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A class of Coulomb radial functions is defined for use in atomic or molecular Rydberg multichannel
quantum-defect calculations. The associated accumulated radial phase parameters ���� have a simple func-
tional dependence on the energy, analogous to the familiar Rydberg relation where ����=��n�− l�, with n�

= �−��−1/2, enabling easy use in the empirical fitting of complex multichannel spectra. However, “false roots” at
low-energy and strong energy dependences of the quantum defects are largely avoided in the approach, which
also may be implemented in the framework of ab initio R-matrix calculations in a straightforward manner. The
method is illustrated with one-channel and multichannel examples relating to atomic potassium, nitric oxide,
and molecular hydrogen.
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I. INTRODUCTION

The power of the Rydberg equation resides in the fact that
it provides a description of a whole family of atomic or mo-
lecular electronic excited states—a Rydberg series—in com-
pact form in terms of a single parameter, the quantum defect.
The generalization of the Rydberg equation, known as the
multichannel quantum-defect theory �MQDT�, achieves this
for an arbitrary number of coupled series of Rydberg states
�see �1� for references�. Electronic Rydberg states arise when
a single atomic or molecular electron is excited into an orbit
that is situated mostly outside the positively charged residual
ion core. The quantum defect—or each individual element of
the quantum-defect matrix in the multichannel case—is typi-
cally nearly constant or varies slightly and smoothly along a
given series. It extrapolates smoothly across the ionization
threshold into the electronic continuum where it turns into
the electron scattering phase shift measured in units of �
radians. A Rydberg series and the adjoining ionization con-
tinuum are therefore considered together as a “Rydberg chan-
nel.”

The constancy or near constancy of the quantum defect
has various implications which contribute to the success of
quantum-defect theory �QDT�. Interpolations and extrapola-
tions of quantum-defect matrix elements enable one to infer
scattering �continuum� phase shifts from bound-state spec-
troscopic data. Calculations of quantum-defect parameters
from first principles may be carried out on a coarse energy
mesh thus enhancing the efficiency of ab initio codes. In
molecular applications the success of the frame transforma-
tion method to account for rovibronic interactions hinges on
a weak energy dependence of the clamped-nuclei quantum
defects �see references given in �1��.

Quantum-defect theory however is plagued by recurrent
problems occurring in the bound energy range at low ener-

gies where the Rydberg spectrum connects to the valence
state region and Rydberg channels are said to become
“strongly closed.” In molecules where the orbital angular
momentum l of the Rydberg electron is not in general a
sharply defined quantity, it is often not clear how a Rydberg
series terminates at its lower end. Indeed, “spurious” or
“false” solutions occur quite often in quantum-defect calcu-
lations in the strongly closed range, and unfortunately they
cannot always be recognized easily as such. Seaton �2� there-
fore recommended that QDT, in its most common form,
“should be restricted to energies � such that ��−1 / l2,” i.e.,
to “weakly closed” channels. In multichannel problems,
however, strongly closed channels often coexist with weakly
closed channels at a given energy. Further, in molecules a
channel which is weakly closed for one nuclear geometry
may become strongly closed for another. It therefore appears
desirable to include the strongly closed channels along with
the Rydberg manifold—this approach has been applied with
success, e.g., to the 1�g

+ double minimum states of H2 which
have half-Rydberg and half-valence state characters �3,4�.
Mulliken �5�, in a similar context, although without referring
to quantum-defect theory, coined the expression “Rydbergi-
zation” for valence states which turn adiabatically into Ryd-
berg states �6�. His ideas in fact go back to the 1920s when
he introduced the closely related concept of “promoted elec-
trons” �7�.

The appearance of “spurious” solutions predicted by the
Rydberg equation lower than the lowest true bound state of a
series is probably the most obvious problem arising in the
strongly closed range. While in a one-channel situation such
spurious solutions can sometimes be eliminated by inspec-
tion, they may lead to unphysical channel interactions affect-
ing the true states as well �8�. In 1979, Greene �9� published
an insightful paper, in which he presented a discussion of the
energy dependences to be expected for atomic quantum de-
fects in general. From this paper, which has unjustly received
only limited attention, it becomes apparent that false roots
occur when the energy dependence of the quantum defect*Corresponding author; christian.jungen@lac.u-psud.fr
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has been neglected or when it has not been taken into ac-
count correctly, e.g., by inappropriate extrapolation.

Greene’s work also showed that as the energy gets very
far below the ionization potential, both the quantum defect
and the total accumulated radial phase of the Rydberg wave
function should approach zero. This may be appreciated by
considering the familiar atomic Rydberg quantization rule,

� + n� − l = n�n positive integer� ,

� = −
1

n�2 = −
1

�n + l − ��2 , �1�

in which n� is the effective principal quantum number, l is
the orbital angular momentum, � is the quantum defect, and
� is the energy in Rydberg units. The integer n is the number
of radial lobes of the Rydberg wave function corresponding
to the number of radial nodes minus one. The significance of
the top line of Eq. �1� is that it decomposes the total phase of
the radial wave function into two portions: �� is the radial
phase accumulated inside the core while ��n�− l� is that por-
tion accumulated in the asymptotic Coulomb region. The
quantity

� = ��n� − l� �2�

is defined continuously for every energy and is called the
“accumulated phase parameter.” The two contributions must
add up to an integer times � in order for a bound quantum
state to exist. Of course, the lower one goes in energy, the
less phase accumulates. Therefore in the strongly closed
limit no phase accumulates at all. That is, in the limit �→
−�, we have �+��→0 so that −�→n�− l, the accumulated
phase factor. Greene pointed out that even before reaching
this extreme limit, false roots of Eq. �2� must occur unless
the quantum defect drops away from a constant value. In fact
it tends to “cling” �9� to −�n�− l�, evolving closely parallel to
it at low energy. This behavior is discernible in the plot of
Fig. 1, where for n� below about 1, the 0−� curve matches
the n�− l curve. The same limiting effect can be seen in Fig.
7 for the base pair defined in this paper although only at
lower energies.

These arguments, and Eq. �1� in particular, reveal the fact
that the quantum defect not only provides information about
the bound-state energies but also about the radial Rydberg
wave functions. Indeed, in QDT the radial wave function
emerging from the core �r	rc� into the asymptotic region
�r
rc� is written in scattering form in terms of the quantum
defect �:

�l�r 
 rc� = f l�r�cos ��l − gl�r�sin ��l, �3�

where f l and gl are the regular and irregular Coulomb func-
tions analogous to the sin-type and cos-type functions used
in the continuum. From Eq. �3� it becomes further apparent
that the value of the quantum defect � depends on how f l�r�
and gl�r� are defined at r=rc where ��r� matches to the func-
tion inside the core. Indeed, we shall see below that we can
work with an infinite variety of Coulomb base pairs, each of
which has its own �usually energy dependent� quantum de-

fect. The forms of Eqs. �1� and �2� are specific to the base
pair called �s ,c� by Seaton.

The familiar R-matrix-type matching condition of short-
range and asymptotic functions �written here in one-channel
form for convenience and omitting the channel indices l�
reads as �10�

tan �� = �W��, f�
W��,g��r=rc

�
f

g�
f�

f
−

��

�

g�

g
−

��

�
	

r=rc

. �4�

In this expression primes refer to the derivative with respect
to the radial coordinate r and � represents the exact wave
function that reflects the full Hamiltonian and which is
matched to the base pair at the edge of the core. For r values
well beyond the core radius Eq. �4� will be independent of
the matching radius rc, but it remains in principle energy
dependent. It is thus clear that the evolution of the quantum
defects with energy, in particular in the strongly closed re-
gime, is intimately connected with the way the base pair
�f l ,gl� of Coulomb functions has been normalized. This
again is a point which clearly emerges from Ref. �9�, but
which has been overlooked in some of the more recent work.

Indeed, these problems are not new, and a substantial
number of papers has been devoted to their discussion in the
past. Ham �11� defined a base pair of Coulomb functions,
commonly called �f ,h� with associated quantum defects “�,”
which in many cases helps to avoid false solutions in
strongly closed channels and reputedly yields a smoother
energy dependence for the quantum defects. Among recent
papers dealing with the Coulomb problem we mention the
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FIG. 1. �Color online� 2P np series in potassium: the quantity
n−� is plotted versus the effective principal quantum number n� for
each of n=0 to 4. The full lines correspond to n−� with n integer
and � as calculated in Sec. IV A. The dashed diagonal line corre-
sponds to n�− l=n�−1, here, with n� interpreted as a continuous
parameter �see Eq. �1��. Bound states occur each time the broken-
line curve crosses one of the full lines. Full squares: observed val-
ues. Open circle: false root. �cf. the text for details�.
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work of Gorczyca and Badnell �12� and of Child and Hiyama
�13�. Numerical approaches based on Milne’s �14� phase-
amplitude theory, while remaining applicable to Coulomb
fields, generalize QDT to asymptotic potentials of arbitrary
shape �15,16�. They do not produce false roots generally, but
the analytical simplicity of the Rydberg equation is lost.

The present work builds on these earlier achievements in
an effort to further clarify the connection between the Cou-
lomb basis pair used and the energy dependence of the cor-
responding quantum defects, as well as the occurrence of
false roots. In this paper we propose a type of Coulomb base
pair which we shall denote as “energy modified.” These have
enough built-in flexibility to enable one to deal with
strongly-closed channels in a satisfactory manner. One of our
primary goals is to retain the basic advantage of Eq. �1�,
which is that the accumulated phase parameter ����=��n�

− l� is related to the energy � by a simple algebraic expres-
sion �the Rydberg equation in the case of Eq. �1��. Such
simple relationships allow spectroscopists to analyze com-
plex multichannel spectra and/or continuum processes �such
as autoionization or recombination collisions� without ex-
plicit reference to the Coulomb functions. An early account
of the present development has been published in Ref. �17�.

The paper is organized as follows. In Sec. I we review the
various Coulomb regular and irregular base pairs defined by
Seaton �2� and the difficulties associated with their use. In
Sec. III we define a class of energy-modified basis Coulomb
functions designed to alleviate these difficulties. Their use is
illustrated in Sec. IV with three examples, concerning the
potassium atom, the nitric oxide radical, and the H2 mol-
ecule. Section V provides a summary.

II. THEORY: BACKGROUND

A. False roots: An example

Figure 1 is a plot of n�− l and n−� versus n� which illus-
trates how Eq. �1� works in practice. Bound levels occur
whenever n�− l �broken line� crosses one of the lines n−�
�full lines�, corresponding to n=1,2 , . . ., thereby satisfying
the bound-state condition given in Eq. �1�. This plot is drawn
for the example of the P�l=1� series of neutral atomic po-
tassium which illustrates the occurrence of spurious solutions
and their relation to the energy dependence of the quantum
defects. The p series of potassium is characterized by a quan-
tum defect �
0.75 with the first state appearing at n�

=2.23. It is not obvious from Eq. �1� alone why no p state
may exist near n�=1.25. �Note that whereas the convention
adopted in Sec. II B below, in accordance with the prescrip-
tion given in Ref. �12�, has made us replace negative values
of n�− l with l−n�, this is not done in Fig. 1 so as to more
clearly show the behavior n�− l and n−� at low energy.� As
may be seen from the figure, extrapolation of � from n�

�3 to lower values �dotted line� would indeed yield a spu-
rious solution near n�=1.22. However, as the figure also il-
lustrates �based on a calculation which will be discussed in
Sec. IV A below�, the quantum defect in reality exhibits an
energy dependence for n�	2 in such a way that the false
solution disappears. The two curves coincide for n�=1,n
−�=0: this point represents a trivial solution whose associ-

ated radial Rydberg wave function is zero everywhere.
In the remainder of this paper we denote the Coulomb

effective principal quantum number n�= �−��−1/2 by  in ac-
cordance with most of the modern quantum-defect literature.
We shall use Rydberg energy units except when indicated
otherwise. For simplicity we will also assume that the charge
of the ion core is Z=1. We shall further adopt Seaton’s �2�
notation for the various Coulomb base pairs, which differs
from that used, e.g., by Fano �18� or Greene �9�. Table I of
Ref. �2� provides the corresponding conversion table.

B. Phase-amplitude formulation

Given a base pair of radial functions f l�� ,r� and gl�� ,r�,
regular and irregular at the origin, r=0, which are solutions
of the radial Schrödinger equation,

� �2

�r2 + kl
2�r���l�r� = 0,

kl
2�r� = � − Vl�r� � � +

2

r
−

l�l + 1�
r2 , �5�

and which are linearly independent, we can construct an in-

finity of alternative base pairs, � f̃ , g̃�, by appropriate super-
position of the original functions. The most general transfor-

mation that ensures the regularity of f̃ and the irregularity of
g̃ at the origin can be written in the form,

� f̃ l

g̃l

� = � Al
1/2 0

Al
−1/2 tan �l Al

−1/2�� f l

gl
� , �6�

where Al and �l are free parameters. This transformation pre-

serves the value of the Wronskian, i.e., W� f̃ l , g̃l�=W�f l ,gl�.
Throughout this paper all base pairs are normalized so that
their Wronskians are �−1 for negative as well as positive
energies �. For positive energies this implies energy normal-
ization in Rydberg units. We follow Gorczyca and Badnell

�12� and take the regular functions, f l or f̃ l, to be real and
positive near r=0, which implies that A1/2= + A1/2. The co-
efficients Al=Al��� and tan �l=tan �l��� in Eq. �6� are inde-
pendent of r but can be functions of the channel energy �.
Indeed, it is this dependence that is the focus of the present
work. Note that for convenience from here on we drop the
partial-wave subscript l unless it is specifically needed.

We can generalize the concept of accumulated phase to
the transformed functions of Eq. �6� by first writing the base
pair in equivalent phase-amplitude form �15�,

f��,r� = +� 1

�
���,r�sin ���,r� ,

g��,r� = −� 1

�
���,r�cos ���,r� . �7�

The transformed phase and amplitude functions then become

tan �̃ =
A tan �

1 − tan � tan �
, �8�
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�̃ = �A−1/2cos ��1 + tan �2�A2 + tan2 ���1/2. �9�

In the Milne phase-amplitude formulation �14� the accumu-
lated phase parameter for �	0 �analogous to the quantity
��− l� mentioned above� is given by ����=limr→� ��� ,r�.
We can therefore use Eq. �8� with the limiting values as r
→� and immediately obtain the equation for the effective

accumulated phase �̃, i.e., the accumulated phase appropriate
for the transformed functions of Eq. �6� as

tan �̃ =
A tan �

1 − tan � tan �
. �10�

C. Seaton’s Coulomb base pairs

Seaton �2� used three different Coulomb base pairs which
he denoted as �f ,g� �“energy-independent normalization”�,
�f ,h� �“Ham functions”�, and �s ,c� �“energy-normalized”�,
respectively. The functions �f ,g� are analytic in energy and
are energy independent near r=0. In order to have W�f ,g�
=�−1 we normalize them by setting limr→0�r−l−1f�
= ��2l+1���−1/2 and limr→0�rlg�=−��2l+1���−1/2, respec-
tively. �This differs from Seaton by an additional factor of
2−1/2.� Ham’s functions �f ,h� are “nearly analytic” since for
most applications in QDT h may be treated as though it were
an analytic function of � �2�. The pairs �f ,h� and �s ,c� are
related to �f ,g� according to Eq. �6� with specific choices for
the coefficients A and tan �. These are listed in Table I along

with the phase parameters �̃��� from Eq. �10�. The functions
A�� , l� and G�� , l� which occur in the transformations are
defined by Seaton ��2� Sec. 2.5�, and they are displayed here
in Fig. 2 as functions of the effective principal quantum
number = �−��−1/2 for l=0−3.

Note that the quantity A� , l� is defined negative in Ref.
�2� for certain ranges corresponding to � l �cf. Eq. �A4��.
We follow here again Ref. �12� by setting A1/2= + A1/2.
This choice is equivalent to the application of an additional
transformation of type Eq. �6� whenever A� , l� is negative,
with A1/2=−i and tan �=0 in this instance. From Eq. �10� it

follows that the accumulated phase parameter �̃ then must
also be replaced by its negative when A� , l� is negative
�12�. As shown by Table I, this convention concerns only the
base pair �s ,c�. Further, we see from Eq. �4� that in a one-
channel situation the quantum defect also changes sign be-

cause the factor f /g changes sign. The result is that Eq. �1�
or Eq. �11� �below� remain valid without change. Therefore

the change in sign of �̃ associated with the convention
A1/2= + A1/2 when A is negative, is required only in multi-
channel problems and only when the �s ,c� basis pair is used.

D. Problems with Seaton’s base pairs

There are several problems arising when any of the base
pairs listed in Table I are used for energies far below thresh-
old. In a one-channel situation the quantization condition for
bound states in the framework of quantum-defect theory
reads as

tan ���� + tan ����� = 0, �11�

or equivalently, generalizing Eq. �1�,

����
�

+ ���� = n,n = 1,2, . . . , �12�

where ���� is the quantum defect, which embodies the effect
of interactions other than the Coulomb potential. That is,
���� accounts for interactions experienced by the scattering
particle inside or near the core such as penetration effects
and the effects of medium-range fields. As has already been
mentioned in Sec. I, Eq. �12� is most useful in practical ap-
plications when �i� the quantum defect � is constant as func-
tion of the energy � or nearly so and when �ii� the accumu-
lated phase parameter is a smooth function of energy which
can be readily interpolated and extrapolated. Fulfillment of
condition �i� depends on the interactions inside the core in
the first place, but it also depends on the energy dependence
of the base pair at the edge r=rc of the core, as mentioned
earlier on and as one can see from Eq. �4�. Independently of
the logarithmic derivative of the inner function, �� /� �which
itself might vary noticeably with energy, e.g., in the case of a
shape resonance�, a strong energy dependence of the base
pair and the radial derivatives will invariably cause the quan-

TABLE I. Seaton’s base pairs for �	0. The table gives for each
base pair the functions A and tan � which relate it to f and g by

means of Eq. �6�. tan �̃ is the accumulated phase parameter to be
used in bound-state boundary conditions such as Eq. �11�. = �
−��−1/2 is the effective principal quantum number �also denoted n��,
and l is the orbital angular momentum quantum number.

A tan � tan �̃

f ,g 1 0 tan �= tan ��−l�
A��,l�+G��,l�tan ��−l�

f ,h 1 G�� , l� tan ��−l�
A��,l�

s ,c A�� , l� G�� , l� tan ��− l�
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FIG. 2. �Color online�. Functions A�� , l�1/2 �full lines� and
G�� , l� �broken lines� for l=0–3, plotted versus the effective prin-
cipal quantum number = �−��−1/2. See Seaton ��2�, Sec. 2.5� for the
definitions of A and G.
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tum defect to exhibit a strong and �usually� undesirable en-
ergy dependence as well.

Figures 3 show that none of the three base pairs �f ,g�,
�f ,h�, and �s ,c� quite satisfy these requirements. The figure
displays the effective accumulated phase parameter �Eq. �10�
and implied in the last column of Table I� corresponding to
each base pair for l=1 as function of the effective principal
quantum number = �−��−1/2. The plots further display the
energy dependence of the l=1 base pairs for a particular
r-radius, namely, r=2 a.u., which may be viewed as typical
for the size of a small atomic or molecular core. Inspection
of these figures shows that the pair �s ,c� provides the most
attractive option in terms of the energy dependence of the
phase parameter � which in this case is simply the straight
line ��− l� seen in Fig. 3�a�. However, Fig. 3 also shows
that below =2, corresponding to the lowest physical hydro-
gen atom p-wave state, the corresponding Coulomb base
pair, �s ,c�, acquires a strong energy dependence with s van-
ishing and c being infinite at =1. As a consequence, the
quantum defect will have a strong energy dependence in a
realistic situation for any system in this region �cf. the ex-
ample discussed in Sec. II A�. Conversely, if in a model cal-
culation the quantum defect is taken as a constant or nearly
so or if it is simply extrapolated from higher energies where
it is constant, unphysical solutions �e.g., 1p, 1d, 2d, etc.� will
occur for 	 l+1 in the region where the channel is strongly
closed. For instance, a quantum defect �=−0.15 �represented
in Fig. 3�a� by a dot-dashed horizontal line corresponding to
−�� will cross the curve representing � /� at =1.15 and
thus, according to Eq. �12�, predict a 1p energy level at this
 value.

Further inspection of Fig. 3 indicates that the base pairs
�f ,g� and �f ,h� are much less energy dependent at low en-
ergy than �s ,c�, and it is known that thereby many �although
not always all� unphysical solutions can be avoided. Indeed

it may be seen in Fig. 3�b� that the horizontal line represent-
ing the same quantum-defect value will not cross the accu-
mulated phase curve corresponding to the �f ,h� pair �� de-
fect�, and therefore no unphysical solution occurs near
=1.15 when a constant quantum defect is used. However, it
is also apparent from the figures that a strongly negative
quantum defect might still yield a false root. Further, it may
be appreciated from Figs. 3�b� and 3�c� that the phase param-
eters associated with the pairs �f ,h� and �f ,g� have more
complicated energy dependences for 	 l+1 and also in-
clude undesirable undulations for 
 l+1. In other words,
the relationship between the accumulated phase and the ef-
fective principal quantum number no longer is simply linear,
and thus a straightforward use of the Rydberg equation is no
longer possible. Figure 4 is analogous to Fig. 3 and displays
data for l=3. It can be seen that the problems just discussed
not only persist at higher l but are in fact exacerbated.

III. ALTERNATIVE ENERGY-MODIFIED BASE PAIRS

A. Method

We now introduce a class of “energy-modified” base pairs
which, while largely avoiding the problems just discussed,
combine as best as possible the advantages of the base pairs
listed in Table I. We start out with the function pair �f ,g�
which is analytic for all energies and energy independent
near the origin �f ���2l+1���−1/2rl+1 and g���2l
+1���−1/2r−l�. The functions f and g can be computed either
using a series expansion as described by Seaton �19� or by
direct numerical integration based on Milne’s phase-
amplitude formalism, see, e.g., Ref. �16�. According to Eq.
�6� at every energy there are two free parameters at our dis-
posal. We proceed by dividing the bound energy domain into
three regions, the weakly closed region corresponding to 
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FIG. 3. �Color online� p wave: Upper panels �a�–�d�: effective

accumulated phase parameters �̃ /� plotted as functions of the ef-
fective principal quantum number �n� for different Coulomb
base pairs. �a�: �s ,c�, �b�: �f ,h�, �c�: �f ,g�, and �d�: energy-modified
base-pair �choice A with a1=0.34, b1=0.2, and �1=0.1�. See the
text for more explanation. Lower panels �e�–�h�: corresponding
regular �full line� and irregular �broken line� function values for r
=2.
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� l+1−�l �where 0��l�0.5 is a small parameter which is
introduced for convenience and will be specified later� and
the strongly closed region corresponding to � l. The region
between those two zones we call the “transition region.”
These regions are analogous to Greene’s �9� regions II, IV,
and III, respectively.

Our approach consists of replacing one of the two free
parameters of Eq. �6�, tan �l, by another, namely, the accu-

mulated phase �̃l. Al and �̃l will then be conveniently param-
etrized, and tan �l will be evaluated as a function of them by
means of the relation

tan �l =
1

tan �l
�fg� −

Al

tan �̃l

, �13�

which follows from Eq. �8�. In this expression �l
�fg� is the

effective accumulated phase parameter for the �f ,g� base
pair as given in Table I and which is illustrated in Figs. 3�c�
and 4�c�. tan �̃l and Al are the energy-modified phase and
amplitude parameters which remain to be specified for each
of the three regions. To summarize, our strategy is to pre-

define the accumulated phase parameter �̃l and the amplitude
parameter Al and their energy dependences in the weakly
closed, strongly closed, and in the “transition” regions in a
manner that will be easy to use in practice and which makes
sense physically. We require further that the different regions
must be connected smoothly. These choices are presented in
Secs. III B–III D. We stress that our choices are, strictly
speaking, arbitrary although we argue that they are physi-
cally reasonable. The infinite number of base pairs repre-
sented by Eq. �6� are indeed strictly equivalent. The present
choices result from the experience acquired through numer-
ous applications to real examples. They are justified by the
success of the method in practice, but it is clear that different
choices are also possible.

B. Weakly closed region

In the weakly closed region we choose the energy-
modified base pair to be identical to Seaton’s base pair �s ,c�.
We therefore set

�̃ = � = �� − l� for  � l + 1 − �l, �14�

which implies that

Al = A��,l� ,

tan �l = G��,l� for  � l + 1 − �l �15�

in accordance with Eq. �6� and Table I. In Sec III D these
weakly closed results will be smoothly connected to strongly

closed ones. To do this the derivatives with respect to  of �̃
and Al at = l+1−�l are needed. These are

�̃�� = l + 1 − �l� = � ,

Al�� + 1 − �l� = Al�� + 1 − �l,l� , �16�

where primes refer to derivatives with respect to .

C. Strongly closed region

In the strongly closed region corresponding to � l, k2�r�
in Eq. �5� is negative for all r, i.e., k�r�= i��r� with � real, so
that asymptotically, as �→−�, one has ��r��−1. The nor-
malization of the Coulomb base pair and the related accumu-

lated phase parameter �̃��� in this limit is arbitrary and has to
be chosen on the basis of physical considerations. In Ref.
�16� three different choices have been discussed in the con-
text of the Milne phase-amplitude approach designed for
QDT for arbitrary potentials �Greene et al. �15��.

�i� Energy normalization, with basis functions of the form
�−1/2 sinh��r� and −�−1/2 cosh��r�. This choice yields
��→0�=� /2 �in analogy with the WKB result for classi-
cally forbidden regions� and was adopted in Ref. �13�. On
the basis of the arguments put forward in Ref. �9�, as ex-
plained in Sec. I, above, we do not make this choice here.

�ii� Choice A: “energy-independent normalization,” using
a base pair of the form �−1 sinh��r� and −cosh��r� as

suggested previously in Ref. �15�. This choice implies �̃�
→0��q �where q is a real scaling factor� in agreement
with our requirement that the accumulated phase should ap-
proach zero at asymptotically low energies. We refer to this
choice as “choice A.”

�iii� Choice B: “exponential normalization,” based on a
pair of the form e−q� sinh��r� and −e+q� cosh��r�. These
forms imply �16� that phase accumulation in the forbidden
region occurs only to the extent that wave functions deviate
from purely exponential form e��r. This choice yields

�̃�→0��e−q/ so that the phase also tends to zero with this
definition. This choice has been adopted in the numerical
applications based on Ref. �16�, and we refer to it as “choice
B.”

We now use limiting cases A and B to set up two different

parameterizations of the accumulated phase, �̃, for the

strongly closed region, � l. Since �̃ is a free parameter we
use the simple expedient of extending the limiting functional
behavior of choices A and B from →0 all the way up to
= l. This upper limit is still a deeply closed energy as it

corresponds to the nominal 0s, 1p, etc. states. With �̃ /� set
to 0 at =0 and to 1 at = l+1 we chose the parameter bl
between these two values and set

�̃l� = l� = �bl. �17�

�More precisely, bl should be chosen so that as �̃ increases
from =0 to l it does not “overshoot” its lowest value in the
weakly closed region which, from Eq. �14� is seen to be

1−�l�. For �̃ to assume the desired value at = l the param-
eter q must be chosen as bl for choice A and −l ln bl for
choice B. Thus, in the strongly closed region, �l and its
derivative with respect to  �needed below, for connection to
the transition region� are

�̃l = �
bl

l
 ,

GUÉROUT et al. PHYSICAL REVIEW A 79, 042717 �2009�

042717-6



��̃l

�
= �

bl

l
,  � l�choice A� ,

�̃l = �el ln bl/,

��̃l

�
= − �

l ln bl

2 el ln bl/,  � l�choice B� . �18�

The second parameter in specifying the transformed basis
pair of Eq. �6� is the amplitude, Al. We chose

Al =
al

l2 2,  � l . �19�

This choice takes Al to zero as →0, and Eq. �6� then im-

plies the same for f̃ . Applying Eq. �3� to the transformed
base pair leads to a related quantum defect, which we denote

�̃. Since the choice of Al in Eq. �19� implies f̃�→0�=0, Eq.
�4� tells us that we now have �̃�→0�=0, as desired. We
note, finally, that for a given l, the only free parameters are
the dimensionless quantities bl �Eq. �18�� and al �Eq. �19��.

D. Transition region

As shown for �̃ in Fig. 5, we cover the gap between the
strongly closed �� l� and weakly closed �
 l+1−�l� re-

gions by using bridging functions for �̃�� and Al�� in this
transition region. In the lower end of this transition region
we use a quadratic function, while in the upper end of the

transition region a linear function is used. That is, each of �̃l
and Al are modeled by the functions

y�� = c0 + c1 + c22, 0 �  � 1,

y�� = d0 + d1 , 1 �  � 2.
�20�

The coefficients ci and di are chosen so that �̃l�� and Al��
and their first derivatives with respect to  are continuous at
each of the three connecting points �shown by the solid

circles in Fig. 5�. For each of �̃l�� and Al�� we therefore

have two conditions at each of three points. As detailed in
the Appendix these six conditions fix the values of the ci and
di, along with the value of the transition matching point 1.

Once al, bl, and �l have been specified, �̃l and Al are
defined for all positive values of  and hence for all negative
energies �. Typical choices are al=bl=0.2 and �l=0.1. Note
that the minimum of the Coulomb potential for l�0 corre-
sponds to min=�l�l+1�, which in turn corresponds to �l=

1
2

+ �l+ 1
2 −�l�l+1��
 1

2 . A choice of �l in the interval 0��l

�
1
2 therefore places the 1 transition matching point above

the potential minimum, yet lower than the lowest hydrogenic
level n= l+1.

Figure 6 illustrates the energy-modified parameters Al and
tan �l obtained with choice A as functions of  for l=0−3
and compares them with the corresponding parameters asso-
ciated with the energy-normalized �s ,c� Coulomb pair. In
Sec. IV we discuss examples treated with energy-modified
Coulomb functions resulting from choice A which is particu-
larly attractive because of the very simple energy depen-

dence of the associated accumulated phase parameter �̃.

IV. APPLICATIONS

A. 2P np series of K I

Parsons and Weisskopf �20� showed that the observed po-
sitions of the bound states of all alkali-metal atoms can be
reproduced quite accurately when the atomic ion core is rep-
resented by a hard sphere with a suitably chosen radius rc.
Following these authors we take the radial potential �in Ry-
dberg units� as

V�r� =
l�l + 1�

r2 −
2

r
+ Vc, r 	 rc,

V�r� =
l�l + 1�

r2 −
2

r
, r 
 rc, �21�

where for potassium �l=1� we use Vc=100 Ry and rc
=1.63 a.u. to simulate the hard sphere �20�. The radial func-

FIG. 5. Quadratic plus linear bridging function connecting the
points = l and = l+1 �strongly closed and weakly closed regions,
cf. the text�.
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tion ��r�, regular at the origin, is evaluated by numerical
Numerov propagation for arbitrary energy using the potential
of Eq. �21�. Equation �4� then yields the quantum defect �,
with f and g taken as any pair of Coulomb channel functions
corresponding to the same energy. Figures 1 and 7 are plots
of the accumulated phase parameter �broken line� and the
quantity n−� �full lines, n integer� versus the effective prin-
cipal number, evaluated with the Coulomb pairs �s ,c� �Fig.

1� and the energy-modified pair � f̃ , g̃� �Fig. 7�. The two cal-
culations yield identical bound levels �crossings of the bro-
ken and full lines� which compare quite favorably with the
experimental values �squares�. However, we see that the
quantum defect corresponding to the energy-modified Cou-
lomb base pair exhibits a weaker energy dependence in the
strongly closed region than the quantum defect obtained with
Seaton’s standard Coulomb pair. The occurrence of the un-
physical state near 
1.25 is avoided in both calculations,
but when the standard base pair �s ,c� is used this happens at
the expense of the strong energy dependence of � in the
strongly closed region visible in Fig. 1. This dependence
cannot be anticipated from higher-energy behavior and is
only evident with a detailed calculation in the core region.

B. Lowest 2�+ Rydberg states of NO

The Rydberg series of nitric oxide converging to the
ground state of the ion NO+ exhibit the effects of strong l
mixing that varies substantially with the nominal l value of
the various series and also with effective principal quantum
number along some of the series �21,22�. The strongest ef-
fects occur near equilibrium in the “s” and “d” 2�+ series
which, for �3, are 60–40 % and 40–60 % mixtures, re-
spectively, of the pure l=0 and 2 partial waves. By contrast,
the lowest member of the s series, 3s�, has no 2d counterpart
to interact with and therefore exhibits nearly—but not
quite—pure s character as has been deduced both on experi-
mental grounds �21� as well as from quantum-chemical cal-

culations �23,24�. As a result the l character of the s Rydberg
series varies strongly with principal quantum number for low
.

The quantum-chemical calculations show that the
3s�A2�+ state contains a d-type contribution of about 5%
�see Fig. 8�a��. This explains why in resonantly enhanced
multiphoton ionization �REMPI� spectroscopy involving the
A state as intermediate state the f Rydberg series are excited
with substantial intensity �see e.g., Refs. �25,26� and refer-
ences therein�. Recent direct ab initio R-matrix type calcula-
tions of quantum defects combined with MQDT evaluations
of bound-state energies �27–29� account quite accurately for
the strong s-d mixing occurring for �3 ��n+1�s� and nd�
pairs of states�, but they fail to reproduce the small d contri-
bution present for 
2 �3s�A state�. The reason is that be-
low 
3 the strongly closed d� Rydberg channel was not
explicitly included as an asymptotic channel in either Ref.
�27� or Ref. �29�, with the result that the lowest s Rydberg
state was calculated with 100% s character �Fig. 8�b��. This
is illustrated by Fig. 9 where the quantum-defect matrix ele-
ments for NO 2�+ calculated with the approach of Ref. �29�
are plotted versus the Rydberg energy �. Below �
−0.1,
only the s and p channels subsist because the strongly closed
channels were excluded. Notice that the slope of the line
representing the �ss� matrix element �full line� exhibits a
discontinuity between the two lowest calculated points, that
is, somewhere roughly between =2 ��=−0.25� and =3
��=−0.11�. �To a lesser extent this is seen to happen also for
the �pp� matrix element.� Above this energy all the matrix
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elements exhibit a more or less linear and rather weak energy
dependence. Linear extrapolation toward lower energy yields
the values represented by the broken lines in Fig. 9. Of
course it cannot be taken for granted a priori that an
R-matrix calculation at these low energies carried out by
retaining the strongly closed channels would indeed yield the
quantum-defect values predicted by this extrapolation. How-
ever, based on the potassium example discussed above, we
may hope that an R-matrix calculation carried out with the
energy-modified Coulomb base pairs would produce less en-
ergy dependence than, e.g., Seaton’s base pair �s ,c�. Figure 8
graphically represents the results obtained in a MQDT cal-
culation using the extrapolated quantum defects from Fig. 9
�i.e., not taking into account the change in slope seen for �
	−0.1 Ry�, combined with the pairs �s ,c� for l=0−2 �panel
c�. Also shown are the results obtained when energy-
modified Coulomb base pairs are used �panel d�. If the pairs
�s ,c� are used, an unphysical state 2d is seen to occur, giving
an unphysical strong s-d l mixing effect which pushes the
lowest member of the s series to an incorrect position. If on
the other hand energy-modified base pairs are used in the
calculation, the unphysical solution disappears and the low-
est s Rydberg state is obtained near its observed position.
Moreover, Fig. 8�d� indicates that the weak d contribution to
this state is obtained approximately correctly as well. This is
a useful result because it opens the possibility of incorporat-
ing the A state in a full MQDT treatment of photoionization
of NO proceeding through this state and thus to model, e.g.,
the recent time-resolved photoelectron imaging studies of the
Suzuki et al. �30� in a full scattering theoretical framework.

C. 1�g Rydberg channels of H2

Molecular hydrogen H2 exhibits numerous examples of
Rydbergization �5,6�, where states which clearly have Ryd-

berg character for small values of the internuclear distance R,
turn adiabatically into valence-type states as R gets larger
and dissociation is approached. The best known example is
furnished by the manifold of 1�g

+ symmetry where the
�1�g��s� Rydberg channel built on the H2

+ �1�g� ground-
state core gets increasingly mixed with the core-excited
�1�u�2 valence configuration as the vibrational excitation in-
creases. Unlike the two preceding examples we present here
a full treatment of the two electron problem including a
variational R-matrix calculation combined with MQDT, and
for the purpose of illustration we choose the channels of 1�g
symmetry.

A calculation on 1�g Rydberg states of H2 has been car-
ried out for an internuclear distance R=3.4 a.u. using the
variational R-matrix code of Refs. �4,31� implemented with
spheroidal coordinates � ,� ,�. In the asymptotic zone �
��0 we explicitly included the channels with 1�g symmetry

corresponding to l̃�3 and the ground and first excited state

cores, viz. 1s̃�g�d̃�g and 2p̃�u� f̃�u. The external channel

functions �l̃� were evaluated in the effective “halfium” sphe-
roidal framework, where the outer electron is described mov-
ing in the field of two charges Z= 1

2 separated by R.
The quantum-defect matrix evaluated in the present ex-

ample has dimension 2�2 and initially corresponds to sphe-
roidal wave functions. In order to obtain matrices corre-
sponding to spherical angular wave functions �spherical
harmonics�, the spheroidal variational eigensolutions were
projected onto a sphere, centered on the molecular midpoint,
and enclosing the spheroidal reaction volume �=�0. An
R-matrix-type matching procedure �10� carried out on this
sphere then yielded the desired spherical reaction matrix el-
ements Kij, �i , j=1 and 2�. This matching procedure was car-
ried out successively with the channel functions �s ,c�, �f ,h�,
�f ,g�, and the energy-modified pair � f̃ , g̃�, respectively.

Figure 10 illustrates the results. It depicts, from left to
right, the quantum defects as functions of the energy, calcu-
lated, respectively, with the energy-normalized base pairs,
with Ham’s functions, with the energy-independent pairs and
with the energy-modified base pairs. As this is a multichan-
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nel problem, the quantum defects can be plotted in various
ways. The top panels represent the eigenquantum defects

�� = �−1 tan−1�
kk�

U�k
−1Kkk�Uk��, �22�

where Kkk� are the elements of the reaction matrix which is
produced by the variational calculation and U is the matrix
of its eigenvectors. The second row of panels of Fig. 10
presents the quantum-defect matrix elements �=tan−1 K
�where the arctan is taken element by element�. Remember-
ing that quantum defects are defined mod 1 Fig. 10 demon-
strates that the use of the energy-modified Coulomb func-
tions leads to a striking reduction in the energy dependences.
In particular, the elements �� and �ii� exhibit virtually no
energy dependence down to quite low energies, whereas all
three other types of base pairs produce a strong resonance
centered at �=−0.25 resulting in an avoided crossing dis-
played by the eigenquantum defects.

We stress that the physical content of all the matrices
represented in Fig. 10 is exactly the same. This is demon-
strated by Table II where the effective principal quantum
numbers calculated by MQDT with the set of matrices �
displayed in Fig. 10 are listed. The table also lists the effec-
tive principal quantum number values derived from the best
available quantum-chemical ab initio calculations of
Wolniewicz �32� for the J and S states of H2. The present
R-matrix calculation combined with MQDT evaluation
yields the lowest 1�g state, J, for R=3.4 a.u. correctly to
within 60 cm−1 and the second state, S, correctly to within
10 cm−1. The fact that the R-matrix calculation combined
with MQDT bound-state energies are lower than the
quantum-chemical results is due to the fact that we have
added a polarization correction in the external zone. Table II
finally shows that the evaluations based on the Coulomb
pairs �s ,c�, �f ,h�, and �f ,g� produce false roots near =2
where no 2d� state can exist, while the calculation carried
out with the energy-modified pairs does not produce such
false roots. The occurrence of false roots in Table II is some-
what surprising since a full calculation inside the core as well
as in the asymptotic zone has been carried out here so that no
unphysical solutions are expected. What Table II reveals is
that the energy step size �0.03 Ry� used in the variational
R-matrix treatment has not been small enough for the MQDT

code to cope correctly with the extreme energy dependences
exhibited by the � matrix �Fig. 10�. The need for smooth
quantum-defect matrices is thereby once again demonstrated.

V. SUMMARY

The present development is intended to facilitate multi-
channel quantum-defect calculations on Rydberg states of at-
oms and molecules. It should remove some of the problems
which arise when quantum-defect theory is applied to low-
lying states. These are the strong and unexpected energy de-
pendences of quantum defects at low energies and the ensu-
ing appearance of unphysical states in the calculations �false
roots� in this range. These problems are typically due to the
fact that the Rydberg equation = �−��−1/2 is used to relate
the radial Rydberg accumulated phase ���� to the energy by
setting ����=��− l� even in strongly bound channels. How-
ever, although this may not be explicitly apparent in some
applications, this relationship is synonymous with using
Coulomb functions �Seaton’s �2� functions s and c in particu-
lar� which for certain low energies vanish identically or di-
verge.

Our approach retains the simple relationship between ra-
dial phase and energy which makes the empirical multichan-
nel quantum-defect theory so effective. However, this rela-
tionship now takes different forms depending on whether a
particular channel is weakly closed, strongly closed, or tran-
sitional. The expressions for the corresponding accumulated
phase parameters are given by Eqs. �14�, �18�, and �20� �to-
gether with Eq. �A1� and the appropriate parameters from
Table III�. In particular these simple expressions should en-
able spectroscopists to carry out elaborate multichannel fit-
ting procedures of complex Rydberg spectra without explicit
reference to the Coulomb functions used—just as is the case
when the familiar Rydberg relationship is used in MQDT
applications. Detailed knowledge of the functions themselves
will not be required except when quantum defects are calcu-
lated from first principles, e.g., in a R-matrix framework or
when dipole transition moments are evaluated in the Cou-
lomb approximation. The energy-modified Coulomb func-
tions are expressed in terms of the well-documented function
pair �f ,g� �energy-independent normalization near the ori-
gin� �2� by the transformation �Eq. �6��, with values for Al

TABLE II. Effective principal quantum numbers  of 1�g Rydberg states of H2 �R=3.4 a.u.�.The table
gives the clamped-nuclei  values of bound states calculated by combining the variational R-matrix approach
with MQDT, using different Coulomb base pairs as indicated. The states calculated with 
2 are unphysical.

State Exacta s ,c f ,h f ,g
Energy

Modified Exact-calc.

2.007

2.057 2.062 2.066

J 1�g 3.042 3.034 3.035 3.035 3.034 +0.008

S 1�g 4.041 4.038 4.038 4.037 4.038 +0.003

5.038 5.039 5.039 5.038

6.038 6.039 6.039 6.039

aFrom Wolniewicz �32� �interpolated�.

GUÉROUT et al. PHYSICAL REVIEW A 79, 042717 �2009�

042717-10



and tan �l defined in Sec. III for the different regions.
Finally, we note that an earlier version of the energy-

modified Coulomb functions has already been used. The ear-
lier version of the g̃l functions had no admixture of f l, i.e.,
the transformation matrix in Eq. �6� was taken as diagonal so

that �l=0, and �̃l was thereby implicitly defined through Eq.
�13�. Also, the transition region was taken as extending from
= l to = l+1 �rather than l+1−�l� and the bridging func-
tion was taken as a single cubic spline. This earlier version
was used with some success, for example, in the work re-
ported in Refs. �17,33�.
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APPENDIX: TRANSITION REGION BRIDGING
FUNCTIONS

As discussed in Sec. III D and as shown for �̃ in Fig. 5,
we bridge the gap between the weakly and strongly closed
regions by use of a smoothly connected quadratic and linear
functions �Eq. �20��. This gap extends from 0= l to 2= l
+1−�l and, as also shown in Fig. 5, the quadratic bridging
function is used from 0 to 1 and the linear one from 1 to

2. The transition matching point, 1, and the five expansion
coefficients of Eq. �20� are chosen to ensure the continuity of
the function being bridged �which we denote y���, and its
first derivative with respect to  �which we denote y���� at
the three points 0, 1, and 2. Straightforward algebra taking
into account these six conditions yields the coefficients ci
and di in terms of the given values y0, y0�, y2, and y2�:

c2 =
1

4

�y2� − y0��
2

�y2��2 − 0� − �y2 − y0��
,

c1 = − 2c20 + y0�,

c0 = c20
2 − y0�0 + y0,

d1 = y2�,

d0 = y2 − y2�2. �A1�

The connection point 1 between the quadratic and linear
forms of y�� is found to be

1 = 0 +
2�y2��2 − 0� − �y2 − y0��

y2� − y0�
. �A2�

In choosing al �Eq. �19�� and bl �one of the relations �Eq.
�18��� it must be remembered to ensure that the transition
matching point, 1, lies between 0 and 2. This means that
the following conditions must be verified: if y2�−y0��0:

y0 +
1

2
y0��2 − 0� � y2 −

1

2
y2��2 − 0� ,

y0 � y2 − y2��2 − 0� ,

if y2�−y0��0:

y0 +
1

2
y0��2 − 0� � y2 −

1

2
y2��2 − 0� ,

y0 � y2 − y2��2 − 0� . �A3�

Table III gives the values for y0, y0�, and y2, y2� to be used in
Eqs. �A1�–�A3� for choices A and B. A� , l� and its deriva-
tive can be taken from Eq. 2.57 of Seaton �2� and are

A�,l� = �1 −
12

2��1 −
22

2�¯ �1 −
l2

2� ,

A��,l� =
2

3A�,l�� 12

1 − 12

2

+
22

1 − 22

2

+ ¯ +
l2

1 − l2

2

� .

�A4�

Using the values for choice A from Table III in Eq. �A3�
immediately implies that

0 � bl �
l

2l + 1
. �A5�

TABLE III. Values to be used in Eqs. �A1�–�A3�.

y0 y0� y2 y2�

Choice A

�̃ /� bl
bl

l
1−�l 1

Al al 2
al

l
A�=1−�l , l� A��=1−�l , l�

Choice B

�̃ /� bl −
bl

l
ln bl 1−�l 1

Al al 2
al

l
A�=1−�l , l� A��=1−�l�

ALTERNATIVE CHOICES OF COULOMB CHANNEL FUNCTIONS PHYSICAL REVIEW A 79, 042717 �2009�

042717-11



�1� Molecular Applications of Quantum Defect Theory, edited by
Ch. Jungen �The Institute of Physics, Bristol, 1996�.

�2� M. J. Seaton, Rep. Prog. Phys. 46, 167 �1983� reprinted in
Ref. �1�.

�3� S. C. Ross and Ch. Jungen, Phys. Rev. A 49, 4364 �1994�.
�4� S. Bezzaouia, M. Telmini, and Ch. Jungen, Phys. Rev. A 70,

012713 �2004�.
�5� R. S. Mulliken, Acc. Chem. Res. 9, 7 �1976�.
�6� R. S. Mulliken, Chem. Phys. Lett. 46, 197 �1977�.
�7� R. S. Mulliken, Phys. Rev. 32, 186 �1928�.
�8� M. Raoult, J. Chem. Phys. 87, 4736 �1987�. �cf. in particular

Fig. 3 and the accompanying discussion�.
�9� C. H. Greene, Phys. Rev. A 20, 656 �1979�.

�10� U. Fano and A. R. P. Rau, Atomic Collisions and Spectra �Aca-
demic, Orlando, 1986�, Chap. 6.4.

�11� F. S. Ham, Solid State Phys. 1, 127 �1955�.
�12� T. W. Gorczyca and N. R. Badnell, J. Phys. B 33, 2511 �2000�.
�13� M. S. Child and M. Hiyama, J. Phys. B 40, 1233 �2007�.
�14� W. E. Milne, Phys. Rev. 35, 863 �1930�.
�15� C. H. Greene, A. R. P. Rau, and U. Fano, Phys. Rev. A 26,

2441 �1982�.
�16� Ch. Jungen and F. Texier, J. Phys. B 33, 2495 �2000�.
�17� S. C. Ross, Ch. Jungen, and A. Matzkin, Can. J. Phys. 79, 561

�2001�.
�18� U. Fano, Phys. Rev. A 2, 353 �1970�.

�19� M. J. Seaton, Comput. Phys. Commun. 25, 87 �1982�.
�20� R. G. Parsons and V. F. Weisskopf, Z. Phys. 202, 492 �1967�.
�21� Ch. Jungen, J. Chem. Phys. 53, 4168 �1970�.
�22� S. Fredin, D. Gauyacq, M. Horani, Ch. Jungen, G. Lefevre,

and F. Masnou-Seeuws, Mol. Phys. 60, 825 �1987�.
�23� K. Kaufmann, C. Nager, and M. Jungen, Chem. Phys. 95, 385

�1985�.
�24� S. N. Dixit, D. L. Lynch, V. McKoy, and W. M. Huo, Phys.

Rev. A 32, 1267 �1985�.
�25� W. Y. Cheung, W. A. Chupka, S. D. Colson, D. Gauyacq, P.

Avouris, and J. J. Wynne, J. Phys. Chem. 90, 1086 �1986�.
�26� A. L. Goodgame, H. Dickinson, S. R. Mackenzie, and T. P.

Softley, J. Chem. Phys. 116, 4922 �2002�.
�27� M. Hiyama and M. S. Child, J. Phys. B 35, 1337 �2002�.
�28� R. Guérout, M. Jungen, and Ch. Jungen, J. Phys. B 37, 3043

�2004�.
�29� R. Guérout, M. Jungen, and Ch. Jungen, J. Phys. B 37, 3057

�2004�.
�30� M. Tsubouchi and T. Suzuki, J. Chem. Phys. 121, 8846

�2004�.
�31� M. Telmini and Ch. Jungen, Phys. Rev. A 68, 062704 �2003�.
�32� L. Wolniewicz, J. Mol. Spectrosc. 169, 329 �1995�.
�33� A. Matzkin, Ch. Jungen, and S. C. Ross, Phys. Rev. A 62,

062511 �2000�.

GUÉROUT et al. PHYSICAL REVIEW A 79, 042717 �2009�

042717-12


