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Fast charged-particle impact ionization of endohedral atoms
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The differential generalized oscillator strengths for ionization of the s subshells of He and Ne atoms
encapsulated inside a fullerene, Cg cage, along with the single differential cross sections for ionization by fast
electrons are calculated. The calculations have been performed using the two different model potentials to
represent the fullerene shell. It is shown that the modulations of the wave function of the ejected electron
caused by the interference between direct ejection and the waves scattered by the fullerene shell result in
confinement resonances in the generalized oscillator strengths and the resulting impact-ionization cross sec-
tions. When the energy transfer to the target is close to that of the giant plasmon resonance in Cg, the
interchannel interaction of the atomic ionization channels with the Cg ionization channels significantly influ-
ences the cross section for impact ionization of the confined atom. The formulas describing this interaction are
derived and it is shown that for small momentum transfer this interaction is related to the dynamic polariz-
ability of Cg. The general formulas are used to calculate impact ionization both of the He atom confined in Cg
and of the empty Cg¢, cage. The cross section of the latter process is compared to available experimental data.
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I. INTRODUCTION

The discovery that atoms can be encapsulated inside a
fullerene [1] has stimulated significant activity within the
scientific community. The static and dynamic properties of
these new kinds of molecules, fullerene nanostructures, are
novel and, thus, there has been great interest in studying
them from a basic science point of view [2]. In addition,
there are many possible applications of these caged-atom
molecules that are being extensively pursued. For example,
endohedral confinement can isolate the encapsulated atom
from its environment, thereby serving as an elemental qubit
for a quantum computer [3,4]; this isolation could also be
employed in creative drug delivery schemes [5,6]. Moreover,
the alteration of the properties of the confined atom by the
surrounding fullerene alters the atomic properties [2], giving
rise to the possibility of designing nanostructures with spe-
cific properties. All of these reasons, then, point to a rapid
expansion of interest in the study of atoms endohedrally con-
fined in fullerenes, particularly Cg.

The response of endohedral atoms to ionizing radiation,
the process of photoionization, has been the subject of a
large number of studies, primarily theoretical [7-16] but also
some experimental [17,18]. However, the situation is differ-
ent for electron-impact spectroscopy of endohedral atoms. To
our knowledge, there are no reported theoretical or experi-
mental investigations of charged-particle impact ionization
of atoms, A, localized inside a Cg, cage, generally denoted as
A@Cq,. At the same time the impact ionization of Cg
fullerenes, i.e., the empty fullerene cages, by fast electrons is
actively studied both experimentally [19-24] and theoreti-
cally [25,26]. There is a reason to believe that the electron-
impact ionization studies of endohedral atoms will follow
soon. In any case, to shed some light upon the role of the
fullerene shell, Cg, in the charged-particle impact ionization
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of an encapsulated atom, we have initiated a theoretical pro-
gram to investigate such collisions.

An essential factor limiting the possibility of electron
spectroscopy is a necessity to separate a signal responsible
for ionization of electrons under study (for example, elec-
trons of the given atomic subshell) from a signal associated
with the total current of electrons ejected from a target. In the
case of endohedral atoms this problem is significantly sim-
plified by the fact that the electronic subsystems of the
fullerene shell and captured atom can be considered, under
certain conditions and for a certain group of the encapsulated
atoms [3,4], independently of each other. Therefore, com-
parison of the electron spectra of the A @ Cg4, molecules and
empty Cg, provides an opportunity to reliably separate a con-
tribution of the electrons knocked out from the captured
atom A.

When the energy transferred by a fast electron to the mol-
ecule A @Cy is far from the characteristic energies of col-
lective (or plasmon) electronic excitations of Cg,, the
fullerene shell can be considered, to an excellent approxima-
tion, as a static potential acting on the electrons of the en-
capsulated atom. When the transferred energy becomes
closer to the energy of the plasmon excitations, the picture
changes and the interaction of the electronic subsystems of
the Cg4o and caged atom cannot be neglected. In the photo-
ionization process, the giant dipole excitations of the Cg
couple to the electrons of the endohedral atom and provide
the dominant ionization mechanism in this energy range
[15,16]; the same should be in evidence for ionization engen-
dered by charged-particle-impact ionization.

In this paper we consider the both mechanisms for impact
ionization of endohedral atoms, namely, impact atom ioniza-
tion due to direct Coulomb interaction of fast electron with
confined atom and ionization of this atom through coupling
with plasmon excitations of Cgy. The paper is laid out as
follows. The principal expressions for the single differential
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cross section (SDCS) and differential generalized oscillator
strengths (GOSs) within the plane-wave Born approximation
(PWBA) that are generally applicable to any spherically
symmetric targets, including atoms localized in the center of
a fullerene shell, are given in Sec. II. In Sec. III presented are
the static model potentials approximating the effects of the
fullerene cage and the limits of their applicability to describe
endohedral atom impact ionization are defined. Section IV
shows the calculated results for the impact ionization of the
s and 2s levels of the Ne atom confined in Cg, with the use
of these potentials. Since the ionization energies of these
levels are far from the energies of plasmon oscillations of
Cqo, the static potential approximation for GOS and SDCS
calculations near the electron ejection thresholds is quite rea-
sonable. The formulas describing endohedral atom impact
ionization with dipole plasmon oscillations of Cg, are de-
rived in Sec. V. It is shown that for small momentum trans-
fer, which dominates the impact-ionization process, the prob-
lem reduces to multiplying the dipole transition amplitudes
by a screening function defined by the dynamical polarizabil-
ity of Cg, just as in the case of endohedral atom photoion-
ization [27]. The results are illustrated by calculations of the
GOS for impact ionization of the 1s level of endohedral He.
In Sec. VI the total cross section for impact ionization of the
C¢o molecule by fast electrons is calculated and compared to
experimental data. Finally, Sec. VII gives our conclusions.

II. SCATTERING PROBLEM

Within the framework of the PWBA, valid for fast inci-
dent charged particles and small energy transfer, the SDCS
d(f,,,o/ de for the ionization of an atom, differential in the
energy of the ejected (secondary) electron & (or, equivalently,
the energy loss of the impinging fast electron, In10+s:AE,
where L, is the ionization potential of the atomic electron),
is described by [28-30] the following expression (atomic
units are used throughout this paper):

dUnl nl
—L = — O 2+ 1)2N+ 1)
de Plk AN

Iy 1 x)zfqmax \ 1ndq
X =, 1
(0 O O . |QlO[| q3 ( )

where k is the momentum of the electron ejected from the
confined atom, ano is the number of electrons in the initial
atomic nl; subshell, the symbol in brackets is the 3 symbol,
and the matrix element, Q;‘O ;» 18 given by

0l (q)= f Poy(Dir (gD P(r)dr. (2)
0

The functions P,,,O(r) and Py(r) are the radial parts of the
one-electron wave functions for the initial ¢!(r) and final
@;(r) states of the confined A atom, respectlvely, Jr(gr) is the
spherlcal Bessel function [31], and q=p,—p, is the momen-
tum transfer, where p; and p, are the momenta of the fast
(primary) electron before and after collision with the atom.
The upper and lower limits of the integral in Eq. (1) are
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Gmax = P1 + P2 =Pp1 + \p1 - 2AE,
—
Gmin=DP1—P2=Dp1 - \p; - 2AE. 3)

The asymptotic behavior of the continuum wave function
Py(r) in Eq. (2) is given by

. 1 i
Py(1),—cc — sin| kr + Eln 2kr - Y + 0, (4)

where ¢, is the phase shift.

The charged-particle impact-ionization process can also
be characterized by the differential GOS [28,30], differential
in the kinetic energy £=k?/2 of the secondary electron

df(q.e) _ 4Nn10
de

) |Q101(Q)|2
(5)

In terms of the differential GOS, the single differential cross
section, Eq. (1), is given by

doy, 4w f max df(q,e) dg
de _p%AE

E QL+ 1)\ + 1)(O 0 0

. 6
a8 4 ©
Thus, the single differential cross section is seen to be simply
an integral over the differential GOS. It is useful to describe
the ionization cross section in this form because the limit of
the differential GOS, as the momentum transfer g — 0, is the
differential optical oscillator strength, which is proportional
to the photoionization cross section [30]. Thus, investigation
of the differential GOS gives insight into how the features
seen in the photoionization cross section (¢=0) are affected
by the value of the momentum transfer and, as a result, how
these features show up in the charged-particle impact-
ionization cross section. Note that all of these PWBA expres-
sions are generally applicable to any spherically symmetric
targets, including endohedral atoms.

III. MODEL POTENTIALS OF THE FULLERENE SHELL

The fullerene cage is nearly spherical with a radius R
~6.64 a.u. [32]. The size of the empty cavity inside the
cage significantly exceeds the extent of the ground-state
wave function of an atom located at the center of the cage.
Thus, in the matrix element of Eq. (2), the wave function of
the nl, subshell in the initial state of the confined atom,

n,O(r) is essentially the same as the corresponding free-
atom wave function. The situation is different for the final-
state continuum wave functions; since the continuum wave
functions are of infinite extent; they are strongly impacted by
the Cgy cage potential. This results in interference between
the ejected electron wave emerging directly and the waves
scattered by the Cg4, cage potential; this interference gives
rise to confinement resonances [11,12]. For small ejected
electron energies, the wavelength A=2m/k significantly ex-
ceeds the distances between the carbon atoms forming the
fullerene shell, so that the outgoing electron perceives the
Cgy cage potential as a uniform spherical layer of the
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“smeared” carbon atoms. This electrically neutral layer can
be well approximated as a short-range potential, U(r), that
represents the effect(s) of the fullerene shell on the confined
atom. Within this framework, the calculation of the con-
tinuum wave functions reduces to solving the radial
Schridinger equation in which potential U(r) is added to the
free-atom potential.

There is, however, an important caveat in connection with
this approximation; replacement of the Cg, potential with a
one-dimensional static potential U(r) is reasonable only
when the energy transferred to the endohedral atom by fast
charged particle is far from the excitation energies of the
giant plasmon resonance in the Cg, shell itself at ~20 eV,
and to a lesser extent, the much smaller plasmon resonance
at ~40 eV, as is known from photoionization [15,16,33,34].
This is because in the vicinity of these plasmon resonances
in the Cg, cage, the ionization of the confined atom is
strongly affected by the Cg, plasmon resonances via inter-
channel coupling [16]. In Sec. IV we consider impact ioniza-
tion of the Ne ls and 2s subshells near their thresholds
(roughly 900 and 50 eV, respectively) thereby insuring that
the transferred energies AE do not overlap the plasmon ex-
citations. In any case, as delineated above, within the range
of transferred energy AE appropriate to Ne ls and 2s, the
representation of the Cgq shell potential as a static potential
U(r) is an excellent approximation.

In this paper two model potentials U(r) for the fullerene
shell are considered. The first, a spherical square-well poten-
tial [12], is defined as

0, for r =Ry,
U(r): _UO, for R0<r<R0+A, (7)
0, for r=Ry+A.

Here R, is the inner radius of the cage potential, A is the
thickness of the fullerene shell formed by the smeared car-
bon atoms, and U is the potential-well depth. The potential
parameters used are Ry=5.8 a.u., A=1.9 au., and U,
=8.4 eV. These parameters result from a fit to experimental
structural data for the empty Cqy molecule and they repro-
duce the electron affinity of empty Cgy: [,,,=2.65 €V [32].
With this model potential, the continuum wave functions
Py(r) for secondary electrons ejected from the caged atom
are calculated in the one-electron approximation with addi-
tion of the model potential, Eq. (7), to the atomic Hartree-
Fock potential

The second model potential of the fullerene shell, called
the bubble (spherical & function) potential [35-37], is defined
by

U(r)=—B&(r—R), (8)

where R is the mean shell radius, taken as 6.64 a.u. [32], and
the parameter B is chosen to reproduce the experimental
electron affinity of empty Cg, which yields B=0.442 a.u.
Introduction of this bubble potential, Eq. (8), into the
Schrodinger equation simply introduces a multiplicative fac-
tor, D,(k), to the continuum wave function for the free atom.
This factor depends upon both orbital angular moment / and
k. Therefore, within the endohedral atom model based on the
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bubble potential of Eq. (8), the matrix element, Eq. (2), be-
comes

O =Dit) [ Pyianpudr O

with Py(r) being the free A atom continuum wave function.
The amplitude factor D;(k) can be expressed via the regular
Py(r) and irregular-at-zero Gy(r) solutions of the Hartree-
Fock equations for the isolated atom [36,37]

Gu(R)

P(R) ]’ (10)

D/(k) = cos n;(k){l — tan 7,(k)

where the additional phase shift 7,(k) due to the potential
well, Eq. (8), is defined by

Py(R)
P (R)G,(R) + k2B’

tan 7,(k) = (11)
The irregular-at-zero wave function, G(r), in Egs. (10) and
(11) has the asymptotic form

1 al
Gi(r), e — —cos| kr + Eln 2kr - Py +6/.  (12)

The logarithmic derivative jump, AL, at r=R defines the pa-
rameter B through the relation AL=-2B=-p(1+coth SR)
[38], where B=\2I,,.

IV. IMPACT IONIZATION OF Ne @ Cg,

The differential GOSs, df/de, were calculated for a vari-
ety of momentum transfers, ¢, for secondary electron ener-
gies & up to 80 eV using modified versions of the codes of
Ref. [39]. Eight partial waves with orbital angular momenta
0=/=7 were taken into account in the summation of Eq.
(5); the contribution of higher partial waves was negligible
for the range of ejected electron energies considered here.
The calculated results for the generalized oscillator strengths
for the ionization of the 1s and 2s states of atomic Ne for
Ne @ Cg are presented in Figs. 1 and 2. Shown in each fig-
ure are the results calculated with each of the model poten-
tials, along with the results for the free Ne atom for compari-
son.

The outstanding features of these results are the oscilla-
tions in the differential GOS, df/de, as a function of second-
ary electron energy, for both atomic levels and in both mod-
els of Ne @ Cqy, as compared to the free Ne results, i.e.,
confinement resonance structure. Moreover, it is seen that
near the threshold the differences from the free-atom results
are particularly dramatic. It is also evident that, with increas-
ing secondary electron energy, the confinement resonances
die out, with the spherical square-well potential result dying
out much more rapidly (with energy) than the bubble poten-
tial result; in fact the bubble potential confinement reso-
nances are more prominent at all energies, but this is accen-
tuated with increasing energy. This difference occurs because
the bubble potential involves interference between two
waves, the direct ejected electron wave and the wave scat-
tered off the Cgy potential, while for the spherical square-
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FIG. 1. (Color online) Differential generalized oscillator
strengths calculated for ionization of Ne 1s of Ne @ Cg as a func-
tion of ejected electron energy for several values of the momentum
transfer ¢ (in a.u.) using two different models of the cage potential:
solid line—spherical square-well potential, dashed line—bubble po-
tential. Also shown is the calculated result for free Ne atoms—
dotted line.

well potential there are three interfering waves, namely, the
direct and the scattered waves from the inner and outer edges
of the potential. The bubble potential confinement reso-
nances are more prominent than those generated by the
spherical square-well potential for all energies because the
two waves in the bubble potential model can be exactly in
phase. Apparently, however, the three waves generated in the
spherical square-well model are never completely in phase.
As far as the decrease of the confinement resonances with
energy is concerned, clearly the amplitude(s) of the scattered
wave(s) diminishes with increasing energy. This is seen most
easily for the bubble potential where the phases 7,(k) ap-
proaches zero with increasing k, as seen from Eq. (11) so that
D,(k)—1 [Eq. (10)], i.e., the scattered wave becomes negli-
gible. Sample calculations (not shown) using a much nar-
rower (smaller A) spherical square-well potential, with U,
adjusted to produce the correct electron affinity for Cg, tend
toward the bubble potential results, indicating clearly that it
is indeed the interference of three waves that accounts, in the
main, for the differences between the two model potential
results. A similar tendency was demonstrated in the calcu-
lated Ne 1s, 2s, and 2p photoelectron angular distributions
from Ne @ Cg, [11] and the Xe 4d photoionization cross sec-
tion of Xe @ Cq, [40].

Comparison of the evolution of the differential GOS re-
sults to momentum transfer for Ne 1s and 2s, shown in Figs.
1 and 2, illustrates the dependence of the results on the ra-
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FIG. 2. (Color online) Differential generalized oscillator
strengths calculated for ionization of Ne 2s of Ne @ Cg as a func-
tion of ejected electron energy for several values of the momentum
transfer ¢ (in a.u.) using two different models of the cage potential:
solid line—spherical square-well potential, dashed line—bubble po-
tential. Also shown is the calculated result for free Ne atoms—
dotted line.

dius of the subshell being ionized in the confined atom. For
Ne 1s (Fig. 1) the shapes of the differential GOS curves re-
main practically unchanged with the increase of the momen-
tum transfer g by 2 orders of magnitude. The reason for this
striking phenomenon is related to the localization of the 1s
electrons. Specifically, the Ne s electrons (1,,=32.77 a.u.)
are localized near the nucleus within the radius range ry;
~(21,;)™"2~0.12 a.u. Thus, the integral, Eq. (2), will be
non-negligible only if the radial continuum wave function,
Py(r), has appreciable amplitude in this region. For this
Ne 1s case, the continuum wave functions, Py(r), are negli-
gible, in the region occupied by the 1s electrons for /> 1 for
the secondary electron energies being considered, owing to
the angular-momentum barrier [41]. Therefore, the primary
contribution to the sum, Eq. (5), arises from the matrix ele-
ments of electron transitions from the 1s atomic state into the
s and p continuua. However, for g=1 the Bessel function
Jo(gr;s)=1 and the electron transitions to the s state of the
continuum are suppressed because of the orthogonality of the
wave functions P,,(r) and Pyy(r). Hence, the main contribu-
tion to the sum, Eq. (5), is made only by the dipole transition
to the continuum and, according to Eq. (9), the confinement
resonance behavior in the GOS is defined by the dipole am-
plitude factor D,(k) only. Furthermore, by these arguments,
it is clear that for momentum transfer ¢g=1 the differential
GOS and associated confinement resonances for Ne 1s will
not change with ¢ as seen in Fig. 1. With the increase of
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momentum transfer, ¢, the situation changes somewhat.
First, in the dipole channel, j,(gr;,) is no longer just ~gr,;
it becomes oscillatory in the region occupied by the 1s elec-
tron and, thereby, the integral, Eq. (2), becomes much
smaller owing to the cancellation engendered by the oscilla-
tory behavior. In addition, the contribution of the monopole
s— s channel no longer vanishes because the approximation
Jolgris) =1 is no longer valid; but it is significantly smaller
than the dipole contribution. So, as exemplified for the g
=10 a.u. case shown in Fig. 1, the magnitude of the differ-
ential GOS for Ne 1s is far smaller than the corresponding
cases for lower ¢. In addition, the confinement resonance
patterns differ slightly from the lower ¢ cases owing to the
presence of the monopole channel. The contribution of all
the other transitions is negligible as before since the angular-
momentum barrier does not allow the continuum waves to
penetrate in the ls region, irrespective of the momentum
transfer.

A rather different picture is exhibited for ionization of the
2s level of the Ne atom with (ionization potential I,;
=1.93 a.u.) shown in Fig. 2. This occurs because the Ne 2s
wave function is significantly more diffuse than the 1s wave
function by a factor of 5 or so. This means that except for
very near the optical edge (very small g), where all contri-
butions to the GOS, except the dipole contribution, vanish
[30], there are a number of partial waves contributing to the
2s differential GOS, Eq. (5). Thus, while the Ne 2s confine-
ment resonance structure for g=0.1 a.u. is determined only
by the dipole term [D,(k) for the bubble potential], for larger
values many more partial waves come into play; the most
important being the s — d transitions. The dipole contribution
still dominates for the small ejected electron energies consid-
ered, but the other terms are no longer negligible. This is
seen for g=1 and 10 a.u. in Fig. 2, where the confinement
resonance structures differ from each other and from the ¢
=0.1 a.u. case, as a function of secondary electron energy,
for both potential models. In addition, for Ne 2s, the shapes
of the differential GOS differ substantially with momentum
transfer g, owing to the different contributions of the various
partial waves arising from the dependence of the oscillatory
behavior of the spherical Bessel functions on g. In any case,
for both 15 and 2s ionization of Ne by fast charged particles,
it is clear that for low energy ejected electrons, the confining
cage alters the differential GOS significantly.

Note that the energy and angular distributions of the fast
(primary) electron are simply proportional to the differential
GOS [30]. Thus, the confinement resonances exhibited in the
differential GOS, discussed above, will also be seen in the
energy and angular distribution of the scattered electron
when viewed as a function of energy. Integrating over the
angular distribution gives the single differential cross sec-
tion, do,,; /de [Eq. (6)], which involves an integral over the
momentum transfer. Since the positions of the confinement
resonances depend upon ¢, the confinement resonances will
be somewhat diminished in the single differential cross sec-
tion. But certainly, the importance of the confinement reso-
nances near threshold should be exhibited since this was evi-
dent for all values of g.

As an example, the calculated single differential cross
sections, da’nlo/ de, for the ionization of the 1s and 2s ground
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FIG. 3. (Color online) Single differential cross sections calcu-
lated for the ionization of 1s and 2s Ne subshells in Ne @ C¢, by
electrons with incident kinetic energy 7=8 keV using two different
models of the cage potential—the bubble potential (dashed line)
and the spherical square-well potential (solid line). Also shown is
the calculated result for free Ne atoms (dotted line).

states of Ne confined in a Cg, cage by incident electrons with
kinetic energy 7= p%/2:8 keV are shown in Fig. 3, where it
is seen that the cross sections of Ne from Ne @ Cg, are dra-
matically different both in magnitude and shape from the
free Ne atom over the whole energy range & under consider-
ation. As previously, the details of the results for the bubble
potential model and the spherical square-well model of the
fullerene shell potential are different, with the amplitudes of
the oscillations for the spherical square-well potential being
smaller. The results for both potentials, nevertheless, are
qualitatively identical. Since the endohedral resonances in
the 1s case comparatively weakly depend on the transferred
momentum, the resonance structure of the single differential
cross section practically repeats the differential GOS con-
finement resonance structure seen in Fig. 1.

V. PLASMON EXCITATION OF Cg

Up to this point the potential of the fullerene shell U(r)
has been considered as static. This approximation is no
longer valid when the energy transferred by fast charged par-
ticle to endohedral atom is close to the energy of the plasma
oscillations of the delocalized Cg valence electrons. In this
case the atomic ionization process induced via coupling with
the Cq excitations will compete with the process of direct
electron ionization from the atom A and in some cases even
dominate.

For an atom at the center of a fullerene cavity, the delo-
calized Cg, electrons localized in a spherical layer with
thickness A and a mean radius R can be considered as elec-
trons of an additional shell of atom A. Therefore, the inter-
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action of the Cg electrons with the electrons of the encap-
sulated atom can be described similarly to the intershell
interaction in a multielectron atom. In first order of this in-
teraction the amplitude of the endohedral atom impact ion-
ization (a matrix element of the Coulomb interaction of the
fast electron with the electrons of the both shells) can be
written as

M ={p,¢{|Vialp2, )

E <P1,<P,'C|V13|P27<Pfc><<PfC, QD,'a|V23|<PiCa <P7r>
Ef —Ef +AE

E{=<F.E;>F

E (P1> qu|Vl3|p2’(Pz ><qu > Pi |V23|<Pf QDf)

c
EC=r EC E; Ef AE+in

f>F

(13)

Here the first item is the amplitude of atomic impact ioniza-
tion in the PWBA and the second and third ones define the
intershell interaction between the electrons of the atom and
Cgo- The wave functions |p;) and |p,) in Eq. (13) are the
plane waves describing the fast primary electron, and |qpl
and |qof> are the wave functions of the Cg, electrons with
energles E and Ef, respectively. The summation in Eq. (13)
over E is performed over the initial states of the Cg elec-
trons occupying all the energy levels up to the Fermi energy
F. The summation over E is performed on all the excited
states of Cg including the 1ntegrat10n over continuum states;
the infinitesimal 7 shows the way around the pole. In the
Coulomb interaction operators V;;=|r;—r |, the vectors r;
are the radius vectors defining the coordinates of the fast
primary electron (r;), the secondary electron ejected from
the atom (r,), and an electron delocalized on the fullerene
shell (r3).

The radius of the localization region of an inner shell of
the atom A is of order r,~ (ZInZO)‘1/2< 1, while the radius of
electrons on the fullerene shell are approximated equal to the
mean radius, i.e., r3~R>1. Thus, to an excellent approxi-
mation, the operator for the Coulomb interaction of electrons
of these two shells is

I (ry-ry)
Vyg=m ———5—. 14
BTR R3 (14)

Because of the orthogonality of the atomic wave functions,
only the second term in Eq. (14) results in nonzero matrix
elements in the sums, Eq. (13). Thus, the Coulomb interac-
tion, Eq. (14), is factorized by the dipole operators acting
separately on the electrons of the atom A and fullerene Cyg,
respectively. The next orders of the expansion are respon-
sible for the electron transitions of higher multipolarity;
quadrupole, octupole, etc. We will not consider them here,
restricting ourselves to the lowest-order (and most important)
term in the expansion. From the dipole selection rules it fol-
lows that the second and third terms in Eq. (13) are different
from zero only when the orbital moment of ejected electron
is /=1y = 1. Therefore, in the sums for the partial amplitudes
defining the SDCS, Eq. (1), and the GOS, Eq. (5), the inter-
shell interaction influences the terms with the quantum num-
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ber A=1 only. These dipole partial amplitudes are then re-
written as

(nlold |kl>

0} (q) = (nlo|ji|kD) - —5—"af(q,AE).  (15)

Here (nly|d|kl) is the dipole matrix element,
(nlo|rlkl) :f Pnzo(”)rpkl(r)d”, (16)
0

and the function

<90,-C|j1|<Pf><<p ldle?)
E{ —Ef+AE

(g AE) = {

C .C
E; ,Ef

(e |d|(Pf><(P)§|jl|QDiC>:|
Ef —Ef-AE+in

(17)

is the generalized dynamic polarizability of the fullerene
shell. This polarizability differs from the usual dynamic po-
larizability of Cg by the fact that in it one of the dipole
matrix elements (¢° |d|qof> is replaced by the matrix element
of the Bessel function. In the optical limit (g— 0) we obtain
the relation of the generalized polarizability to the usual dy-
namic polarizability

3
a(AE) =~ ai(qAE) (18)

For the same limit the dipole partial amplitude, Eq. (15), is
written as

Gnlld)

01(9) = nlolji ki)~ g aAE).  (19)

If the Bessel function is expanded also in the first term of Eq.
(10) we get

B ad(A3E) (20)

0! ()= g(nlo|d|kl>{ I

Thus, in the optical limit, the dipole partial amplitude for
impact ionization of the endohedral atom, to within a factor
of g/3, coincides with the dipole photoionization amplitude
for this atom, taking into account the dynamic interaction
with the delocalized electrons of the fullerene shell [27,42].
The screening function

F(AE):[] -#] 1)

is a function of photon energy in the case of endohedral atom
photoionization (in the impact-ionization case it is a function
of transferred energy) and is characterized by rapidly chang-
ing behavior, especially for small AE. Therefore, for a range
of energy transfer, the screening factor, Eq. (21), will signifi-
cantly alter the dependence of generalized (and optical) os-
cillator strengths as a function of energy transfer, AE.

The screening function, Eq. (21), can be obtained either
on the basis of model of the fullerene shell (such a method
was used in [27]) or by using experimental data on the cross
section for Cg, photoabsorption [42]. Making use of the ana-
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FIG. 4. (Color online) Differential generalized oscillator
strengths calculated for ionization of He 1s of He @ Cq as a func-
tion of ejected electron energy for several values of the momentum
transfer ¢ (in a.u.): solid line—bubble potential model including
interaction with Cg, plasmon, dashed line—static bubble potential.
Also shown is the calculated result for free He atoms—dotted line.

lytical expression for this function [27] where the fullerene
shell is simulated by a thin metallic sphere, the screening
function has the form

P o'+ wzrf -

(w) = (w% -+ wzF%' 22
Here w; =~20-22 eV is the energy of the giant dipole (plas-
mon) resonance of Cgy and I'; =10-15 eV is the width of
this resonance.

Near the threshold for 1s ionization of endohedral He, the
transferred energy is AE=1,,~25 eV. Consequently, at the
threshold of the process, where AE=w~ w;, the factor, Eq.
(22), increases the amplitude of dipole partial impact-
ionization amplitude by approximately a factor of 4 and the
partial ionization cross section by a factor of 16. With in-
creasing energy transfer, corresponding to increasing kinetic
energy of secondary electron, g, the function, Eq. (22), rap-
idly goes to unity and so there is no influence on the GOS of
the confined atom.

The differential GOS for the ionization of the ls of con-
fined He, calculated within the bubble potential model for
several values of the momentum transfer ¢, is given in Fig. 4.
In these calculations the width of the Cg, giant dipole reso-
nance is taken as I';=12 eV; for this value of I'; the photo-
absorption cross section of a small metallic sphere [27]

o )_4’7TNe T,
@r= c (w%—w2)2+wzrf

(23)

is close to experiment [33]. In Eq. (23) c is the speed of light
and N,=240 is the number of delocalized electrons of Cgy.
As seen from the figure, the effect of the coupling with
the Cgo plasmon excitation is to dramatically increase the
amplitudes of confinement oscillations in the differential
GOS near the electron ejection threshold. With the increase
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of energy transfer, the effect of the plasmon on the GOS on
the process decreases and by AE~2 a.u. (54 eV) the effects
of the plasmon can be neglected, which indirectly confirms
the reasonability of applying in the case of the 1s and 2s Ne
subshells the static approximation for the potential U(r).

Note we considered the interaction of the electronic sub-
systems of atom and Cg shell in the dipole channel only. It is
possible that plasmons of higher multipolarity generated by a
fast charged particle also influence the impact-ionization pro-
cess of the confined atom. Moreover, though the next (quad-
rupole) term of expansion, Eq. (14), is by a factor of r,/R
times less than dipole, its contribution to the amplitude of the
process for energy transfer of the order of the quadrupole
resonance energy could be of significance, but less important
than the dipole correction, owing to the r,/R term. In addi-
tion, there is a complete absence of any reliable information
on plasmon resonances of Cg, of higher multipolarity. For
these reasons, they are not considered.

VI. IMPACT IONIZATION OF EMPTY C¢, SHELL

Within the framework of PWBA the total cross section of
impact ionization is associated with the photoionization cross
section via an asymptotic expansion known as the Bethe-
Born expansion [30,43,44]. Using this idea, along with Eq.
(23), the total cross section for impact ionization of Cg, can
be obtained. The relation connecting these cross sections has

the form
1 (o 4T
(S)m(ﬁ )ds. (24)
2maT), I+e¢ I+

Utot(T) =

Here e=w—1 is the Kinetic energy of the ejected (secondary)
electron, « is the fine-structure constant, / is the Cg, ioniza-
tion potential, and S is a constant defining the upper limit of
integration over momentum transfer. In the case of an atomic
target, this constant is 8~ 1/ay (a, is the Bohr radius). Sub-
stituting the cross section, Eq. (23), in Eq. (24), we obtain for
the total cross section for charged-particle impact ionization
of CGO’

(T) 2Nerl IT_I I+ E
0’ =
ot T Jo [0 —I+e)P+U+e)T?

47
Xln(ﬁm)ds. (25)

The calculated total cross section is shown for different val-
ues of the parameter B in Fig. 5. Also shown for comparison
is the experimental data [23] and the PWBA results obtained
within a spherical jellium shell model to describe the Cg
electron states <pic [26]. The parameter B is a characteristic
feature of the Bethe-Born approximation, but it only enters
logarithmically [29,30]. For high kinetic energies 7> 1I+e¢
the presence of the parameter 8 having the value of ~1/R
=1/6.64 within the logarithm is insignificant. Therefore, for
high electron energy our results almost coincide with each
other and they are seen to be close to experiment. For low
energy our results prove to be much closer to experiment
than the earlier semiempirical [25] or PWBA result [26]. The
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FIG. 5. (Color online) Total cross section for electron-impact
ionization of Cgy as a function of incident electron energy. Full
circles—experimental data [23]; dashed line—semiempirical model
calculation [25]; asterisks—previous PWBA results [26]; full
curves—present Bethe-Born results for several values of B; see text
for details.

basic reason for this is that the Bethe-Born calculation is
based upon the photoionization cross section, Eq. (23), with
parameters chosen to reproduce the experimental photoab-
sorption cross section of Cgy [33]. Such an approach to the
problem allows one to avoid explicit calculation of the dis-
crete and continuum Cg, electron wave functions.

VII. CONCLUSIONS

Fast charged-particle impact ionization of endohedral at-
oms has been studied and, using the s subshells of Ne @ Cy,
as a case study, it is found that confinement resonances
abound for low-energy electron emission, just as they do for
photoionization. The situation is somewhat more compli-
cated in the charged-particle case owing to the fact that all
partial waves are allowed, although the higher ones are neg-
ligible at the lower ejected electron energies owing to the
angular-momentum barrier [41]. Two different models for
static potentials are used to describe the effect of the Cg
cage on the Ne @ Cgq, impact ionization. This is appropriate
for the following reasons. First, comparing results within the
two models provides insight into the dependence of confine-
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ment resonances on the thickness of the Cg4, potential well.
While the results within the two models are found to be
qualitatively the same, the spherical square-well potential
predicts resonances that are of smaller amplitudes that die
out more rapidly (with energy) as compared to the bubble
potential. Second, while the finite-thickness square-well po-
tential model seems to be more realistic compared to the
bubble model, the latter has certain advantages since, being
semianalytical, it provides a clearer qualitative understanding
of behavior of confinement resonances in impact-ionization
spectra of atoms confined inside Cg.

The static model potentials employed to simulate the ef-
fects of the Cg, cage on the confined atom are approximate
and do not give a complete description of charged-particle
impact-ionization spectra in case the transferred energy AE
proves to be comparable to the Cg, plasmon oscillation en-
ergy, ;. The impact ionization of the He atom in the mol-
ecule He @ Cg4, which has been considered is an excellent
example of this case. It was shown that the effect of the Cg
dipole plasmon oscillation on the spectrum of secondary
electrons is also great, just as in the case of low energy
photoionization of endohedral atoms [16,45]. Moreover, like
the photoionization case, the enhancement is also related to
the dynamical polarizability of Cg, at least for small mo-
mentum transfer. For threshold secondary electrons the dif-
ferential GOS is increased by more than an order of magni-
tude owing to the coupling with the Cg, plasmon. Unlike
dipole photoionization, impact ionization can be accompa-
nied by the generation of plasma oscillations in Cg, in non-
dipole channels, i.e., resulting from higher order terms in the
expansion of the Coulomb interaction between shell and
atomic electrons that are neglected in Eq. (4). Thus, if there
are significant nondipole plasma oscillations in Cg, the
impact-ionization cross section for endohedral atoms, for en-
ergy transfer close to the resonance energies of these oscil-
lations, could be affected significantly. Further investiga-
tions, that we hope are stimulated by this paper, are needed
to clarify this situation.
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