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With a theoretical model including both the single-atom and collective responses to the two-color laser field,
we investigate the influence of macroscopic effects on the generation of isolated attosecond pulse. It is shown
that broadband supercontinuous high harmonics can be produced by controlling the ionization or acceleration
step of high-order harmonic generation �HHG�. Utilizing the broadband supercontinuum, isolated sub-100
attosecond pulse can be generated. We also investigate the influence of atomic density on the enhancement of
HHG. Moreover, the distortion and dephasing of two-color field in the propagation of ionized gas medium are
also discussed.
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I. INTRODUCTION

The production of attosecond pulses in recent years �1–3�
has allowed one study the ultrafast processes on the attosec-
ond time scale, shedding light on the electronic dynamics in
atoms and molecules for the first time �3–5�. Attosecond
pulses are synthesized with high harmonics generated in the
interaction of strong laser field and atomic or molecular gas.
The process of high harmonic generation �HHG� is well un-
derstood in terms of the three-step model �6�. In detail, the
electron first tunnels through the potential barrier. Subse-
quently the free electron is accelerated in the laser field, fi-
nally recombines with the parent ion and releases its kinetic
energy via emitting high harmonics. Such a process periodi-
cally occurs every half optical cycle of the laser field and
produces two attosecond pulses in each optical cycle �1�.
Thus quantum control of HHG within a fraction of optical
cycle is required for the generation of isolated attosecond
pulse.

HHG can be controlled via manipulating different steps.
Phase-stabilized few-cycle laser pulse is a powerful tool for
controlling the electron motion, i.e., the second step of HHG.
In a few-cycle laser pulse, the highest harmonics are con-
fined in the half cycle at the highest peak of laser pulse and
then isolated attosecond pulse can be produced by the high-
est harmonics in the cutoff �2,3�. By decreasing the laser-
pulse duration, the bandwidth of cutoff can be broadened and
the attosecond pulse duration can be compressed �7�.

On the other hand, the recombination probability of elec-
tron with the parent ion depends sensitively on the polariza-
tion of laser field �8�. Therefore, the modulation of laser
polarization allows one to control the recombination, i.e., the
third step of HHG �9,10�. This scheme, usually called polar-
ization gating, has successfully controlled the HHG within a
half cycle of laser field and produces an isolated attosecond
pulse �11�.

Another way to control HHG is the two-color field
scheme �12–18�. By mixing a control laser pulse to the fun-

damental pulse, the synthesized field can be shaped. Then
electron motion �the second step of HHG� as well as HHG
can be controlled by the two-color field. Pfeifer et al. �14�
pointed out that isolated attosecond pulse can be produced
with a multicycle �24 fs� two-color pulse. Lan et al. �15� and
Zeng et al. �16� proposed to generate an isolated sub-100
attosecond pulse by mixing a second-harmonic pulse to the
few-cycle ��5 fs� fundamental field. Lan et al. �15� also
showed that the driving laser pulse can be increased to 10 fs
by mixing a subharmonic pulse to the fundamental field. On
the other hand, the two-color field also can control the tunnel
ionization �17�, i.e., the first step of HHG. With a shaped
two-color field, tunnel ionization can be confined within a
fraction of optical cycle and broadband isolated attosecond
pulse can be produced by the high harmonics in the plateau.
But these works �12,14–18� only considered the single-atom
response to the two-color field. For the real scenario, a full
description of HHG requires not only the laser-atom interac-
tion at the microscopic level, but also the propagation of
driving field and high harmonics through the gas medium at
the macroscopic level. Particularly, phase matching in the
propagation plays an important role in HHG �19–23�. More-
over, the propagation through ionized gas medium will lead
to a distortion and phase shift of the driving field �22�. This
effect becomes a very serious issue in the two-color field
scheme. It is because HHG depends sensitively on the rela-
tive phase of two-color field �14–17�. But due to different
intensity and frequency, the distortion and phase shift in-
duced by ionized gas are different for the fundamental and
control laser fields. It may result in a dephasing of two-color
field and induce a significant influence or even destroy the
isolated attosecond pulse reported at the single-atom level
�14–17�. Therefore, in this work, we investigate the influence
of macroscopic effects on the generation of isolated attosec-
ond pulse in two-color field.

The paper is organized as follows. In Sec. II, we describe
the theoretical model including the single-atom response and
the macroscopic effects. In Sec. III, the results are presented
and discussed. In Sec. III A, we first discuss the control of
ionization �the first step of HHG� with two-color field, while
in Sec. III B, we discuss the control of acceleration �the sec-*Corresponding author; lupeixiang@mail.hust.edu.cn
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ond step of HHG�. The results are finally summarized in Sec.
IV.

II. THEORETICAL MODEL

The simulation is carried out by taking into account both
the single-atom response to the laser pulse and the collective
response of macroscopic gas to the laser and high harmonic
fields. The two-color laser field is

El = E0 + E1 = A0 exp�− 2 ln 2�t − T/2�2/�2��cos��0�t − T/2��

+ �� cos�2�0�t − T/2� + ��� , �1�

where E0 and E1 are the fundamental and control fields, re-
spectively, A0 and �0 are the amplitude and frequency of the
fundamental field, 2�0 is the frequency of the control field, �
and � are the relative intensity and phase between the con-
trol and fundamental fields, and � is the pulse duration. The
laser pulse is centered at T /2, where T=12T0 and T0 is the
optical cycle of fundamental laser pulse. The single-atom
response is calculated with the Lewenstein model �24� and
the nonlinear dipole momentum is �in atomic units �a.u.��

dnl = i	
−�

t

dt�
 �

� + i�t − t��/2
�1.5

d��pst�t�,t� − A�t��d�pst�t�,t�

− A�t���exp�− iSst�t�,t��E�t���a�t��2 + c.c. �2�

In this equation, E�t� is the electric field, A�t� is the vector
potential, � is a positive regularization constant, and �a�t��2 is
the depletion of ground state. The ground-state amplitude
a�t� can be expressed as

a�t� = exp
− 	
−�

t

��t��dt�� , �3�

where

��t� =	 d3p	
−�

t

dt�E��t�d��p − A�t��E�t��d�p − A�t���

	exp�− iS�t,t��� . �4�

As demonstrated in �24�, the above equation can be analyzed
using the saddle-point method, then one can recover the tun-
neling ionization rate obtained by the Ammosov-Delone-
Krainov �ADK� theory �25�. Note that �a�t��2 can be ne-
glected if the ground-state depletion is insignificant �for
instance, in Fig. 2, the ionization rate is less than 0.001�. d�p�
in Eq. �2� is the field free dipole transition matrix element
between the ground state and the continuum state,

d�p� = i
27/2

�
�2Ip�5/4 p

�p + 2Ip�3 , �5�

where Ip is the ionization energy of target gas. pst and Sst are
the stationary momentum and quasiclassical action, respec-
tively. Their values are

pst�t�,t� =
1

t − t�
	

t�

t

A�t��dt�, �6�

Sst�t�,t� = �t − t��Ip − pst
2 �t�,t��t − t��/2 + 	

t�

t

A2�t��dt�/2.

�7�

To simulate the collective response of macroscopic gas,
we solve the light propagation for the laser and high har-
monic fields in cylindrical coordinate separately �22,23,26�,

�2El�r,z,t� −
1

c2

�2El�r,z,t�
�t2 =

�p�r,z,t�2

c2 El�r,z,t� , �8�

�2Eh�r,z,t� −
1

c2

�2Eh�r,z,t�
�t2 =

�p�r,z,t�2

c2 Eh�r,z,t�

+ 
0
�2Pnl�r,z,t�

�t2 , �9�

where El and Eh are the laser field and high harmonics, re-
spectively. �p is the plasma frequency and is given by
�23,26�

�p = e�ne�r,z,t�
m�0

. �10�

The nonlinear polarization of gas is Pnl=n0dnl. n0 and ne are
the densities of neutral atoms and free electrons. The electron
density can be expressed as

ne�t� = n0
1 − exp
− 	
−�

t

w�t��dt��� , �11�

where w�t�� is the ionization rate calculated with ADK
theory. As demonstrated by Brabec and Krausz �27�, ADK
theory can well predict the ionization rate in the tunnel ion-
ization regime characterized by ��1 and El�Ebs. Here � is
the Keldysh parameter and Ebs is the external field strength
suppressing the peak of the Coulomb potential to −Ip. These
conditions are satisfied in our work. Furthermore, the elec-
tronic dynamics of tunnel ionization were experimentally in-
vestigated recently �28�. It is shown that the ionization rate
calculated with ADK theory also agrees well with the experi-
ment in the few-cycle regime. These investigations indicate
the validity of ADK theory. Note that this propagation model
takes into account both the temporal plasma-induced phase
modulation and the spatial plasma lensing effects, but does
not consider the atomic dispersion and absorption of high
harmonics. As shown in �23�, the dispersion and absorption
are negligible for neon gas at a density of 1.3	1018 cm−3

�corresponding a gas pressure of 40 torr�. Here we consider
helium gas, whose absorptive parameter around 60 eV
��40th harmonic� is less than 15% of neon and is even less
for higher order harmonics �29,30�. This absorption feature
indicates that the dispersion and absorption of helium should
be negligible for a density less than 1	1019 cm−3.

Following the procedure in �23�, we change to the moving
coordinate frame �z�=z and t�= t−z /c� and eliminate the
temporal derivative in Eqs. �8� and �9� with Fourier trans-
form, obtaining the equation
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�2Ẽl�r,z�,�� −
2i�

c

�Ẽl�r,z�,��
�z�

= G̃l�r,z�,�� , �12�

�2Ẽh�r,z�,�� −
2i�

c

�2Ẽh�r,z�,��
�z�

= G̃h�r,z�,�� − �2
0P̃nl�r,z�,�� . �13�

In the above equations, Ẽl, Ẽh, G̃l, G̃h, and P̃nl are the Fourier
transforms of El, Eh, �p

2El /c2, �p
2Eh /c2, and Pnl on the tem-

poral coordinate. To solve Eqs. �12� and �13�, we use the
operator-splitting method as �26�, which separates the dif-
fraction action and nonlinearity action. Then, Eq. �12� is split
to two equations

2i�

c

�Ẽl�r,z�,��
�z�

= �2Ẽl�r,z�,�� , �14�

2i�

c

�Ẽl�r,z�,��
�z�

= − G̃l�r,z�,�� . �15�

These equations can be solved with the Crank-Nicholson
method �23,26�. Equation �13� is solved using the same
method. In the calculation, 213 points are used in time, 100
points are used along the radial direction, and 200 points
along the propagation direction. We first assume a Gaussian
beam at the initial position and calculate the single-atom
response via Eq. �2�. Then the plasma frequency, nonlinear
polarization, and high harmonics can be easily calculated.
Subsequently, we inset the plasma frequency and medium
polarization to Eqs. �8� and �9� and obtain the laser field and
high harmonics that propagate to the next position. Repeat-
ing this procedure, we obtain the final high harmonics at the
exit face of the gas medium.

III. RESULTS AND DISCUSSIONS

For comparison, we first briefly discuss HHG in the fun-
damental laser pulse alone. The dotted line in Fig. 1 shows
the macroscopic harmonic spectrum after propagation
through a helium gas. The laser intensity I0 is 6
	1014 W /cm2, wavelength is 800 nm, pulse duration is 5 fs,
beam waist is 25 
m, and the Rayleigh length is 2.6 mm.
The atomic density is isotropic and equal to 2.5
	1018 cm−3, which corresponds to a gas pressure of about
75 torr. The gas target is 0.5 mm thick and put at 2 mm after
the laser focus. From Fig. 1, one can observe the odd high
harmonics in the plateau �less than 85�0� and a continuum in
the cutoff �around 87�0�. This feature can be attributed to the
electron motion controlled by the few-cycle laser pulse. As
shown in Fig. 2 �dotted line�, the atom is predominantly
ionized at the peaks P1, P2, and P3 in the fundamental field
alone. Then three quantum trajectories contribute to the har-
monics in the plateau and the interference of these trajecto-
ries gives rise to the high harmonic structure. The electron
gains the highest energy in the highest peak P2 and only the
highest-energy electron contributes to the harmonics in the
cutoff. Thus the cutoff becomes a continuum, from which an

isolated attosecond pulse can be generated. But the band-
width of cutoff is less than 15 eV, which limits the attosec-
ond pulse duration. In the following, we discuss how to con-
trol the HHG with two-color field and how to produce a
broader supercontinuum and an even shorter isolated attosec-
ond pulse.

A. Ionization control with two-color field

We first consider the control of tunnel ionization, i.e., the
first step of HHG, with two-color field. According to the
ADK theory, the tunnel ionization rate is determined by a
prefactor times exp�−4Ip

�2Ip /3 / �E�t���. Therefore, the ion-
ization rate depends exponentially on the electric field. For
the two-color field, the electric field

�El�t�� = �E0�t� + E1�t�� = �E0
2�t� + E1

2�t� + 2E0�t�E1�t� .

�16�

We can see that the synthesized field can be modulated by a
very weak control field E1�t� since the cross term E0�t�E1�t�
“amplifies” the weak control field by the large component
E0�t�. Consequently, the tunnel ionization can be efficiently
controlled by the two-color field. Figure 2�a� shows the elec-
tric field of the fundamental �dotted line� and control �dashed
line� fields. The intensity of the fundamental field is 6
	1014 W /cm2. The intensity of the control field is 4% of
the fundamental pulse and the relative phase is 0. As shown
in Fig. 2�a�, the control field is in the same direction with
fundamental field at P2 and so enhances the ionization. On
the contrary, the control field is in the opposite direction with
fundamental field at P1 and P3 where the ionization is sup-
pressed. Consequently, the ionization is confined in a short
interval of 270 attoseconds at P2 �see the solid line in Fig.
2�a��. Further, HHG is also confined within half-cycle optical
cycle. We name this scheme ionization gating �17�. It should
be noted that the laser intensity should be below 8
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FIG. 1. �Color online� On-axis high harmonics generated by the
fundamental pulse alone �dotted line� and ionization gating scheme
�solid line� after propagation through a 0.5 mm helium gas. The gas
medium is put at 2 mm after the laser focus and the atomic density
is 2.5	1018 cm−3. The fundamental laser intensity I0 and wave-
length are 6	1014 W /cm2 and 800 nm, respectively. The pulse
duration is 5 fs. The relative intensity � and phase � are 4% and 0,
respectively.
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	1014 W /cm2 in this scheme. Otherwise, a more intense
laser pulse will lead to significant ionization at the leading
edge of laser pulse.

The solid line in Fig. 1 shows the high harmonics gener-
ated by the ionization gating scheme after propagation
through a 0.5 mm helium gas. In contrast to the HHG in the
fundamental pulse, the odd harmonic structure in the plateau
is removed in the two-color field and a supercontinuum is
obtained through the plateau to cutoff. To make clear the
underlying physics, we analyze the electron trajectory in the
two-color field. In Fig. 2�b�, we present the classical electron
energy calculated by the three-step model as a function of
ionization ��� and recombination ��� times. Note that the
three-step model well describes the single-atom response
�14,15,17�. We also analyze the quantum trajectory of mac-
roscopic high harmonics with Gabor transform �14,31� and
the time-frequency spectrogram is presented in Fig. 2�c�. As
shown in Fig. 2�b�, the single-atom response shows two tra-
jectories, which are the short and long trajectories �6�, re-
spectively. After propagation through the gas medium, only
the short trajectory survives as shown in Fig. 2�c�. It is be-

cause the phase matching of short trajectory is preferably
achieved by putting the gas target after the laser focus
�19,21�. On the other hand, since only the short trajectory
survives, the interference between quantum trajectories is re-
moved and the high harmonic spectrum becomes continuous
through the plateau to cutoff. The bandwidth is 70 eV, far
broader than the cutoff in the fundamental pulse alone. Ad-
ditionally, we can see from Fig. 1 that the supercontinuous
high harmonics generated in the two-color field are more
intense than HHG in the fundamental pulse case. It is be-
cause the electron is predominantly ionized at P2 in the two-
color field, where the ionization is enhanced as shown in Fig.
2�a�. Moreover, one can see from Fig. 2�c� that all the high
harmonics in the plateau are emitted almost synchronously,
i.e., well phase locked. This feature is in favor of producing
a “clean” attosecond pulse �32�.

Figure 3 shows the attosecond pulse generated with ion-
ization gating scheme. By synthesizing the harmonics in the
plateau �40 to 60 �0 shown by the solid line in Fig. 1�, an
isolated 130 attosecond pulse is obtained. Note also that the
bandwidth of supercontinuous high harmonics is 70 eV as
shown in Fig. 1. Such a supercontinuum supports an isolated
pulse of about 50 attoseconds in the Fourier-transform limit.
However, the harmonic chirp prevents producing the Fourier-
transform-limited pulse. This issue can be meliorated by a
proper filter �11�. For instance, Si filter can transmit the har-
monics in the energy range from 40 to 100 eV and also
exhibits negative group delay dispersion �33�. Thus Si filter
is suitable for compensating the chirp of these harmonics.
Note that several other materials, e.g., Sn and Al, also show
the similar transition and dispersion features. We may choose
proper material depending on the frequency range of interest.

In addition, we consider the influence of atomic density
on HHG. Here the atomic density is set below 8
	1018 cm−3 to ensure that the gas absorption is not signifi-
cant. The solid line in Fig. 4�a� shows the HHG in the ion-
ization gating scheme after propagation through the gas me-
dium with a density of 8	1018 cm−3 �solid line�. The other
parameters are the same with Fig. 2. For comparison, HHG
for the gas density of 2.5	1018 cm−3 is also presented in
Fig. 4�a� �dashed line�. One can see that the high harmonics
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FIG. 2. �Color online� �a� The electric fields of the fundamental
laser pulse �dotted line� and its second-harmonic pulse �dashed
line�. Solid line shows the ionization rate in the two-color field. �b�
The classical electron energy is presented as a function of ionization
��� and recombination ��� times. �c� The time-frequency image of
the high harmonics shown by the solid line in Fig. 1. The param-
eters are the same as Fig. 1.
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FIG. 3. �Color online� The attosecond pulse generated with the
supercontinuous harmonics �40–60 �0� shown by the solid line in
Fig. 1.
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are significantly enhanced in the higher density case. When
increasing the atomic density from 2.5	1018 to 8
	1018 cm−3, the harmonic intensity is increased by approxi-
mately 1 order of magnitude. Moreover, the harmonics in the
plateau are also continuous in the higher density case. An
isolated 135 attosecond pulse is obtained with the continuous
harmonics in the plateau �40 to 60 �0� as shown in Fig. 4�b�.
In contrast to Fig. 3, we can see that the attosecond pulse is
also enhanced in the higher density case. We also investigate
the influence of laser intensity on HHG. Our calculation
shows that the bandwidth of supercontinuous plateau can be
slightly increased by increasing the laser intensity to 8
	1014 W /cm2 and the high harmonic yield is comparable to
that shown in Fig. 1.

B. Acceleration control with two-color field

Next, we consider the control of acceleration, i.e., the
second step of HHG, with two-color field. According to the
three-step model, the electron kinetic energy in the two-color
field is

Ek =
1

2
	ti

tr

�E0�t� + E1�t��dt�2

=
1

2
	ti

tr

E0�t�dt�2

+
1

2
	ti

tr

E1�t�dt�2

+ 
	
ti

tr

E0�t�dt�
	
ti

tr

E1�t�dt� , �17�

where ti and tr are the ionization and recombination times,

respectively. This equation indicates that the electron energy
and so high harmonic cutoff can be modulated with the two-
color field. Similar to the ionization control case, the control
field can be very weak compared to the fundamental field,
but the cross term is larger and can significantly modulate the
electron energy. By varying the relative phase between the
fundamental and control fields, we can increase the electron
energy gained in the half cycle P2 and decrease the energy
gained in the half cycles P1 and P3. In this way, the cutoff
can be broadened and the corresponding attosecond pulse
can be compressed. We name this scheme acceleration gat-
ing. In contrast to the ionization gating scheme, the accelera-
tion control �i.e., kinetic energy� is determined by the square
of the integral of electric field rather than the square of elec-
tric field. When the relative phase equal 0, even though the
electric field at P2 is the maximum, the kinetic energy does
not reach to the maximum. According to the single-atom
response discussed in �15,16�, the optimized relative phase is
in the range from −0.1� to −0.2�.

Figure 5 shows the high harmonics generated by the ac-
celeration gating scheme after propagation through a 0.5 mm
helium gas. The intensity of the fundamental field is 6
	1014 W /cm2. The relative intensities between the control
and fundamental fields is 4% �dashed line� and 16% �solid
line� and the relative phase is −0.1�. Other parameters are
the same with Fig. 1. For comparison, the high harmonics
generated by the fundamental field alone is also presented in
Fig. 5 �dotted line�. One can see that the cutoff is blueshifted
to 105 �0 by mixing a weak control field �dashed line� and
the bandwidth of supercontinuum is increased to 40 eV.
When the intensity of control field is increased to 16% �solid
line in Fig. 5�, the cutoff is shifted to 120 �0 and the band-
width of supercontinuum is further broadened to 60 eV. To
make clear the underlying physics, we analyze the electron
trajectory in the acceleration gating scheme. Figure 6�a�
shows the classical trajectory calculated by the three-step
model. The parameters are the same with the solid line in
Fig. 5. As shown in Fig. 6�a�, all the harmonics above 80 �0
are confined in the half cycle of P2. Moreover, both the short
and long trajectories are presented in the single-atom re-
sponse. Similar to the ionization gating case, short trajectory
is preferably selected in the propagation. Then only the short
trajectory contributes to the macroscopic high harmonics as
shown in Fig. 6�b� and the supercontinuous high harmonics
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FIG. 4. �Color online� �a� On-axis high harmonics generated in
the ionization gating scheme. The atomic densities are 2.5
	1018 cm−3 �dashed line� and 8	1018 cm−3 �solid line�, respec-
tively. Other parameters are the same as Fig. 1. �b� The attosecond
pulse generated by the supercontinuous harmonics �40–60 �0�
shown by the solid line in �a�.
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FIG. 5. �Color online� On-axis high harmonics generated in the
fundamental field alone �dotted line� and acceleration gating
scheme with the relative intensities of 4% �dashed line� and 16%
�solid line�, respectively. The relative phase � is −0.1� and other
parameters are the same with Fig. 1.

MACROSCOPIC EFFECTS FOR QUANTUM CONTROL OF … PHYSICAL REVIEW A 79, 043413 �2009�

043413-5



are emitted almost synchronously. We also analyze the elec-
tron trajectory in the acceleration gating scheme with a rela-
tive intensity of 4% �corresponding to the dashed line in Fig.
5�, which exhibits similar features.

Figure 7 shows the attosecond pulse generated in the ac-
celeration gating scheme. The intensities of the control field
are �a� 4% and �b� 16% of the fundamental field and other
parameters are the same with Fig. 5. As shown in Fig. 7�a�,
an isolated 115 attosecond pulse is generated by synthesizing
the continuous high harmonics in the cutoff from 80 to
105 �0. In contrast to the ionization gating scheme, the at-
tosecond pulse duration is compressed, but the attosecond
pulse intensity is lower. It is because the attosecond pulse is
generated by the harmonics in the cutoff where the harmonic
yield is lower than the harmonics in the plateau. When in-
creasing relative intensity to 16%, the pulse duration is de-
creased to 105 attoseconds as shown in Fig. 7�b�, but the
attosecond pulse intensity is further reduced.

Figure 8 shows the influence of atomic density on HHG in
the acceleration gating scheme. The solid line in Fig. 8�a�
shows the HHG after propagation through the gas with a
density of 8	1018 cm−3. Other parameters are the same
with Fig. 7�a�. For comparison, HHG for a gas density of
2.5	1018 cm−3 is also presented in Fig. 8�a� �dashed line�.
Similar to the ionization gating scheme, the high harmonics
are significantly enhanced in the higher density case. As in-
creasing the atomic density from 2.5	1018 to 8
	1018 cm−3, the harmonic intensity is increased by approxi-
mately 1 order of magnitude. Figure 8�b� shows the attosec-
ond pulse generated by the harmonics in the cutoff. One can
see that the attosecond pulse intensity is also enhanced in
contrast to the lower density case. Figures 8�c� and 8�d�
show the high harmonics and attosecond pulse generated in
the acceleration gating scheme with the relative intensity of
16%. Similarly, the high harmonic and attosecond pulse
yields are significantly enhanced by increasing the atomic
density from 2.5	1018 to 8	1018 cm−3.

To further broaden the supercontinuum and compress the
attosecond pulse duration, we investigate HHG in a more
intense two-color field. First, we increase the intensity of
fundamental field to 1	1015 W /cm2. The intensity of the
control field still is 4% �solid line� of the fundamental field
and other parameters are the same with Fig. 7�a�. The har-
monic spectrum and attosecond pulse are shown in Figs. 9�a�
and 9�b�, respectively. One can see that the bandwidth of
supercontinuum is increased to 65 eV �see Fig. 9�a�� and the
attosecond pulse duration is reduced to 80 attoseconds �see
Fig. 9�b��. Second, the intensity of fundamental field is kept
to be 1	1015 W /cm2 and the intensity of the control field is
increased to 16% of the fundamental field. The harmonic
spectrum and attosecond pulse are shown in Figs. 9�c� and
9�d�, respectively. Clearly, the bandwidth of supercontinuous
high harmonics is broadened to 90 eV and an isolated 75
attosecond pulse can be generated. Finally, we increase the
intensity of fundamental field to 1.5	1015 W /cm2 and also
increase the intensity of the control field to 16% of the fun-
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damental field. As shown in Fig. 9�e�, the bandwidth of su-
percontinuous harmonics is significantly increased to about
140 eV. Then an isolated 58 attosecond pulse is generated as
shown in Fig. 9�f�.

However, we notice from Fig. 9 that the harmonic spectra
decline rapidly from 60 �0. The intensity of the supercon-
tinuous high harmonics above 100 �0 is decreased more
than 3 orders of magnitude. Such a low intensity is a serious
disadvantage for the measurement and application of HHG.
Moreover, we find that HHG in intense laser field cannot be
enhanced by increasing the atomic density. It is because the
intense laser field leads to a significant ionization. Then the
laser field will be distorted in the propagation through ion-
ized gas medium �22�. This effect is inappreciable in the
low-intensity field, but plays an important role in the intense
laser field and dense gas medium case. For illustration, we
calculate the temporal distortion of laser pulse in the gas
medium. Following �22�, we focus on the on-axis laser field
and adopt the one-dimensional model. Then the light propa-
gation equation is simplified to Eq. �15�. Figure 10�a� shows
the fundamental and control fields before �dotted and dashed
lines� and after �bold and thin solid lines� propagation
through a 0.5 mm gas with the density of 8	1014 cm−3. The
fundamental laser field intensity is 1	1015 W /cm2 and the
control field is 16% of the fundamental field. One can ob-
serve that the tail of fundamental pulse experiences a notable
distortion in the propagation. Peaks P2 and P3 are decreased
and left shifted; peak P4 is increased. Additionally, the
ionization-induced distortion is different for the fundamental
and control fields due to the different intensity and fre-
quency. Consequently, the relative phase and intensity vary
in the propagation, which prevents from accurately control-
ling the HHG. By contrast, the ionization-induced distortion

is inappreciable in the gas medium of 2.5	1018 cm−3 as
shown in Fig. 10�b�. For a low-intensity field �less than 6
	1014 W /cm2�, the distortion is negligible after propagation
through the gas medium of even 1	1019 cm−3. But for the
intense field, a low-density gas medium must be adopted to
avoid the large distortion. For instance, by increasing the
fundamental field intensity to 1.5	1015 W /cm2 �close to
the parameters used in �16��, supercontinuum is preserved
after propagation through a gas medium of 1	1018 cm−3

�see Fig. 9�e��. But for a higher density, ionization induces
larger distortion and the supercontinuum will be gradually
blurred.

IV. SUMMARY

In summary, we investigate the macroscopic effects for
quantum control of isolated attosecond pulse generation with
two-color field. We show that the two-color field is a power-
ful tool for controlling the electron ionization �the first step
of HHG� and acceleration �the second step of HHG� pro-
cesses. In the ionization gating scheme, ionization, and HHG
can be confined within half optical cycle and then broadband
supercontinuous high harmonics can be generated in the pla-
teau. While in the acceleration gating scheme, broadband
supercontinuum can be generated in the cutoff. Compared to
the single-atom response, one quantum trajectory can be se-
lected after propagation. We also investigate the influence of
atomic density on HHG. The results indicate that a higher
gas density is in favor of enhancing the high harmonic yield.
But a low-density gas should be adopted in the intense laser
field case. Otherwise, significant electrons are produced in
the interaction of intense laser field and dense gas. This
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effect will induce a large distortion and dephasing of two-
color field and prevent from the control of HHG. Moreover,
the broadband supercontinuum enables the generation of
sub-100 isolated attosecond pulse. In contrast to the accel-
eration gating case, the ionization gating scheme produces
the supercontinuous high harmonics in the plateau and the
harmonic and attosecond pulse yields are higher.
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