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Recombination of an atomic system in one, two, and three dimensions in the presence
of an ultrastrong attosecond laser pulse: A comparison of results obtained
using a Coulomb and a smoothed Coulomb potential
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The dynamics of recombination in an ultrastrong laser field is studied by numerical simulations performed
for one-dimensional (1D), two-dimensional, and three-dimensional atomic systems modeled by the hydrogen
atom Coulomb potential as well as by a model potential with a smoothed core. A nonmonotonic behavior of the
total bound-states’ final population is studied as a function of the laser field amplitude. The dependence of the
results on the used atomic potential is demonstrated. It is shown that the recombination probabilities calculated
in these two cases may differ even qualitatively. Even eigenstates of the 1D hydrogen atom are shown to play

a significant role in the time evolution.
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I. INTRODUCTION

The interest in attosecond (few-cycle) pulses is motivated
by recent experimental realizations of such pulses by groups
from Germany and Canada [1]. Attosecond pulses of
extreme-ultraviolet or soft x-ray laserlike sources have al-
ready been found very useful for investigating details of an
evolution of biological, chemical, and even atomic systems
[2]. Using so short pulses, one may create a sort of movie
presenting an evolution of a molecule. Attosecond laser tech-
nology is very new; thus new ideas of its applications con-
tinue to appear, including those in material science such as,
e.g., identifying elements, precise cutting of materials not
resistant to heat, and others [3]—however there is still a long
way to a practical realization.

An interaction of an ultrastrong laser field with atomic
systems is accompanied by a characteristic phenomenon
called adiabatic stabilization against photoionization; the
ionization probability is locally a decreasing function of the
field intensity [4,5]. This counterintuitive feature of strong-
field ionization occurs for laser fields intensity of a few
atomic units (a.u.) if the laser cycle frequency is about unity.
This phenomenon is usually explained in terms of the
Kramers-Henneberger (KH) well [5], which is the mean po-
tential (zeroth term of the Fourier expansion) of the oscillat-
ing nucleus in the electron reference frame. One should also
take into account the influence of the so-called slow drift,
i.e., long-time oscillations caused by an interaction of an
oscillating electron driven by the field with the original po-
tential. It can be incorporated to the KH well theory [6] and
may be decisive for the value of the ionization level [6-8].

In our previous papers we have found a very similar effect
of a nonmonotonic dependence of the total bound-states’
population on the electric field of an ultrastrong attosecond
laser pulse in the case of a recombination in the presence of
a one-dimensional (1D) short-range potential (square well)
[9] as well as of the 1D long-range potential [10]. However,
in the latter case only a model atom with a smoothed poten-

*jacek @phys.uni.torun.pl

1050-2947/2009/79(4)/043404(13)

043404-1

PACS number(s): 34.50.Rk, 32.80.Wr, 34.80.Lx

tial was investigated and only the ground-state population
was taken into account. We have also examined the same
quantity in the two-dimensional (2D) square well but no non-
monotonic behavior has been found in that case [9]. In all the
above cases the discussed phenomenon was attributed
mainly to the slow drift of the wave packet trapped in the
KH well. Some aspects of the strong-field recombination
were earlier examined by Hu and Collins [11], who concen-
trated on the dependence of the process on the initial mo-
mentum of the incoming electron.

Up to now the ultrastrong laser-assisted recombination
has been studied in one dimension for both short- and long-
range binding potentials [10] and in two dimensions for
short-range ones [9]. In the present paper we examine the
cases of two- and three-dimensional (3D) systems with long-
range potentials. In particular we compare the results for
two- and three-dimensional Coulomb singular and smoothed
binding potentials, and we observe substantial differences
(Secs. III A and III B). Because of those differences and the
fact that a smoothed Coulomb potential has been widely used
in numerical studies, we return to the one-dimensional case
(Sec. I C) in order to check whether the models with such
potentials are reliable in the studies of recombination. Here
we compare the results for the two classes of long-range
potentials. We have also improved our approach by taking
into account all the significant bound states when calculating
the recombination level. For the unsmoothed potential in one
dimension a degeneracy of even and odd states occurs. Be-
cause the wave function of the former ones is nondifferen-
tiable at the origin, their physical status has been questioned
[12—14]. We thus examine the role of such states in the con-
text of laser-assisted recombination.

II. NUMERICAL APPROACH
A. Hamiltonian of the atom-laser system
A three-dimensional atomic system in a strong laser field

may be described using the Hamiltonian in the length gauge
(a.u. are used throughout the paper),
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where the laser electric field &(r)=g,0 (1) O (t,~1)cos(wt— )
is directed along the z axis and due to the dipole approxima-
tion does not depend on the spatial coordinates (® denotes
here the Heaviside function). It acts only during the time
interval (0,7,). In all our calculations the laser field fre-
quency w has been taken equal to 1 a.u. and the optical
period is equal to 7=2m a.u. We have changed the laser
field amplitude g, in the range between 1 and 5 a.u. in two
and three dimensions and between 1 and 7 a.u. in one dimen-
sion.

The dipole approximation used in all the calculations pre-
sented below is known to be fully justified even for laser
fields of order of a few a.u. [15] while our strongest field was
go=7 a.u. Also in our earlier paper we checked that for the
laser frequency w=1 a.u. in two dimensions, the nondipole
(magnetic) effects begin to be important for fields of order of
go=15 au. [7.8].

The class of long-range binding potential we studied is
given by

(2 2.2 __

VO + 72 D)=V == ==, )
where r= \e"x2+y2+zz. For a=0 a.u. this is the standard sin-
gular hydrogen atom potential and for a=1 a.u.—a model
atom with a smoothed core, which in the case of one dimen-
sion (y=z=0) reduces to the model proposed first by Su and
Eberly [16]. We have been mainly concerned with these two
limiting cases.

As the initial state of the electron we used a Gauss func-
tion of a fully symmetric shape, located on the z axis at some
distance from the nucleus (see also the discussion below).
Due to the linear polarization and the dipole approximation
our 3D system possesses an axial symmetry; thus it is useful
to apply cylindrical coordinates {s, ¢,z}. This allows one to
separate the angular function exp(ime). For the sake of con-
venience we have also made a substitution for the spatial part

of the wave function (dependent on s and z) W=/ s so that
the first derivative of the Laplace operator in the cylindrical
coordinates is removed. Instead, an additional potential-like
term —1/(8s) appears which may be incorporated to the sort
of effective potential (cf. [17] for its more extensive discus-
sion). Thus we obtain the following Schrédinger equation to
be solved numerically:

2 R K L R
dat ds

2 972
1m?-1/4 _
+ Em—2+zs(t)}\1'(s,z,t). (3)
S

The quantum number m is connected with the rotation
around the z axis and is constant during the whole process.
For m=0 the potential-like term is attractive. A nonzero
value of m makes it repulsive, and as a consequence it com-
pletely modifies the wave-packet dynamics, the simulation of
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which must be performed separately for each m. Since the
value of m is conserved during the whole evolution, in the
case of the initial state given by a Gauss function with m
=0 only the states with m=0 may be populated, including the
most interesting ground state. This makes the assumption of
m=0 a natural choice for investigating the recombination
process.

The boundary condition for W at s=0 is such that the
value of the wave function ‘17 and not its derivative, should

vanish. An additional benefit of using WV instead of W is that
the Jacobian becomes equal to 1; thus three-dimensional
simulations may be performed using the same code as that
prepared for 2D calculation in Cartesian coordinates with
only minimal changes, namely, the modification of the po-
tential to include the new term.

As a consequence only two-dimensional numerical calcu-
lations have to be performed in the {s,z} coordinates to ob-
tain accurate results for a three-dimensional system with a
linearly polarized external field. We also performed analo-
gous simulations in one and two dimensions. To keep the z
direction of the electric field we use the {x,z} Cartesian co-
ordinates for the two-dimensional system and {z} for the one-
dimensional one. Thus the Hamiltonian of the 2D atom in-
teracting with the laser field may be written as

ﬁ:—%(%+(§2>+V(\rx2+z2)+ze(t). 4)
The one-dimensional form of the Hamiltonian may be ob-
tained by setting x=0. The axial symmetry of the 3D system
has its counterpart in the 2D case—if the initial state is given
by symmetric function one can perform the calculation only
at the half of the x-z plane, i.e., for x>0.

B. Initial conditions

During the recombination an initially remote packet ar-
rives in the vicinity of the nucleus; its motion is in general a
superposition of translation and oscillations in the rhythm of
the external laser field. A considerable capture probability
may occur if the pulse has such a shape that the correspond-
ing electron classical trajectory remains in the neighborhood
of the nucleus and the initial conditions are such that the
electron turning point occurs in the vicinity of the nucleus.
Thus to shorten the numerical calculations we start our simu-
lations at the moment at which the electron is located at the
distance from the nucleus equal to twice the amplitude of its
free oscillations, and we assume that its initial momentum is
zero (the dependence of the recombination level on the initial
momentum in the 2D case has already been examined in
[11]). These conditions favor the situation in which the elec-
tron wave packet after a half of an optical cycle will be
situated close to the center of the binding potential with a
small momentum (very close to the turning point of its os-
cillatory motion). Unfortunately, by setting the initial wave
packet relatively close to the nucleus we increase the initial
occupation of higher excited states (see the discussion be-
low). Moreover, the wave packet should be still relatively
narrow. Other electrons from a beam, i.e., those which have
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different positions and velocities after a half of an optical
cycle, have fewer chances to recombine with the ion. The
same approach in the case of the electron incoming in fact
from infinity was applied in [9,10]. The sensibility of the
results to the packet initial position was also checked in [10],
including an examination whether the results remain valid if
an average over the initial position is taken. This will also be
checked in the present paper for attosecond pulses.

Because of the above, in our simulations the initial posi-
tion of the electron modeled by a Gaussian packet was ad-
justed to the electric field intensity e, applied in a given
simulation and equal to zo=—2&,/ ®’. Thus the initial state of
the electron is given by the following wave function:

#x,y,2) = Cexp{=[* +y* + (2= 20)’V (48}, (5)

with C being the normalization constant.

The variance of the wave packet is fixed at &
=0.25 a.u. in all 3D, 2D, as well as in 1D simulations. In the
3D case in the reduced cylindrical coordinates the above
function behaves (up to the normalization constant) as

s, @.2) ~ exp{=[s* + (z = 29)° 1 (48"}, (6)

note that the value of the quantum number m for this packet
is equal to O.

C. Determination of the bound states

Unlike in our previous study of the 1D recombination of
an electron with an ion described by a long-range potential
[10], we take now into account the presence of the excited
states and examine their populations. We also extend our
investigations to the two- and three-dimensional cases, and
what is most important, we now investigate the dependence
of the results on the precise shape of the potential. The eigen-
states in the case of the one-, two-, and three-dimensional
singular Coulomb potentials may be found analytically (for
1D hydrogen atom see [12—-14]), for a discussion on the 2D
hydrogen atom see [18]). In one and two dimensions the
wave function is given by a confluent hypergeometric func-
tion of the first kind |F; (Kummer’s function); however the
one-dimensional case is still not clearly understood. Namely,
the discussion continues whether the states with even sym-
metry have any physical meaning. Loudon [12] claimed that
only by taking the eigenstates with both parities one may
create a complete basis in the Hilbert space, while Palma and
Raff [14] as well as Dai et al. [13] held the opinion that even
states are not physical because of a discontinuity of the de-
rivative of their wave functions at the point of the potential
singularity. We checked in our simulations the population of
the eigenstates with both even and odd parities. It seems that
both classes of states are significantly occupied by the re-
combining electron. The energy of eigenstates of the two-
dimensional singular hydrogen atom depends only on the
main quantum number N and is equal to Ey=-1/2(N
+1/2)%. The two-dimensional states of the hydrogen atom
and of the smoothed model atom are also numerated by the
magnetic quantum number u (-N < u<N) corresponding to
rotations by an angle « in the x-z plane; in the latter case the
energies for a fixed N decrease for growing |u|. For a 1D
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smoothed potential there is no degeneracy and the energy for
large n behaves as E,~—1/2n>. If the 1D potential becomes
singular (a=0), a degeneracy of even and odd states occurs,
with the former having a discontinuous derivative and its
energies are equal precisely E,=—1/2n%. In the 3D case we
used the standard textbook hydrogen solutions expressed in
the cylindrical coordinates, with the part dependent on ¢
being constant due to the assumption that m=0.

In order to obtain bound states of the smoothed model
atom we used our implementation of the Davidson method
[19] to solve the stationary Schrodinger equation. This
method is very effective in comparison with other methods,
especially in two dimensions, if one is interested only in a
not too large number of lowest bound states. In our case the
matrix to be diagonalized is obtained by the discretization of
the Hamiltonian. In the 2D case the states with w=0 (u is the
quantum number connected with the rotation in the x-z plane
described by the angle a) were calculated on a full 2D grid
with 2 X 10'" nodes and the range (—200,200) a.u. in both
directions. The radial parts of the wave functions of the
states with |u|>0 were calculated on a grid with 2 X 10"
nodes and the range (0,200) a.u. For all 3D states we took
210" nodes in the range (0,300) a.u. The angular part is
given by ¢'#® in two dimensions and Legendre polynomials
P/(z/\s*+7%) in three dimensions. The convergence of both
calculations was carefully checked. For the 1D model atom
the bound states were calculated using the shooting method.
Selected results were confirmed using the Davidson method.

Applying the Davidson method we have also found the
bound states of the 1D and 2D KH wells (for various &),
which is given by the general formula

t+T

Vi yien) = j V(x— A1), y)dr, )

1

where (1) is the electron classical trajectory in its oscillatory
motion, possibly including also a slow movement of the
turning points. The above integral can be calculated numeri-
cally for the smoothed atom potential, while for the potential
with a singularity it is divergent. The position of the original
binding potential in the electron frame is additionally ad-
justed to the current position of the wave packet in the labo-
ratory frame. The shapes of KH potential, even for a model
smoothed potential, make it difficult to obtain the bound
states using usual methods (in particular the shooting
method, often used for 1D potentials, is useless in this case).
The one-dimensional bound states were found on a grid with
2% 10" nodes and the range (—100,100) a.u., and the two-
dimensional ones were found on a grid similar to that used
for a smoothed model atom. However, the Davidson method
failed while calculating the eigenstates of the three-
dimensional KH wells for m=0 (it works better for m>0).
Including the additional singular term in the potential causes
a numerical instability of this method, as well as of the Ar-
noldi algorithm [20], which we tested for this purpose. After
all we managed to obtain only eight eigenstates of the three-
dimensional KH wells for values of electric field intensity in
the range between 1 and 5 a.u. using the one-electron di-
atomic states method [21]. This method is generally designed
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for calculating the ground states of once ionized diatomic
molecules (for example, of H3). The excited states can be
obtained by extracting the earlier computed states from the
Hilbert space being used by the program. Thus the number of
states one is able to calculate is rather limited and its ener-
gies should be well separated.

D. Determination of the wave-packet evolution

The dynamics of the recombination has been examined by
a numerical integration of the time-dependent Schrédinger
equation. In the 1D case we used the Crank-Nicholson
scheme, while for the 2D and reduced 3D cases we used the
alternate-direction implicit (ADI) algorithm [22].

It must be stressed that despite the 2D character of calcu-
lations, our 3D results are not approximated. Unfortunately
only the systems with an axial symmetry may be treated in
above described way. Another approach allowing a treatment
of the arbitrary 3D system with quasi-2D simulations is the
close-coupling algorithm developed by Geltman [23] and
widely used by Hansen er al. [24], who used it to simulate
the real hydrogen atom. In this method the dynamics of the
wave function is calculated using the basis of eigenstates of
the binding potential. Thus this method is generally limited
to systems in which both the bound states and continuum
states are explicitly known. For other algorithms see [25] and
references therein.

One-dimensional computations for the hydrogen atom
which are numerically inconvenient because of the singular-
ity have been performed on the spatial grid as large as 2
X 10'® nodes. The space covered by this grid extends from
—400 to 400 a.u. (the grid step is about 0.0122 a.u.). The
wave-packet evolution was calculated in 62 000 time steps,
each equal to 7r/10* a.u., which cover three optical cycles.
The convergence was confirmed for the largest electric field
used in the simulations with a ten times smaller time step.
The smoothed model atom requires a less dense spatial grid
but we used the grid with the same step to make the analysis
easier. Two-dimensional simulations were performed for the
singular hydrogen atom on the grid with 2 X 10" nodes and
the range (—100,100) a.u. in both directions. The evolution
for the smoothed model atom was calculated using the grid
with a twice larger space range. The convergence was
checked on the grid with 2X10'> nodes. In the three-
dimensional case, for both types of potential classes, the grid
was constructed with 2 X 10'° nodes in the s direction for the
range (0,100) and with 2 X 10'! nodes in the z direction for
the range (—100,100). A higher density of nodes is recom-
mended because of the strong singularity in s=0 introduced
by the additional potential term.

III. RESULTS

We have chosen the sum of the populations of the bound
states as a most reliable measure of the efficiency of the
recombination. It will be called simply the recombination
level or the atom survival probability. The most interesting
feature is the dependence of this quantity on the amplitude of
the laser field, and as a consequence, on the details of the
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FIG. 1. The final level of the recombination (sum of the popu-
lations of a few lowest bound states) as a function of the electric
field intensity in the case of the real hydrogen atom (upper plot) and
the 3D smoothed model potential (lower plot). The populations
were calculated after exactly one, two, and three optical cycles ex-
cept for the insets which correspond to time instants at which the
sum of the populations exhibits a local maximum. Also shown are
the initial total populations of the bound states, the values of which
are not negligible due to packet being initially not very far from the
nucleus. The abbreviation a.u., used in this figure as well in the next
ones, stands for atomic units.

slow drift. In addition it seems important to examine whether
the recombination level depends on the potential type used in
our simulations. As will be demonstrated in detail below, the
result of our studies is that for the 2D and 3D hydrogen
singular potentials, a nonmonotonic dependence of the re-
combination level on the laser field intensity may be ob-
served, i.e., the phenomenon analogous to the stabilization in
the ionization process is present, while it is absent for the
smoothed model atom (see Figs. 1 and 7 for comparative
plots). However, this phenomenon in two dimensions is
much better pronounced than in the 3D case.

In one-dimensional simulations the opposite results were
obtained. A nonmonotonic dependence of the recombination
level appears for a smoothed model atom while it is absent or
less pronounced for the Coulomb potential. It is important to
keep in mind that in the 2D case a monotonic behavior of the
recombination level as a function of the laser field was pre-
dicted for a short-range potential, in contrast to the 1D case

[9].
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A. Results for the 3D case

The dependence of the recombination level on the laser
field intensity in the case of the real hydrogen atom is shown
in the upper plot of Fig. 1. It is nonmonotonic for t=3T7,
although the first symptoms of creating the stabilization win-
dow for gy=1.5-2.5 a.u. are visible already at t=27 and ¢
=2.5T (the latter is not shown). Note that the initial popula-
tion of the discrete states is nonzero because of the overlap
of the packet with some excited states. The total population
of bound states at =0 given by the dotted line is field de-
pendent because of the field dependence of the packet initial
position. At any rate this initial dependence is monotonic.
The flat maximum in the recombination level for longer
pulses becomes more clearly visible if one compensates the
influence of the slow drift on the recombination, which may
be done by calculating the populations after the laser pulse
has been switched off not exactly after an integer number of
cycles but at the close instants when the recombination level
has reached the highest value (see [9,10] for a detailed ex-
planation). The insets of Fig. 1 present the recombination
level for the 3D Coulomb potential obtained in such a way.
The nonmonotonic behavior of the recombination level seen
in the insets suggests that for 3D real hydrogen atom, the
stabilizationlike phenomenon is caused mainly by trapping
the population in a sort of the KH well and the slow drift
plays not very prominent but rather a destructive role.

However, one should be cautious using the notion of the
KH well in the context of the singular potential because in-
tegral (7) defining the KH potential, which describes an av-
erage of the original binding potential moving in the electron
frame during the one optical cycle, is divergent in this case;
thus it is not possible to calculate the populations of its
bound states. However a sort of trapping definitely occurs in
the sense that a part of the packet does not leave the vicinity
of the nucleus.

In contrast to the case of an atom with a singularity, a
nonmonotonic behavior cannot be observed for few-cycle
pulses in the case of the 3D smoothed model atom. The
recombination level systematically decreases for a growing
electric field (see the lower plot of Fig. 1). Comparing the
lower plot of Fig. 1 and its inset, that is, the population of the
eigenstates of the smoothed model atom perturbed and not
perturbed by the slow drift, one may conclude that in the
three-dimensional case of the smoothed model atom the val-
ues of the recombination level are not disturbed by the slow
drift; thus it should depend solely on the amount of popula-
tion trapped in the KH well bound states. To check this we
have calculated the total population of the bound states of the
KH wells for various electric field intensities. It is shown in
Fig. 2. Indeed the values of the KH well total bound-states’
population are very close to those of the population of the
bound states of the original potential (lower plot of Fig. 1).
This is not the case in one and two dimensions, where the
influence of the slow drift is more significant.

We have checked that only the populations of a few
bound states with lowest energies (of both potentials) are
significant during the recombination process. Figure 3 shows
that the populations of higher excited states are much smaller
than the population of the ground state and of a few lowest
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recombination level
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FIG. 2. The sum of the final population levels of the KH states
depending on electric field intensity in the case of the 3D smoothed
model potential. The populations were calculated at the same time
instants as in the previous figure.

excited states. It encourages one to believe that limiting our-
selves to nearly 15 states with lowest energies is a good
approximation for calculating the recombination level. The
same applies to the eigenstates of the KH wells.

We have also calculated the probability (not shown) of
finding the electron close to the nucleus, given by an integral
of the square modulus of the wave function over (—2gg
—A,A) a.u. in the z direction and (0,A) a.u. in the s direc-
tion. It is often considered as an approximation to the sur-
vival probability, especially if the eigenstates of the potential
are not available. In our calculations we have taken A=5,
which seems a reasonable characteristic length, on which the
results only weakly depend. Our result is that this probability
is monotonic in both cases and decreases with a growing
field intensity. This means that in the 3D case this approxi-
mation does not work well. As we will see below, it works
much better in the 2D and 1D cases.

0.12
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0.02

0
0.1
0.08
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0.02

bound states populations

state (n,m)

FIG. 3. The population of a few lowest bound states for g,
=5 a.u. in both studied 3D cases (singular potential, upper plot;
smoothed potential, lower plot) ordered according to growing
energy.
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One may interpret the differences of the recombination
levels for the two classes of potentials (or the corresponding
ionizations levels) as differences of a more physical nature.
If one assumes that the smoothed model atom better imitates
the case of a massive nucleus (and thus of a larger “core”),
then one may claim that relatively light ions exhibit a non-
monotonic dependence of the recombination level on the la-
ser field intensity while the heavy ones have no such prop-
erty.

It should be stressed that during the ionization in the re-
gime of superintense laser fields, it is difficult to separate the
recombination and ionization processes. Both occur simulta-
neously. Even for usual ionization, i.e., when the initial
packet is chosen as the ground state of the binding potential,
the oscillatory motion of the released electron causes the
backscattering that is always accompanied by the recombi-
nation already at the first cycle of the electric field. This
leads to the characteristic comblike shape of the total occu-
pation level. One finds a similar behavior for recombination,
although many aspects of the dynamics of the two processes
differ much.

In our simulations the initial position of the electron was
fitted to the electric field applied to the electron by setting
z(T/2)=0. In an almost free-electron regime it leads to
2(0)=—2¢,/ . The idea was to perform simulations for such
an electron from a whole beam for which the probability of
an efficient recombination after half a cycle is largest. One
should however keep in mind that the packet will adjust to
the shape of new dynamically binding potential, i.e., the KH
well [6], by shifting toward the center of this well. As a
consequence the maximum of the occupation of the bound
states as the function of the initial position z shifts toward
smaller values (not shown). Unfortunately it happens during
the time of a few cycles, so even the attosecond regime does
not protect against it. Moreover, for longer pulses the idea of
choosing the initial position, taking into account this shift, is
also in vain because of the slow drift phenomena appearing
for longer times.

Due to the long-range potential the initial occupations of
some excited states in our simulations are significantly larger
than zero. However, we are rather concentrated on the de-
pendence of the recombination level on g, (exposing the sta-
bilizationlike phenomena) rather than on the recombination
efficiency itself. Furthermore one can lower the initial popu-
lation by shifting the initial position of the electron toward
the direction opposite to the nucleus. The total occupation at
t=0 (initial) depends stronger on the initial position shift
than that at later times, at least for the shift in the range
between z,—2 and zo+2 a.u. (not shown).

Additionally, doubts may arise whether the effect visible
for such restrictive initial conditions may survive in experi-
mental conditions in which the velocity and the position of
the electrons in the beam vary. Thus we also varied the initial
position of the electron by 1 and by 2 units in both directions
along the x axis for each electric field intensity. (In the os-
cillating motion this averaging is also equivalent in some
sense to varying the velocity.) For 1> 1T the total recombi-
nation level, dependent on the initial position, changes al-
most monotonically in the range of (zy—2,zy+2); thus the
averaged results are close to the original ones obtained for
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FIG. 4. The final level of the recombination as in Fig. 1 but
averaged over the packet initial positions [zo(eg)—1,z¢(gg)+1] for
all values of g(; singular potential, upper plot; smoothed potential,
lower plot.

default initial positions (see Fig. 4). As was discussed earlier,
a monotonic dependence of the total bound-states’ popula-
tion during the recombination occurs in a wide range of the
initial positions because the maximum of total recombination
level as a function of the initial position is shifted by about 2
a.u. from z, toward the nucleus because of the phenomena of
adjusting the wave packet to the shape of the KH well.

We have also performed some tests in which the initial
position shift was compensated by an initial packet momen-
tum. The results of those simulations were similar to the one,
in which the initial position shift was not compensated. This
is because the compensation is actually effective only at 7
=0.5T. It does not help for larger times.

As it was already mentioned, in the three-dimensional
case the slow drift plays a less important role in forming the
stabilization window than in one- and two-dimensional ones.
It is however present, especially in the case of potentials with
a singularity. Such potentials more strongly influence the
wave function. It is also reflected in the wave-packet struc-
ture. Figure 5 shows the modulus square of the wave func-
tion after 37 for various electric field intensities. The left-
hand plots show the cases of the Coulomb potential; the
right-hand ones show the cases of the smoothed model atom.
The general shape of both families of the wave packets is
similar, but a more developed wave-packet structure is cre-
ated in the case of the singular potential. One can recognize
in it the so-called double-ring structure noticed by us earlier
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FIG. 5. The wave function in the z and s coordinates (trans-
formed back to the standard cylindrical coordinates, i.e., divided by
\s) for t=3T and for various laser field intensities. The spatial range
of the images is (=30,15) a.u. in the z direction and (0,17) a.u. in
the s direction. The blackness of the plot is proportional to the
square of wave-function modulus. The case of the singular hydro-
gen potential is presented in the left-hand side, and that of the
smoothed model potential is in the right-hand side.

in 2D simulations [7]. It is caused by different ionization and
recombination rates depending on whether the wave packet
currently rests at the center of the potential or it is far from
scattering center and/or moves. This structure oscillates in
the rhythm of the electric field. It has the form of two sets of
concentric rings, each for the corresponding turning point. In
three dimensions it has the shape of spheres; the intersections
of which for any ¢ give the shape of rings visible at Fig. 5.

Some additional information on the 3D wave-packet dy-
namics and its slow drift may be gathered from the final
expectation value z; of the position and from the position of
maximal value of the probability density of the wave packet,
i.e., the position in which the probability of finding electron
is largest (not shown). In Fig. 6 the expectation values of the
wave-packet z position after an integer number of cycles and
after an odd number of half cycles are shown. In the case of
the singular hydrogen atom some deviations from the initial
position which depend on laser field intensity may be ob-
served after an integer number of cycles and from z=0 for an
odd number of half cycles. It is most noticeable for gy=2.
Moreover for both types of the potential this position gradu-
ally shifts toward the positive values of z according to the
adjusting of the wave packet to the KH well shape (very
short pulses end before this process has been finished). How-
ever, as mentioned earlier, in the regime of such short pulses
this drift in the 3D case does not influence much the process
of creating the stabilization window. The plots of the maxi-
mum of the probability density of the wave packet generally
coincide with the plots of the expectation value, except for
an integer number of cycles and simultaneously for g, in the
range between 3 and 4 for which the maximum switches to
the z=0 (the other minimum of the KH well).

The expectation value of the electron position is very sen-
sitive to any numerical inaccuracy. Thus it is advisable to
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FIG. 6. The final expectation value of the position z; of the 3D
wave packet as a function of the laser intensity gp. The position of
the wave packet after an odd number of half cycles should be close
to zero if the slow drift were absent; the position after a full number
of the cycles should be close to zp=—2¢&,/w* in such a case. Any
deviations from that pattern reveal the presence of the slow drift.
The inset of the upper plot shows, for the potential with the singu-
larity, the series of plots of (x) after full cycles for various grid steps
and for the same space range (from 1024 X 512 up to 8192 X 4096).
Except for the largest grid step the differences are almost
indistinguishable.

check whether the results are independent on numerical de-
tails, especially on the space range and the grid or time steps.
The last test was already described in Sec. II D. The space
range was tested by taking a twice larger range with the same
grid and time step. The results were the same. Also changing
the grid step (number of nodes with the unchanged space
range) does not influence the results much, at least for g
>2. The computed position expectation value converges al-
ready for the grid settings used for all calculations in this
paper (see the inset of Fig. 6).

B. Results for the 2D case

The general results for the 2D cases are similar to the
ones obtained in 3D simulations, but the stabilizationlike be-
havior of the recombination level for the potential with sin-
gularity is more prominent. The recombination level depen-
dent on the laser field intensity in the case of the 2D
hydrogen atom is shown in the upper plot of Fig. 7. Its be-
havior varies at various stages of the recombination process.
After 0.5T (not shown), i.e., at the time instant of the first
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FIG. 7. The final level of the recombination as a function of the
electric field intensity in the case of the 2D hydrogen atom singular
potential (upper plot) and the 2D smoothed model potential (lower
plot). The populations were calculated at initial moment as well as
after exactly one, two, and three optical cycles, except for the inset
in the lower plot which is prepared for time instants at which the
sum of the populations exhibits a local maximum. The inset in the
upper plot is prepared exactly for 1.57 and 2.57.

contact of the incoming wave packet with the nucleus, there
is no nonmonotonicity—the recombination level systemati-
cally grows, at least in the range of g, between 1 and 5 a.u.
After 17, i.e., when the broadened wave packet returns in the
vicinity of its initial position, the level reveals a relatively
large maximum for £,=2.25 a.u. At later times (27 and 3T
shown in the upper plot and 1.57 and 2.5T shown in its
inset), the maximum shifts to gy=1.75 a.u. and significantly
decreases. At the same time after an integer number of the
optical cycles a wide minimum in atom survival probability
appears for values of g, between 2 and 3.5 a.u.

Similarly as in the 3D case such a nonmonotonic behavior
of the recombination level is absent for the smoothed model
atom (see the lower plot of Fig. 7) although its value is
generally twice as large as in the case of the singular hydro-
gen atom. We have also calculated this quantity, compensat-
ing the slow drift. The inset in the lower plot of Fig. 7 pre-
sents the recombination level for the smoothed model atom
calculated in such a way. It corresponds well to the popula-
tion of the sum of the KH well bound states discussed below
(cf. Fig. 12). One can see that this procedure reveals only a
slight minimum, which appears around g,=1.75 a.u. at 7,
~3T. However, the slow drift, which shifts the wave packet
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FIG. 8. The population of a few lowest bound states for g,
=5 a.u. in both studied 2D cases (singular potential, upper plot;
smoothed potential, lower plot) ordered according to growing en-
ergy. Higher states are less populated thus the truncation to a few
lowest states is justified.

toward the nucleus (z=0) for this value of the laser field
intensity, cancels this minimum in the case of exactly f;
=3T (see below for additional comments on the slow drift).

We have checked whether the populations of the bound
states in the 2D case tend to zero for a growing energy. In
addition to the states presented in Fig. 8 we have checked
that the sum of populations of additional 13 states (not
shown) is smaller than 0.006 and thus negligible.

The difference between the results obtained for the singu-
lar hydrogen atom and for the smoothed model atom is even
more distinct for time-dependent quantities. As an example
we present in Fig. 9 the time-dependent recombination level
for both potentials. Please note that a more complex structure
of the time-dependent recombination level in the case of the
singular hydrogen atom is related to a more complex poly-
morphic structure of the wave function, i.e., the already men-
tioned double-ring structure [7] which is much more promi-
nent in the case of the singular hydrogen atom that is visible
in Fig. 10 (see also the description below).

In contrast to the 3D case the recombination level in 2D
presented in Fig. 7 should be considered as dependent on
both the populations of the bound states of the KH well
corresponding to the used binding potential and the slow
drift of this well (and thus of the electron wave packet)
which occurs in the range of (—2g,/®?,0) (cf. [9,10]). This
slow drift, much more prominent in the 2D case than in the
3D one, is due to the interaction of the quickly oscillating
packet with the binding potential. The turning point of the
slow drift occurs when the packet performs a quick oscilla-
tion without passing the nucleus, i.e., remaining on its one
side. Figure 10 presents a few snapshots of the wave function
taken after an integer number of the optical cycles. The drift
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FIG. 9. The dynamics of the sum of the populations of a few
lowest bound states in the singular hydrogen atom (upper) and
smoothed model atom (lower). A more complicated structure of the
recombination level in the former case is caused by a better devel-
oped double-ring structure of the wave function.

of the expectation value of the packet position toward the
center of the binding potential along the z axis is clearly
visible. Because of the attosecond regime of the pulse dura-
tion this slow drift has no chance to reveal its oscillatory
character as was observed in longer simulations [6,10]. The
process of forming the KH well is also visible together with

1T | - - e

2T - -

3T .- -

FIG. 10. The evolution of the 2D wave function for gg=5 a.u.
presented in three snapshots calculated for #,=1T7, 2T, and 3T. The
spatial range of the images is (—15,15) a.u. in both directions. The
blackness of the plot is proportional to the square of wave-function
modulus. The case of the singular hydrogen potential is presented in
the left-hand side, and that of the smoothed model potential is in the
right-hand side.
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FIG. 11. The final expectation value of the position z; of the
wave packet as in Fig. 6 but for 2D; singular potential, upper plot;
smoothed potential, lower plot.

the double-ring structure caused by the scattering on the
nucleus. The effect of scattering is strongest when the packet
temporarily rests, which occurs twice a period; this leads to
the already mentioned double-ring structure (cf. [7]). Simi-
larly as in the 3D case, this structure is much better visible
for the hydrogen atom because of its singularity which cre-
ates a more effective pair of the scattering centers in the KH
picture.

The case of a relatively low laser field intensity (g
=1.0-2.0 a.u.) is especially difficult to interpret since both
the forces due to the binding potential and due to the external
electric field are comparable. A fully reliable model for this
case is unavailable. More complex double- and triple-peak
structures of the time-dependent recombination level visible
at the upper plots of Fig. 9 for £y=1.0 and £;,=2.0 a.u. are
caused by an interplay of the two phenomena: a polymorphic
structure of the wave function rescattered on the singular
binding potential and an additional velocity which reduces
the total bound-states’ populations and is due to the slow
drift (it also shifts in time the instant of reaching the turning
point). It is well visible at the movie presenting the series of
the wave-function snapshots for a singular atom potential,
available in Ref. [26].

The presence of the slow drift in the 2D case is also
confirmed by Fig. 11, which shows the expectation value of
the position z; at the instant of switching the pulse off after a
given time (t,=0.57—3T). The elimination of the slight sta-
bilization window in the recombination level of the
smoothed model atom has already been discussed. In the
case of singular potential the dependence of the z, on the &,
looks more dramatic. At the same time a comparison of the
recombination level calculated with and without compensat-
ing the slow drift (the latter is not shown) convinces one that
the slow drift influence on the recombination level for g,
<3 is less evident; both plots look much the same in this
range of laser intensities. It is because in this case the value
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FIG. 12. The sum of the final populations of the 2D KH well ten

lowest bound states as a function of the electric field intensity, cf.
Fig. 2.

zy is strongly modified by the ionized parts of the wave
packet creating the double-ring structure, and thus this quan-
tity does not reflect well the slow drift of the trapped part of
the wave function. However, for 5> 3 the slow drift signifi-
cantly lowers the value of the recombination level.

It is possible to calculate the population of the KH well in
the case of the smoothed model atom (Fig. 12). In the range
of gy between 1.0 and 5.0 a.u. it is monotonic for r=17, but
for t=2T and 3T slight maxima appear at gy=2.75 and g,
=3.5 a.u., respectively. This corresponds to the position of a
slight maximum visible for the recombination level of the
smoothed model atom after taking into account the influence
of the slow drift—see the inset in the lower plot of Fig. 7.
Notice that in the 3D case the dependence of the sum of the
KH well bound-state occupation level on the strength of the
laser field is monotonic for all laser-pulse lengths used in our
simulations.

As we have noticed earlier, it is not possible to calculate
the KH well for the singular hydrogen and in consequence its
total bound-states’ populations are not available either. One
can however estimate an analog of the total population of the
KH well or rather the trap with an infinite depth placed in the
area of the free oscillations, taking into account also the slow
drift, by calculating the probability of finding the electron in
the corresponding area, i.e., (zf—A,zf+280/w2+A) in the z
direction and (-A,A) in the x direction (not shown). After 17
it is almost constant with a small local maximum at g,
=2.25 a.u. It corresponds to the maximum at the recombi-
nation level for £y=2.25 a.u. after 17, visible in Fig. 7 (up-
per plot). For t=3T another local maximum appears at g
=1.75 a.u., the position of which corresponds to the position
of the maximum in the recombination level after 27 and 37,
also visible in Fig. 7 (upper plot).

C. Results for the 1D case

There is a long tradition of using the smoothed model-
atom potential in one-dimensional simulations of strong laser
field interaction with atoms since it was proposed by Su and
Eberly in 1991 [16]. Warned by the discrepancies revealed
by 2D and 3D simulations we decided to revise also the
applicability of 1D smoothed model atoms for the simula-
tions of the recombination process. The comparison of the

PHYSICAL REVIEW A 79, 043404 (2009)

T T T T T
0T (odd only) -+
1T (odd only) -—+- 05 F
0.8 2T (odd only) --+- T
3T (odd only) —— 04 F %
0T -

T T T T
about 1T, 2T and 3T |
IT o 03 xRk
3T —%— B

0.6

recombination level

laser field intensity (a. u.)

FIG. 13. The final level of the recombination as in Fig. 7 but for
1D; singular potential, upper plot; smoothed potential, lower plot.

recombination levels for both potentials in the 1D case as a
function of the laser field intensity is shown in Fig. 13 (again
the upper plot presents the results for the singular potential,
and the lower one presents the results for the smoothed po-
tential). From the figure it follows that the exact shape of the
potential function around z=0 is also very important in one
dimension and the obtained results significantly differ in both
cases, namely, an analog of the stabilization appears for the
case of the smoothed model atom while it is absent in the
case of the singular atom potential. This might suggest that
some of the so-far-published results for a smoothed potential
could be uncertain or at least their applicability is limited to
rather heavy atoms with soft-core nuclei.

The study of the recombination of the electron in the pres-
ence of the long-range 1D potential was already published by
us in [10] but it was limited only to the smoothed model
atom. Moreover, the recombination level in [10] was roughly
estimated by calculating the ground-state population only,
which might not be precise enough (cf. the lower plot of Fig.
13 with Fig. 1 of Ref. [10]). Figure 14 presents the particular
final populations of the eigenstates after 37 and also con-
firms that in one dimension the truncation of the number of
states in the calculation of the recombination level in this
paper is justified but restricting ourselves to a single ground
state in [10] was not sufficient. The inset of the upper plot
shows again the importance of both odd and even states in
the case of the singular hydrogen atom potential.

Similarly as in the 2D case, the recombination level in the
smoothed model atom is about twice as high as in the singu-
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FIG. 14. The populations of the bound states as in Fig. 8 but for
1D. The sum of populations of the odd and even states is drawn for
the singular hydrogen atom (upper plot). The inset of this plot pre-
sents the populations of only even states.

lar hydrogen atom. However, in the 1D singular hydrogen
atom one should be more careful while choosing the eigen-
states, the population of which should be summed up. Be-
cause of the singularity of the potential all eigenvalues are
degenerate (every energy level has two corresponding states
with odd and even parities), and there is no agreement about
building the complete bases in this case as was described in
Sec. II. The upper plot of Fig. 13 shows three sets of pairs of
lines drawn with the same style (dotted for t=17, dashed for
t=2T, and solid for 37); the upper line is calculated for both
the even and odd states, while the lower one is only for the
odd states. It is clearly visible that the population of the even
states is comparable with population of the odd ones. Thus
one may claim that both odd and even states take part in the
electron evolution.

The electric field range, for which a wide maximum of the
atom survival probability (see Fig. 13) occurs in the recom-
bination process in the case of the smoothed model atom,
essentially varies in time. For =17 and r=3T the maximum
lies at about £y=3 a.u., while for =27 it is located at about
go=5 a.u. This is caused by the slow drift even if it is not
very prominent (see the lower plots of Fig. 15). It shifts in
time the instant at which the recombination level takes its
local maximum (note that the peak around this local maxi-
mum is very narrow); thus it is useful to measure the recom-
bination level exactly at the moment at which this maximum
occurs, i.e., at which there is no influence of the slow drift on
the atom survival probability (compare a similar plot in the
2D case presented in the inset of the lower plot of Fig. 7). It
is shown in the inset of the lower plot of Fig. 13. In the case
of the smoothed model atom such a procedure leads to ob-
taining a single value of the laser field intensity for which a
maximum of the recombination level occurs. The only maxi-
mum is now located around g,=3 a.u., which agrees with
the dependence of the total population of the eigenstates of
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FIG. 15. The final mean positions of the wave packet as in Fig.
11 but for 1D; singular potential, upper plot; smoothed potential,
lower plot.

the KH well on the electric field intensity presented in the
inset of Fig. 16 as well as the probability P(z;) of finding the
electron in the vicinity of the nucleus [namely, at an area of
(24— A,zp+280/ w*+A)] presented at the lower plot of Fig.
16. To conclude, one may claim that in the 1D case the
dependence of the recombination level in smoothed model
atom is generally determined by the dependence of the popu-
lation of the eigenstates of the KH well but it can be strongly
modified by the slow drift, if one measures the recombina-
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FIG. 16. The probability of finding the electron in the vicinity of
the nucleus as a function of the electric field intensity; the singular
potential, upper plot; the smoothed potential, lower plot. In the
inset: the sum of the final populations of the 1D KH well ten lowest
bound states as a function of the electric field intensity.
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tion at a fixed time, even if the drift amplitude is not very
large. Thus in the context of the influence of the slow drift
the 1D case of the smoothed model atom is similar to the 2D
case and not to the 3D case in which the slow drift does not
disturb the final populations much.

The case of the 1D singular hydrogen atom is more diffi-
cult to interpret since it is not possible to calculate the cor-
responding KH well. Instead we again calculate the probabil-
ity P(z;) of finding the electron in the vicinity of the nucleus
(as explained above) presented at the upper plot of Fig. 16. It
is a growing function of g, which suggests the presence of
the stabilizationlike phenomenon. However, the slow drift,
which is much stronger in the case of the singular potential
than in the case of the smoothed model atom, causes the
recombination level visible at the upper plot of Fig. 13 to be
a decreasing function of g,. Thus the slow drift eliminates
stabilization in this case, especially when the recombination
level is calculated after exactly full cycles. Only for t=3T a
slight and relatively wide maximum is seen at gy=4 a.u.

Changing the value of parameter a in Eq. (2) causes a
gradual transformation of singular hydrogen atom potential
into the smoothed model-atom potential. We have checked
how the value of parameter a influences the final recombina-
tion level. It depends on the laser field intensity used in the
recombination process; for higher intensities of g
>3.5 a.u. the recombination level changes monotonically. It
changes more rapidly for a<<0.25 a.u. than for a
>0.25 a.u. For lower intensities the change is more irregu-
lar, especially for small values of a and long times 7,=2T.

IV. CONCLUSIONS

In the present paper we have described the results for the
electron recombination with the ion modeled by a long-range
potential in one, two, and three dimensions in the presence of
an ultrastrong attosecond linearly polarized laser pulse. We
have discussed the differences stemming from the exact
shape of those potentials, in particular from the presence of a
singularity for Coulomb potentials or its absence for
smoothed potentials, often used in model numerical studies.
The recombination level has been analyzed in terms of the
final populations of the bound states, the final probability of
finding the electron in the vicinity of the nucleus, and when
possible, in terms of the final populations of the eigenstates
of the KH well.

A nonmonotonic dependence of the recombination prob-
ability on the field intensity, which is a counterpart of the
stabilization against photoionization, has been discovered for
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a 3D hydrogen atom, described by the usual singular Cou-
lomb potential, but surprisingly not for a model with a
smoothed potential. However, one should be aware that our
choice of the initial states used in the simulations, the posi-
tions of which depend on the laser field intensity and the
projections of which on the atom excited states are not neg-
ligible, surely influences the details of the recombination
process as well as the final bound-state occupations but not
the general qualitative observation. A similar observation of
nonmonotonicity of the recombination level is true for two-
dimensional models. In the case of one-dimensional model
atoms the situation is the opposite; the nonmonotonicity oc-
curs for smoothed potentials but not for singular ones. This is
due to the fact that in three and two dimensions the packet is
allowed to broaden in the directions perpendicular to field
amplitude and the packet fragmentation on a singular poten-
tial is not as strong as in one dimension. The effect of the
packet slow drift has been shown to influence the final re-
sults but it is not responsible for the essence of the effect.

The manifestation of a nonmonotonic recombination
probability as a function of the laser field intensity and the
differences between the results for singular and smoothed
potentials for one-, two-, and three-dimensional models are
in our opinion the most important message of this paper.
Taking into account the importance of the smoothed model-
atom potential for quantum optics in ultrastrong laser regime,
it is crucial to be aware of its limitation. In contrast to our
earlier results obtained for relatively long pulses, the slow
drift in the regime of few-cycle pulses is generally respon-
sible rather for eliminating or reducing the stabilization phe-
nomenon than for its creation. In addition we found that the
states of the 1D hydrogen atom with even parity, sometimes
considered as nonphysical, become populated which con-
vinces one about their physical status.
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