)

where f(u?,7?) is a polynomial in u? and v*. The integrals
can be factorized, and with x=pu? or x=1? the products ba-
sically take the elementary form [jx"e “dx= ',’,l] for integers

n=0 and Re a>0. The integrals on the left-hand side of Eq.
(21) read

2(m)?>
| k : —
<gm|gm>=—(_a P m+1e17:C,
uv
C
(ghlulgh) =——(m+1),
—laM

C
(g [Plgky =——(m+1),
-ia,

C
(ghnlnlgn) = ~Atm+m+2),
M

c

(gl Vghy = (m+1)?,

v

(gh]185) = =5 (m+ 1)(m +2). (A2)
—da

14

With the potential V(u, v) given in Eq. (10) the integrals on
the right-hand side of Eq. (21) are obtained as
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(gh|V(wv)|gt) = ;7’22(%”»(1 +m)[(2 + 3m + m?) B
fTned %

+8a,a,a],

c

(gl Vipv)lg,) = s (m + D{(1 +m)(2 +m)

aa,
X[a,(2+m)+a,(3+ m)]| B + 8a,a,

Xla,+2a,+(a,+a,)m]at,

(&L [PV V)¢ = #m + D{(1+m)(2 +m)
a,a,

X[a,(3+m)+a,2+m)]B*+8a,a,

X[2a,+a,+(a,+a,)m]a}. (A3)

APPENDIX B: INTEGRALS FOR THE HYDROGEN ATOM
IN CROSSED FIELDS

The integrals in the linear set of Eq. (28) take the form
<g1|f(ll,Vu)|gk> — f d4ue—i[u(Al)*u+(,/)*]f(u’Vu)ei[uAkuﬂ/‘].

(B1)
With the notation A=A*—(A")*, y=9 =(9)* the integrals on
the left-hand side of Eq. (28) simplify to

I =gfiflg") = f d'uf e, (B2)

with f,=1, fzzu%+u§, f3=u§+ui, fa=ujus—usuy, and f;
=u,u,+u,us. The integrals have the properties II.’f=(IZI)* and
I=I’;. Using c=m¢' and h=1/\-det A=1/(a;+d;~a,a,
we obtain

Il]k1 = hc, Illk2 =—iah’c, Illk3 =- ia#hzc,

Illlil =2ia,h’c, Illk5 = Ziayh2c, Il2k2 =- 2a,2,h3c,
I =— (a,a,+ a’+ ai)h3c, 1%, =4a,a.h’c,
112"5 = 4a,,ayh3c, 113]‘3 =- 2aih3c, 113"4 = 4auaxh3c,
I5= 4“#“}'}136’ Iy = 2(“3 -3a; - aMaV)h%,

I =— 8a,ah’c, 1% =2(a’ - 3a§ —a,a,)h’c. (B3)

The integrals on the right-hand side of Eq. (28) are defined
as

= (g'lf;VIgh). (B4)

The potential V defined via Eq. (2) can be split into its har-
monic and diamagnetic parts,

1
V,=aou’+ g,Bz(u% +u3) (U + uu’, (B5)

and the terms of the paramagnetic and electric field contri-
butions,

PHYSICAL REVIEW A 79, 043417 (2009)

1
Vi = S Bl = 1) 0+ 1)+ (3ps = ) + )]

+ {(ugus — upug)u’. (B6)

Note that the paramagnetic term in Eq. (B6) contains deriva-
tives with respect to the KS coordinates and thus the inte-
grals must be solved by application of Eq. (B1). We obtain

Iékla =i(a,+a,){[a,a,+ 2(a)2C + ai)]62h2/4 + afh’c,

If)kza = {2aia?} + (a)zc + ai)[9a12, + 2(a)2€ + a)z,)] + auav[3a3 + 8(a)2€

+ ai)]}BZhSCM +[a,(a,+2a,)+ a’+ ai]ahSC,

Ilk

v3a = {3aia,, + SaMa,,(af + ai) +2(a’ + ai)2 + ai[Za,z, +9(a’

+ ai)]}ﬁzhsc/4 +[a,(2a,+a,)+ al+ ai]ah%,
o =- (a,+a,)al3(a,a,+ a+ ai)ﬁzh2 +4alh’c,
If,kSG =—(a,+a,)a[3(a,a,+ ai + ai),Bzh2 +4a]k’c,

(B7)

and

Ik k k ;
Ivlb = 2(‘1/.1, + av)(ayaxﬁ - axayﬁ + axg)h%C,
Ik . 2. 2 gk k
Ly, ==2i(2a,a, +3a,+a; + a;)(a;a,f - a,a,B+ a)hc,
Ik a2 2 2k k 4
I3, ==2i(3a, +2a,a,+a; + ay)(ayax,B —-da,B+al)hc,

Ik . k k 2 2
Ly, =2i(a, +a,)[- 6dia.a,B+ ay(a,ua,, +5a; - ay),B

+(a,a,+ Sai - ai){]h“c,

If)ka =-2i(a,+ a,,)[al;(aﬂa,, - ai + Saf,),B

- 6a,a,(d;B+ ))]h'c, (B8)
where a* and a’y‘ are elements of the width matrix A¥. The
right-hand side vector in Eq. (28) is the sum of two corre-
s.polndingsterms in Egs. (B7) and (B8), i.e., Ifj’}:lf)’}a+lg}h for
j=1,....,5.

APPENDIX C: STRUCTURE OF MATRICES B AND C

A structure of the matrices B* and C* is searched which is
preserved in the matrix product VAC* in Eq. (30), where VA
has the same structure as A in Eq. (7). This is provided by the
form

b32 _b31 _b34 b33
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C= , (C1n

as can easily be shown by explicit multiplication. The super-
script k running over all GWPs has been omitted here. Com-
pared to Eq. (7) the number of independent parameters per
matrix increases from 4 to 8, however, this is still less than
16 parameters for a general 4 X 4 matrix without any special
structure.

Matrix A:%BC‘l can be calculated analytically. To this
end we introduce the auxiliary matrix

€33 —C3 —Ci3 —Ciu
C3q4 €33 —Ci4 (13
D= . (C2)
—C31 —C3xn €1 —Cp2
—C3 (3 C12 1

The product C;=CD yields

PHYSICAL REVIEW A 79, 043417 (2009)

h kK 0 O
-k h 0 O
C, = ,
0 0 h -k
0 0 k h
. h=—c3¢31 = C14C3 + €11C33 + C12C34,
with

= C14C31 — C13C32 + C1pC33 = €11C34.
(C3)

The matrix C; can be easily inverted and thus allows for the
calculation of A=3BC~'=3BDC;". With k' =h/[2(h*+k?)],
k" =k/[2(h*+k?)] the four independent parameters in Eq. (7)
read

— i
a, = (by1c33 = b14c3n + b1yc3s = bizcs)h

I
+ (byyc3) + b1ocaz — byjcag — bisep)k’

— !
a, = (by3cyy + b3ycip = b3ic13 = b3pcia)h
!
+ (ba3cip — baycyy — b3pcy3 + byjep)k’,
!
ax=(b13C11 +b14C12—b11C13—b12C14)h
!
+(by3¢1p = bygcyy = byociz + byjcipk’,

ay=(byycr1 = biscip + bioci3 = byjcig)h’
+(by3c11 + biycin— bz = biacia)k’ (C4)
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