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Nondispersive wave packets in a fictitious time variable are calculated analytically for the field-free hydro-
gen atom. As is well known by means of the Kustaanheimo-Stiefel transformation the Coulomb problem can
be converted into that of a four-dimensional harmonic oscillator, subject to a constraint. This regularization
makes use of a fictitious time variable, but arbitrary Gaussian wave packets in that time variable in general
violate that constraint. The set of “restricted Gaussian wave packets” consistent with the constraint is con-
structed and shown to provide a complete basis for the expansion of states in the original three-dimensional
coordinate space. Using that expansion arbitrary localized Gaussian wave packets of the hydrogen atom can be
propagated analytically and exhibit a nondispersive periodic behavior as functions of the fictitious time.
Restricted wave packets with and without well-defined angular momentum quantum numbers are constructed.
They will be used as trial functions in time-dependent variational computations for the hydrogen atom in static
external fields in the subsequent paper �T. Fabčič, J. Main, and G. Wunner, Phys. Rev. A 79, 043417 �2009��.
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I. INTRODUCTION

Wave packets play an important role in the description of
atoms, e.g., for the understanding of ionization processes in
microwave experiments �1,2� or in experiments with short
laser pulses �3,4�. Theoretically, the wave-packet propaga-
tion can be calculated by exact quantum computations �5� or
approximately with, e.g., semiclassical �6� or variational �7�
techniques. Contrary to the harmonic oscillator, where
Gaussian wave packets �GWPs� and coherent states �8� can
easily be described analytically, the evolution of arbitrary
Rydberg wave packets is nontrivial already in the pure Cou-
lomb problem where spreading and revival phenomena are
observed in the long-time computer simulation of a quantum
wave packet �9�. Coherent states for the hydrogen atom have
been constructed by Klauder �10� and by Majumdar and
Sharatchandra �11�, however, Bellomo and Stroud �12,13�
showed that these states do not move quasiclassically but
spread rapidly over the Keplerian orbit. Dispersion is a gen-
eral property of Rydberg wave packets with the exception of
nondispersive electronic wave packets existing in periodi-
cally driven atoms such as the hydrogen atom in microwave
fields �14,15�.

The success of applying variational methods to wave-
packet propagation crucially depends on the choice of the
trial function. GWPs are certainly well suited for smooth and
nearly harmonic potentials �16,17�. The Coulomb potential is
not a promising candidate for successfully propagating
GWPs directly. Nevertheless, the GWP method based on the
local harmonic approximation has been applied in one
dimension to the singular Coulomb potential �18–20�.
In the three-dimensional �3D� space a regularization in
Kustaanheimo-Stiefel �KS� coordinates �21,22� originally in-
troduced for the Kepler problem in classical celestial me-
chanics, but also adapted to the hydrogen atom �23�, trans-
forms the Coulomb potential to a harmonic potential with a
constraint. In the regularized hydrogen atom the application
of the GWP method should therefore be capable of yielding

exact results when the constraint can be handled. The regu-
larization implies a fictitious time variable which has been
shown to be the eccentric anomaly of the corresponding clas-
sical orbit �24�. Various approaches have been made to con-
struct coherent states for the hydrogen atom in the fictitious
time �25–31� in analogy with the coherent states of the har-
monic oscillator. These approaches construct the coherent
states as the eigenstates of the lowering operators associated
with the harmonic potential.

In this paper we consider the field-free hydrogen atom
and show that contrary to the dynamics in the real physical
time the exact propagation of arbitrary initial Gaussian wave
packets in the fictitious time can be described analytically
and exhibit a nondispersive periodic time dependence. In
Sec. II the Coulomb problem is transformed to the problem
of the four-dimensional �4D� harmonic oscillator in
Kustaanheimo-Stiefel coordinates subject to a constraint.
The consequences of the constraint for Gaussian wave pack-
ets are discussed in Sec. III and the physically allowed set of
“restricted Gaussian wave packets” is constructed. In Sec. IV
the analytical time evolution is derived for initially 3D
Gaussian wave packets in the physical space and also for
two-dimensional �2D� and one-dimensional �1D� wave pack-
ets with cylindrical and spherical symmetries, respectively.

In the subsequent paper �32� the investigations are ex-
tended from the pure Coulomb problem to the hydrogen
atom in static external electric and magnetic fields. Wave
packets are propagated by application of the time-dependent
variational principle in such a way that the dynamics is exact
for the Coulomb problem and approximations in the varia-
tional approach are only induced by the external fields.
Quantum spectra of the nonintegrable systems are then ob-
tained by the frequency analysis of the time autocorrelation
function of the propagated wave function.

II. REGULARIZATION OF THE HYDROGEN ATOM

To make our presentation self-contained we briefly review
the Kustaanheimo-Stiefel transformation for the Coulomb
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problem. The time-independent Schrödinger equation for the
hydrogen atom reads

H3� = �−
1

2
�3 −

1

r
�� = E� , �1�

with �3 as the Cartesian form of the Laplacian. A regulariza-
tion of the singular Coulomb potential is obtained by using
KS coordinates u= �u1 ,u2 ,u3 ,u4� �21,22� which are intro-
duced here, according to Ref. �25�, differing by a factor of 2
from the original definition,

x = u1u3 − u2u4,

y = u1u4 + u2u3,

z = 1
2 �u1

2 + u2
2 − u3

2 − u4
2� . �2�

By adding a fourth component with the constant value zero
to the physical position vector, i.e., x= �x ,y ,z ,0�, the trans-
formation can be written in matrix notation,

x = L�u�u , �3�

with

L�u� =
1

2�
u3 − u4 u1 − u2

u4 u3 u2 u1

u1 u2 − u3 − u4

u2 − u1 − u4 u3

� . �4�

The introduction of the auxiliary degree of freedom, which
renders the originally three-dimensional problem four-
dimensional, entails a constraint on physically allowed wave
functions �, i.e.,

X� 	 �u2
�

�u1
− u1

�

�u2
− u4

�

�u3
+ u3

�

�u4
�� = 0. �5�

With r= �x2+y2+z2�1/2=u2 /2 the Schrödinger equation �Eq.
�1�� in Kustaanheimo-Stiefel coordinates reads

�−
1

2u2�4 −
2

u2�� = E� , �6�

where �4 denotes the 4D Cartesian form of the Laplacian.
Multiplication with u2 and reordering of the terms yield

H� = �− 1
2�4 − Eu2�� = 2� . �7�

Equation �7� is not a standard linear eigenvalue problem.
Scaling the coordinates

u → 
nu, H → nH �8�

and setting

E = −
1

2n2 �9�

lead to the time-independent Schrödinger equation,

H� = �− 1
2�4 + 1

2u2�� = 2n� , �10�

which represents the Schrödinger equation of the 4D har-
monic oscillator subject to constraint �5�. The scaling param-

eter, which takes only integer values n=1,2 ,3 , . . ., turns out
to be the principal quantum number of the hydrogen atom.
The 4D isotropic harmonic oscillator is invariant under the
unitary group U�4� and thus the eigenstates of Eq. �10� are
not unique. The simple product of four eigenstates of the 1D
harmonic oscillators, i.e., the separation of Eq. �10� in the
Cartesian coordinates �u1 ,u2 ,u3 ,u4�, in general violates con-
straint �5� and therefore represents unphysical solutions.
Constraint �5� rather suggests the introduction of two sets of
polar coordinates, viz., the semiparabolic coordinates

u1 = � cos ��, u2 = � sin ��,

u3 = � cos ��, u4 = � sin ��, �11�

with the associated angular momenta �pj =
1
i

�
�uj

�,

L� = u1p2 − u2p1 =
1

i

�

���

,

L� = u3p4 − u4p3 =
1

i

�

���

. �12�

Equation �12� yields constraint �5� in the form

L� = L� 	 Lz. �13�

The relation between the physical Cartesian coordinates and
the semiparabolic coordinates is obtained using definitions
�2� and �11�,

x = ���cos �� cos �� − sin �� sin ���

= �� cos��� + ��� = �� cos � ,

y = ���cos �� sin �� + sin �� cos ���

= �� sin��� + ��� = �� sin � ,

z = 1
2 ��2 − �2� , �14�

with the physical azimuthal angle �=��+��. In the semipa-
rabolic coordinates the Schrödinger equation reads

�− 1
2�� − 1

2�� + 1
2 ��2 + �2��� = 2n� , �15�

with

�� =
1

�

�

��
�

�

��
+

1

�2

�2

��2 , � = �,� . �16�

Equation �15� is separated in two uncoupled 2D harmonic
oscillators in the coordinates � ,�� and � ,��. The solution
can be taken in the product form

���,�,�� = �N�m����N�m���eim�, �17�

where

�−
1

2�

�

��
�

�

��
+

m2

2�2 +
1

2
�2��N�m���

= �2N� + m + 1��N�m��� , �18�

with �=� ,� and N�=0,1 ,2 , . . .. The coordinate representa-
tion of the eigenstates is
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�N�m��� =
 N!

	�N� + m�
�mLN�

m��2�e−�1/2��2
, �19�

with the associated Laguerre polynomials LN�

m. For the prin-
cipal quantum number n introduced above we obtain the re-
lation

n = N� + N� + m + 1 = 1,2,3, . . . �20�

and therefore via Eq. �9� the correct Rydberg spectrum.
To perform time-dependent computations it is necessary

to formulate the time-dependent version of the Schrödinger
equation �Eq. �10��. By analogy with the usual identification
E→ i �

�t , where t is the physical time, the “fictitious time”
variable 
 is introduced �see, e.g., Refs. �25,27�� as the con-
jugate variable to the principal quantum number n,

2n → i
�

�

. �21�

The regularized Schrödinger equation for the hydrogen atom
in the fictitious time then reads

i
�

�

� = H� = �−

1

2
�4 +

1

2
u2�� . �22�

In the following the fictitious time 
 will simply be denoted
as “time” for brevity, whereas t will be named “physical
time.”

The form of Eq. �22� suggests that it can simply be solved
by Gaussian wave packets in Kustaanheimo-Stiefel coordi-
nates u, i.e.,

g�y,u� = ei��u−q�A�u−q�+�·�u−q�+��, �23�

where A is a complex symmetric 4�4 matrix with positive
definite imaginary part and the momentum � and the center
q are real, 4D vectors in the Kustaanheimo-Stiefel coordi-
nates. Those vectors represent the expectation values of the
position and the momentum operator, respectively, i.e., q
= �gug� / �g g� and �= �g 1

i �4g� / �g g�. The phase and nor-
malization are given by the complex scalar �. Collectively
the parameters are denoted by y= �A ,� ,q ,��, which is a set
of 4� �4+1� /2+4+1=15 complex parameters when the two
real vectors q and � are counted as a single complex vector.
Inserting Eq. �23� into the Schrödinger equation �Eq. �22��
yields a set of ordinary differential equations for the param-
eters y, which can be solved analytically for any given initial
GWP. As the potential is harmonic the time-dependent
GWPs are exact solutions of Eq. �22�.

The problem, however, is that in Kustaanheimo-Stiefel
coordinates constraint �5� on physically allowed wave func-
tions must be taken into account. The GWPs �Eq. �23�� in
general violate that constraint. The question is whether the
constraint can be fulfilled exactly by a Gaussian at all, and, if
so, whether GWPs fulfilling the constraint are reasonable
trial functions in the sense that they still present a complete
basis set.

The advantage of the formulation of the Hamiltonian in
semiparabolic coordinates �Eq. �15�� is that constraint �5� is
already incorporated. However, in semiparabolic coordinates
it is nontrivial to find Gaussian type trial functions for the

exact solution of the time-dependent Schrödinger equation
because the Laplacian is not of Cartesian form �see Eq. �16��
and includes centrifugal barriers. In the following we will
therefore use the Cartesian type KS coordinates rather than
semiparabolic coordinates to investigate the impact of con-
straint �5� on a Gaussian trial function and to discuss the
properties of the resulting restricted Gaussian wave packets.

III. RESTRICTED GAUSSIAN WAVE PACKETS

The regularization of the hydrogen atom in Sec. II has
transformed the Coulomb potential to a harmonic potential in
the Schrödinger equation �Eq. �10��. The goal now is to per-
form exact wave-packet propagation in the fictitious time 

for the hydrogen atom. The constraint can be fulfilled by a
4D GWP if the space of admissible configurations of the
parameters y is restricted. The structure matrix,

J =�
0 1 0 0

− 1 0 0 0

0 0 0 − 1

0 0 1 0
� , �24�

allows for the compact notation of constraint �5�,

X� = uJT�4� = 0. �25�

Letting the constraint operator X act on trial function �23�
yields

Xg�y,u� = uJT�2A�u − q� + ��g�y,u�=! 0. �26�

Thus the result is a quadratic polynomial in the coordinates
u, multiplied by the GWP itself. Constraint �26� has to be
satisfied pointwise for all u�R4. For nontrivial wave pack-
ets the polynomial in Eq. �26� must vanish, and an algebraic
equation remains,

2uJTAu + uJT�� − 2Aq�=! 0, �27�

which is only possible if all coefficients of the second order
polynomial in Eq. �27� are zero. Let us first investigate the
term linear in u whose coefficients must vanish, i.e., �
=2Aq. Inserting this condition into wave function �23� yields
g�y ,u�=exp�i��u−q�A�u+q�+���=exp�i�uAu+���� with
��=�−qAq, which means that without loss of the variational
freedom we can set

q = 0, � = 0 �28�
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because any nonzero q and � vectors only change the scalar
�. The bilinear form in Eq. �27� must also be zero, i.e.,
2uJTAu=0. This requires the matrix of the bilinear form

JTA =�
− a12 − a22 − a23 − a24

a11 a12 a13 a14

a14 a24 a34 a44

− a13 − a23 − a33 − a34

�
to be skew symmetric, i.e., the diagonal elements of JTA
must vanish, a12=a34=0, and from the off diagonal elements
we obtain a11=a22, a33=a44, a24=−a13, and a23=a14. With
the definitions a11=a�, a33=a�, a13=ax, and a14=ay, the ma-
trix A must be of the form

A =�
a� 0 ax ay

0 a� ay − ax

ax ay a� 0

ay − ax 0 a�

� . �29�

Equations �28� and �29� imply that the set of 15 complex
parameters y of general GWP �23� is reduced to only five
parameters y= �a� ,a� ,ax ,ay ,�� for a restricted GWP satisfy-
ing constraint �5�.

The question arises whether the restricted GWPs form a
complete basis set, such that any physically allowed state can
be expanded in this basis. It is not evident that a superposi-
tion of restricted GWPs whose centers are all located at the
origin and which only differ by their complex widths is flex-
ible enough to represent arbitrary quantum states. The usual
form of the resolution of the identity �33� for a continuous
basis set of normalized unrestricted GWPs of form �23� is

1

�2	�4� d	4dq4g�y���g�y� = 1 , �30�

where the width of each GWP basis state is kept fixed. Ob-
viously, Eq. �30� cannot be applied to the restricted GWPs
since both parameters � and q are set to zero �see Eq. �28��.
However, it is sufficient to require the restricted GWPs to be
complete in the 3D physical space only. To verify the com-
pleteness in the 3D space we transform the restricted GWP in
KS coordinates back into the original 3D Cartesian coordi-
nates,

g�y,x� = ei�uAu+�� �31a�

=ei�a��u1
2+u2

2�+a��u3
2+u4

2�+2ax�u1u3−u2u4�+2ay�u1u4+u2u3�+��

�31b�

=ei�a��2+a��2+2axx+2ayy+�� �31c�

=ei��a�+a��r+�a�−a��z+2axx+2ayy+�� �31d�

=ei�prr+p·x+��, �31e�

where we have exploited that in semiparabolic coordinates
�2=r+z, �2=r−z. In Eq. �31e� the set of parameters
�a� ,a� ,ax ,ay� has been replaced by an equivalent set of
complex parameters, defined by

pr = a� + a�, p = �px,py,pz� = �2ax,2ay,a� − a�� . �32�

For pr=0 and real-valued parameters px , py , pz the restricted
GWP in Cartesian coordinates �Eq. �31e�� reduces to a plane
wave eip·x. �Note that in that case the imaginary part of the
matrix A is not positive definite and the wave function can-
not be normalized.� Since plane waves are known to form a
complete basis it is proved that the restricted GWPs, forming
a superset of plane waves, are also complete or even over-
complete. However, they do not form a complete basis set of
the 4D harmonic oscillator �10�.

The GWPs �Eq. �31�� satisfy constraint �5�, but “for the
price” of condition �28�, i.e., they are localized around the
origin with zero mean velocity. It seems impossible that the
time propagation of a single restricted GWP exhibits any
meaningful dynamics with, in particular, a classical limit in
the sense of the correspondence principle. However, a wave
packet localized in the physical coordinate and momentum
space of the hydrogen atom can be constructed as a superpo-
sition of the restricted GWPs. The expansion and exact time
evolution of wave functions in basis �31�, and in addition, in
modified bases sets for certain symmetry subspaces of the
hydrogen atom are the subjects of Sec. IV.

IV. ANALYTICAL WAVE PACKET DYNAMICS
IN THE HYDROGEN ATOM

An arbitrary wave packet of the hydrogen atom can be
propagated analytically in the fictitious time. This is
achieved by expanding the initial wave packet in terms of the
restricted GWPs, whose time dependence is derived and
shown to be given by simple analytical formulas. We con-
sider three different cases. In Sec. IV A the time propagation
of Gaussian wave packets in the 3D physical space is dis-
cussed. These wave packets are not eigenstates of the angular
momentum operator. We then introduce the time propagation
of wave packets with symmetries, viz., in Sec. IV B cylin-
drically symmetric 2D wave packets with well-defined mag-
netic quantum number m and in Sec. IV C spherically sym-
metric 1D wave packets with well-defined angular
momentum quantum numbers l and m.

A. Propagation of 3D Gaussian wave packets

The aim is an exact time propagation of arbitrary wave
functions in the hydrogen atom. The initial wave function
��0� is taken as a superposition of the restricted GWPs �Eq.
�31��. These basis states are then propagated analytically in
time. We start with the derivation of the time evolution of the
basis states. Inserting ansatz �31a� in the time-dependent
Schrödinger equation Eq. �22� yields

�i
�

�

− H�g�y,x� = �− �̇ + i tr A − u�Ȧ + 2A2�u −

1

2
u2�

�g�y,x� = 0. �33�

The equations of motion for the 4�4 width matrix A given
in Eq. �29� and the complex phase factor � are now directly
obtained from Eq. �33� as
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Ȧ = − 2A2 − 1
21 , �34a�

�̇ = i tr A . �34b�

It is important to note that although the parameter set of
GWP �31� is restricted to only five complex parameters �as
compared to 15 parameters in Eq. �23�� the differential equa-
tions �Eq. �34�� still describe the exact dynamics of the wave
packet without any approximation, i.e., with initial condition
�28� the wave packet stays centered around the origin for all
times, and the width matrix A keeps the form of Eq. �29�
because the matrix Ȧ in Eq. �34a� has the same structure �29�
as A itself.

Both Eqs. �34a� and �34b� can be solved analytically.
Equation �34a� is solved most easily when two auxiliary
complex matrices B and C are introduced with A= 1

2BC−1,
and the initial conditions B�0�=2A�0� and C�0�=1 �34�.
Then Eq. �34a� is replaced with the two equations Ċ=B and

Ḃ=−C or equivalently B̈=−B. The matrices B and C have the
same structure as the width matrix A �29�, with the solution
for the matrix B,

b��
� = 2a�
0 cos 
 − sin 
 ,

b��
� = 2a�
0 cos 
 − sin 
 ,

bx�
� = 2ax
0 cos 
 ,

by�
� = 2ay
0 cos 
 , �35�

and for the matrix C,

c��
� = cos 
 + 2a�
0 sin 
 ,

c��
� = cos 
 + 2a�
0 sin 
 ,

cx�
� = 2ax
0 sin 
 ,

cy�
� = 2ax
0 sin 
 . �36�

Here and in the following the superscript 0 indicates param-
eters of the initial state at time 
=0. The matrix A is obtained
from the above definition A= 1

2BC−1 and the four elements in
the form of Eq. �32� read

pr�
� =
1

Z�
��pr
0 cos 2
 +

1

2
��pr

0�2 − �p0�2 − 1�sin 2
� ,

px�
� =
px

0

Z�
�
, py�
� =

py
0

Z�
�
, pz�
� =

pz
0

Z�
�
, �37�

where Z�
� abbreviates the expression

Z�
� = cos2 
 + ��pr
0�2 − �p0�2�sin2 
 + pr

0 sin 2
 . �38�

With the matrix A at hand it is possible to integrate Eq. �34b�
to obtain �. The quantity e−i�, i.e., the phase and normaliza-
tion of the wave function, then reads, with the initial value
��0�=0,

N�
� 	 e−i��
� = 1 + ��pr
0�2 − �p0�2��1 − cos 2
�

+ pr
0 sin 2
 . �39�

The analytical time evolution of the wave function is ob-
tained by inserting the time-dependent parameters in wave
function �31� which finally yields

g�
,y0,x� =
1

N�
�
exp�i

2�p0 · x + pr
0r cos 2
� + ��pr

0�2 − �p0�2 − 1�r sin 2


2N�
� � . �40�

This is an important intermediate result. The time evolution
of restricted GWP �31e� has been calculated analytically and
takes the compact form �40�. The parameters in Eqs. �37� and
�39� are periodic functions of the time 
 with period 	. This
results in a 	 periodicity of wave function �40�. In the physi-
cal time, wave packets disperse in the hydrogen atom �9,35�.
By contrast, the wave packets in the fictitious time show an
oscillating behavior with no long-time dispersion in 
.

Now that the time evolution of the basis states �Eq. �31e��
is known we can expand an arbitrary initial state in this ba-
sis. The time evolution of that wave function is then analyti-
cally given by the superposition of the time-dependent re-
stricted GWPs �Eq. �40��. In general, the expansion of an
arbitrary state ��x� in an overcomplete set of Gaussian wave
functions g�y ,x� is a nontrivial task. A procedure for finding
the “optimal” expansion for a given number N of basis states
is to minimize the deviation �= ���x�−�k=1

N g�yk ,x��2, e.g.,

by searching for stationary points ��

�yk =0 with respect to the
parameters yk, k=1, . . . ,N �36�. This procedure presents a
highly nonlinear minimization problem. Many stationary
points, i.e., local minima may exist, and the difficulty is to
find the true global minimum.

Here, we concentrate on the propagation of 3D Gaussian
wave packets which are localized around a point x0 with
width  in coordinate space and around p0 in momentum
space and present a direct approach for the expansion of the
3D GWPs given as

��x� = �2	2�−3/4 exp�−
�x − x0�2

42 + ip0 · �x − x0�� �41�

in the restricted GWPs �Eq. �31e��. The Fourier representa-
tion of ��x� reads
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��x� = � 2

2	3�3/4� d3pe−2�p − p0�2+ip·�x−x0�. �42�

Using the approximation r�x ·x0 / x0, which is valid in the
vicinity of x0 where ��x� is localized Eq. �42� can be written
as

��x� � � 2

2	3�3/4� d3pe−2�p − p0�2−ip·x0ei�prr+�p−pr�x0/x0��·x�

= � 2

2	3�3/4� d3pe−2�p − p0�2−ip·x0g�y,x� , �43�

where the g�y ,x� are the restricted GWPs �Eq. �31e�� for the
set of parameters y given by �pr=const, p− prx0 / x0 , �
=0�. As can be easily shown the restricted GWPs �Eq. �31e��
for constant pr and �=0 are a complete continuous basis as
functions of the momentum p, i.e.,

1

�2	�3� d3pg�y���g�y� = 1. �44�

Note that completeness relation �30� is valid for frozen Gaus-
sians with arbitrary localization in coordinate and momen-
tum space while in Eq. �44� the restricted GWPs in KS co-
ordinates are all located around the origin but the width
matrix A is varied. Note also that Eq. �43� is exact for pr
=0, i.e., for the restricted GWPs given as plane waves, and
becomes an approximation for pr�0. This means that pr
should be chosen as zero or close to zero in practical appli-
cations.

In numerical computations it is convenient to approximate
the 3D Gaussian wave packet �41� by a finite number of
restricted GWPs rather than using the integral representation
�43�. This is most efficiently achieved by evaluating the in-
tegral in Eq. �43� with a Monte Carlo method using impor-
tance sampling of the momenta with a normalized Gaussian
weight function,

w�p� = �2

	
�3/2

e−2�p − p0�2
. �45�

The initial wave packet then reads

��x� = �2	2�−3/4 1

N
�
k=1

N

g�yk,x�e−ipk·x0, �46�

with yk= �pr ,pk− prx0 / x0 ,0�, and the pk, k=1, . . . ,N, dis-
tributed randomly according to the normalized Gaussian
weight function �45�. The wave function ��x� in Eq. �46� is
an approximation to the 3D Gaussian wave packet �41�, and
the accuracy depends on how many restricted GWPs are in-
cluded. However, it is important to note that a wave packet
which is strongly localized around x0 in coordinate space and
around p0 in momentum space can be described even with a
rather low number N �of the order of 50–100� restricted
GWPs.

The time propagation of an initial state �46� in the ficti-
tious time 
 is now obtained exactly and fully analytically in
a simple way. In the unperturbed Coulomb problem a super-
position of time-dependent restricted GWPs is uncoupled,

i.e., all basis functions propagate independently. Thus, the
time propagation of the initial state �46� simply reads

��
,x� = �2	2�−3/4 1

N
�
k=1

N

g�
,yk,x�e−ipk·x0, �47�

with the same parameters yk as above and the time propaga-
tion of the restricted GWPs given by Eq. �40�.

Equation �47� is the final result of this section and is il-
lustrated in Fig. 1 for an initially Gaussian wave packet �41�
whose center is moving in the z=0 plane. The wave packet is
expanded and propagated analytically in a basis of N
=10 000 restricted GWPs. This is possible since the analyti-
cal approach allows for a large number of basis states. We
note, however, that results of similar quality can be obtained
using N=50�100 GWPs only. The probability density in the
z=0 plane is plotted at equidistant times with step size �

=	 /5. As mentioned above Eq. �43� is exact for pr=0; how-
ever, in our numerical calculations we choose pr= i� with a
small ��0. The damping enables normalization of the re-
stricted GWPs and improves the convergence of the Monte
Carlo integral. The initial GWP presented in Fig. 1 for 
=0
is centered at x0= �8,0 ,0� with the mean momentum p0
= �1,2 ,0�, and pr is set to pr= i� with �=0.01. Classically the
electron with these initial conditions is running on the Kepler
ellipse plotted by dots on the bottom of each panel in Fig. 1.
For every time step, that part of the ellipse that has been
passed by the electron so far is shown by a black solid line
for time resolved comparison. The position of the maximum
of the probability density agrees well with the classical po-
sition of the electron on the ellipse for all times. The 	
periodicity of the motion is reflected by the coincidence of
the wave packet after one period at 
=	 with the initial
GWP at 
=0.

B. Propagation of 2D cylindrically symmetric wave packets

In this section basis functions based on the restricted
GWP �Eq. �31c�� with a well-defined angular momentum
component lz=m are derived. This case is especially impor-
tant when a cylindrically symmetric external field, e.g., a
magnetic field, is applied to the hydrogen atom, as discussed
in the following paper �32�. First wave packets with definite
lz are constructed and their exact analytical dynamics in the
hydrogen atom is discussed. Then we introduce a procedure
to expand quantum states of defined lz in terms of the basis
states.

A 2D cylindrically symmetric restricted GWP �31� is
obtained by setting ax=ay =0 in Eq. �31c� and introducing
parabolic coordinates �=�2=r+z, �=�2=r−z, i.e.,

g0�y,x� = ei�a��2+a��2+�� = ei�p��+p��+��, �48�

with the parabolic momenta p�=a� and p�=a�. These states
are axisymmetric and have the quantum number m=0 but
can be generalized to arbitrary m by setting

gm�y,x� = ����mei�a��2+a��2+��eim�

= ����m/2ei�p��+p��+��eim�. �49�

The time-dependent parameters are y= �a� ,a� ,�� or equiva-
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lently y= �p� , p� ,��. The quantum number m is constant. As
will be shown, wave packet �49� still presents an exact solu-
tion of the regularized Schrödinger equation. The Laplacian
in semiparabolic coordinates �Eq. �16�� and the time deriva-
tive acting on wave packet �49� yield

�gm�y,x� = �4i�a� + a���1 + m� − 4a�
2 �2 − 4a�

2�2�gm�y,x� ,

i
�

�

gm�y,x� = �− ȧ��2 − ȧ��2 − �̇�gm�y,x� , �50�

and thus the time-dependent Schrödinger equation reads
��ȧ�+2a��2+ 1

2 ��2+ �ȧ�+2a��2+ 1
2 ��2+ �̇−2i�a�+a���1

+ m��gm�y ,x�=0. This equation is solved exactly if the
Gaussian parameters obey the equations of motion,

ȧ� = − 2a�
2 − 1

2 , �51a�

ȧ� = − 2a�
2 − 1

2 , �51b�

�̇ = 2i�a� + a���1 + m� , �51c�

or using matrix notation �29� for A �with ax=ay =0�,

Ȧ = − 2A2 − 1
21 , �52a�

�̇ = i tr A�1 + m� . �52b�

The equations of motion for the two nonzero complex width
parameters a� and a� remain completely unchanged as com-
pared to the restricted GWP in Sec. IV A. The only change is
the additional factor of �1+ m� in Eq. �52b� for the phase
parameter �. The solution of Eq. �52a� is

a��
� =
1

Z�
�
�2�a�

0 − a�
0� + 2�a�

0 + a�
0�

�cos 2
 − �1 − 4a�
0 a�

0�sin 2
� ,

a��
� =
1

Z�
�
�2�a�

0 − a�
0 � + 2�a�

0 + a�
0�

�cos 2
 − �1 − 4a�
0 a�

0�sin 2
� , �53�

with
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FIG. 1. �Color online� Fictitious time propagation of the initially Gaussian wave packet �41� located at x0= �8,0 ,0� with the momentum
p0= �1,2 ,0� plotted in the plane z=0. The classical Kepler ellipse with the same initial conditions is indicated by the dotted curve on the
bottom of each panel. For time resolved comparison, that part of the ellipse that has been traversed by the particle so far in each plot is shown
by a solid black line. Although the Gaussian wave packet does not stay Gaussian during the period it follows in general the classical path and
is recovered after one period 
=	, indicating the periodicity of the wave packet. Lengths are given in scaled atomic unit na0 with a0 the
Bohr radius �see Eq. �10��.
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Z�
� = 2�1 + 4a�
0 a�

0 + �1 − 4a�
0 a�

0�cos 2
 + 2�a�
0 + a�

0�sin 2
� .

�54�

The solution of Eq. �52b� is the solution of Eq. �34b� multi-
plied by the factor �1+ m�, and the phase and normalization
factor of the wave function reads, with ��0�=0,

e−i� = � 1
4Z�
��m+1. �55�

The time evolution of wave packet �49� then is given by

gm�
,y0,�,�� =
1

� 1
4Z�
��m+1 ����mei�a��
��2+a��
��2�eim�.

�56�

The time-dependent basis states �Eq. �56�� are the analog of
the restricted GWPs �Eq. �40�� for the propagation of wave
packets with constant magnetic quantum number m. They
obey constraint �5�, but they are not sufficiently general to
describe the dynamics of 2D wave packets localized around
a given point ��0 ,�0 , p�0

, p�0
� in the parabolic coordinate

phase space. Such localized states can now be constructed in
a similar way as described in Sec. IV A. We use the formal
plane wave expansion of a Gaussian wave packet in para-
bolic coordinates, viz.,

�0��,�� = A exp�−
�� − �0�2

42 −
�� − �0�2

42 + ip�0
�� − �0� + ip�0

�� − �0��
=

A2

	
� dp�� dp�e−2��p� − p�0

�2+�p� − p�0
�2�−i�p��0+p��0�ei�p��+p���

=
A2

	
� dp�� dp�e−2��p� + i� − p�0

�2+�p� + i� − p�0
�2�+���0+�0�−i�p��0+p��0�ei��p�+i���+��p�+i�����

=
A2

	
� dp�� dp�e−2��p� + i� − p�0

�2+�p� + i� − p�0
�2�+���0+�0�−i�p��0+p��0�g0�y,x� , �57�

where A is a normalization factor, � has been introduced �without any approximation� as an additional free parameter, and
g0�y ,x� is the cylindrically symmetric restricted GWP �48� for the set of parameters y= �p�+ i� , p�+ i� ,�=0�. A value of �
�0 guarantees that g0�y ,x� can be normalized. From Eq. �57� an initial state with given magnetic quantum number m is
obtained as

�m�x� = ����m/2�0��,��eim�. �58�

In numerical computations the integrals in Eq. �57� are approximated employing a Monte Carlo technique in the same way as
explained in Sec. IV A. We obtain

�m�x� �
A2

	
����m/2 1

N
�
k=1

N

g0�yk,x�e−i�p�
k�0+p�

k �0�+���0+�0�−2i2���p�
k−p�0

�+�p�
k −p�0

��+22�2
eim�

=
A2

	

1

N�
k=1

N

gm�yk,x�e−i�p�
k�0+p�

k �0�+���0+�0�−2i2���p�
k−p�0

�+�p�
k −p�0

��+22�2
, �59�

with sampling points p�
k, p�

k randomly distributed around p�0
, p�0

according to the weight function w�p�= � /
	�e−2�p − p0�2
.

Finally, the replacement of the initial basis states gm�yk ,x� with the corresponding time-dependent solutions �Eq. �56�� yields

�m�
,x� =
A2

	

1

N�
k=1

N

gm�
,yk,x�e−i�p�
k�0+p�

k �0�+���0+�0�−2i2���p�
k−p�0

�+�p�
k −p�0

��+22�2
, �60�

with the parameter sets yk= �p�
k+ i� , p�

k + i� ,�=0�.
In Fig. 2 the expansion of GWP �57� is shown with the

center at �0=�0=25.0 and the momenta p�0
=0.535 and p�0

=−0.117 or in terms of cylindrical coordinates �0=25.0,z0
=0.0 and p�0

=0.419, pz0
=0.652 and the width =4.472.

Note that a Gaussian shape of a wave packet in parabolic
coordinates is nearly Gaussian also in cylindrical coordinates
�see, e.g., the wave packet at 
=0 in Fig. 2�. The wave func-
tion shown has zero angular momentum component lz=0.
For reasons of presentation the originally positive radial co-
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ordinate � is extended to negative values, and the symmetry
��−��=���� is used. The probability density ���� ,z�2 is
plotted in the �� ,z� plane. The Kepler ellipses plotted on the
bottom in each panel of Fig. 2 show the corresponding clas-
sical motion of the particle with the initial conditions given
above. The second ellipse again is obtained by reflection
symmetry as the intersection of the torus, which is obtained
from rotating the ellipse around the z axis. At times 

�2	 /5 and 
�4	 /5 the high probability density close to
the z axis leads to interference patterns. After one period 

=	 the initial wave function 
=0 is recovered. A number of
N=5000 modified basis states �Eq. �49�� with �=0.05 are
employed. Results for the case m�0 are not shown since
they differ only qualitatively by avoiding the crossing of the
z axis due to the rotational barrier.

C. Propagation of 1D spherically symmetric wave packets

The procedure of Secs. IV A and IV B is applied to quan-
tum states with conserved angular momentum. First an ex-
tension of the basis states �Eq. �31�� to basis states with
well-defined angular momentum quantum numbers lm is pre-
sented, and they are shown to be exact solutions of the time-
dependent Schrödinger equation of the regularized hydrogen
atom. Then the procedure of expanding states with definite
lm in the constructed basis states together with an example is
presented. For radial symmetry the complex width matrix A
�29� of the restricted GWP must be a multiple of the identity
matrix A=a1, i.e., ax=ay =0, a�=a�	a= pr /2. The restricted
GWP reduces to

g00�r� = ei�2ar+�� = ei�prr+��. �61�

This is a suitable basis state with vanishing angular momen-
tum. The correct extension to arbitrary angular momenta is
given by

glm�r,�,�� = rlei�2ar+��Ylm��,�� , �62�

where Ylm�� ,�� denotes the spherical harmonics. Insertion of
ansatz �62� into the time-dependent Schrödinger equation
�Eq. �10�� in spherical coordinates

i
�

�

glm�r,�,�� = �−

�2

�r2r +
l2

r
+ r�glm�r,�,�� �63�

yields

�− 4i�l + 1�a + �̇ + r�1 + �2a�2 + 2ȧ��glm�r,�,�� = 0.

�64�

The basis sates �Eq. �62�� present an exact solution of the
Schrödinger equation provided the time-dependent param-
eters obey the equations of motion,

ȧ = − 2a2 − 1
2 , �65a�

�̇ = 4ia�l + 1� , �65b�

with the analytic solutions

a�
� =
4a0 cos 2
 − �1 − 4�a0�2�sin 2


2�1 + 4�a0�2 + �1 − 4�a0�2�cos 2
 + 4a0 sin 2
�
�66�

and

e−i��
� = �1 + 4�a0�2 + �1 − 4�a0�2�cos 2
 + 4a0 sin 2
�/2.

�67�

Wave packets with well-defined angular momentum quantum
numbers l and m can now be expanded in basis �62�. For the
radial coordinate r the same procedure as introduced in Sec.
IV B for the parabolic coordinates � and � can be applied.
The plane wave expansion of a Gaussian wave packet local-
ized around �r0 , pr0

� reads

�00�r� = A exp�−
�r − r0�2

42 + ipr0
�r − r0��

=
A


	
� dpre

−2�pr + i� − pr0
�2+�r0−iprr0ei�pr+i��r

=
A


	
� dpre

−2�pr + i� − pr0
�2+�r0−iprr0g00�y,r� ,

�68�

where g00�y ,r� is the spherically symmetric restricted GWP
�61� for the set of parameters y= �pr+ i� ,�=0�. An initial
state with given angular momentum quantum numbers l and
m is obtained as

�lm�x� = rl�00�r�Ylm��,�� . �69�

Using the Monte Carlo evaluation of the integral in Eq. �68�
and the replacement of the initial basis states �Eq. �61�� with
the corresponding time-dependent solutions g00�
 ,r�
=exp�i�2a�
�r+��
��� �with the time-dependent parameters
given in Eqs. �66� and �67�� we finally obtain
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FIG. 2. �Color online� Fictitious-time propagation of GWP �57�
with magnetic quantum number m=0. The part on the negative �
axis is obtained by reflecting the positive part at the z axis. The
wave packet runs along the classical Kepler ellipse with the corre-
sponding initial values. For details see text.
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�lm�
,x� =
A


	

1

N�
k=1

N

glm�
,yk,x�e−ipr
kr0+�r0−2i2��pr

k−pr0
�+2�2

,

�70�

with sampling points pr
k randomly distributed around pr0

ac-

cording to the weight function w�p�= � /
	�e−2�p − p0�2
, and

the parameter sets yk= �pr
k+ i� ,�=0�.

The results of the propagation of the wave function
�lm�r ,� ,��=rl�00�r�Ylm�� ,�� with �00�r� given in Eq. �68�
and the initial values r0=10, pr0

=−0.5, and the width =3
are presented in Fig. 3 for different times 0�
�	. The

imaginary parts of pr
k=2ak are set to �=0.2 and the number

of basis states �Eq. �62�� is N=10 000. In Fig. 3�a� the angu-
lar momentum is set to m= l=0 and in Fig. 3�b� the compo-
nents of the angular momentum are l=5 and m=0. Due to
the negative initial value of the radial momentum pr0

the
wave is initially running toward the nucleus located at the
origin. The wave function with zero angular momentum in
Fig. 3�a� comes close to the origin r=0. Similar to the radial
symmetric case in Sec. IV B there appears to occur some
interference pattern due to the overlapping parts of the in-
coming wave function at the inner turning point �see 

=2	 /5�. In the nonvanishing angular momentum case �Fig.
3�b�� the barrier of rotational energy prevents the wave func-
tion from reaching the nucleus. Instead there is a turning
point whose distance from the nucleus increases with grow-
ing angular momentum. Again at 
=2	 /5 an interference
pattern is observed close to the inner turning point. In both
panels the maximum of the probability density overshoots
the position of the initial maximum r0=10 at 
=4	 /5 due to
the initial kinetic energy and returns to the initial wave
packet after the period 
=	, indicating the periodicity of the
wave function.

V. CONCLUSION

In this paper we have derived the wave-packet dynamics
for the field-free hydrogen atom in a fictitious time variable.
The Coulomb problem has been transformed to the four-
dimensional harmonic oscillator in Kustaanheimo-Stiefel co-
ordinates with a constraint. The restricted Gaussian wave
packets obeying that condition have been constructed and
their exact time dependence is calculated analytically. The
wave packets with and without symmetries exhibit a nondis-
persive periodic behavior in the fictitious time.

It should be noted that the wave-packet propagation in the
fictitious time substantially differs from the physical time
dynamics and thus cannot provide the analytical propagation
of dispersive wave packets in the physical time �18,19�. Nev-
ertheless, the fictitious time dynamics can be used to solve
the Schrödinger equation for Coulomb systems with strong
time-independent perturbations, e.g., the hydrogen atom in
static external electric and magnetic fields. The restricted
Gaussian wave packets are the basis for the application of the
time-dependent variational principle to the hydrogen atom in
external fields and the computation of quantum spectra by
frequency analysis of the time autocorrelation function in the
following paper �32�. As a consequence of using the ficti-
tious time variable the method is exact for the field-free hy-
drogen atom and approximations in the variational approach
are only induced by the external fields.
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