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Effects of electric fields on heteronuclear Feshbach resonances in ultracold °Li-¥’Rb mixtures
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The effects of combined external electric and magnetic fields on elastic collisions in ultracold Li-Rb mix-
tures are studied using recently obtained experimentally verified potentials. Our analysis provides both quan-
titative predictions for and a detailed physical interpretation of the phenomena arising from electric-field-
induced interactions. It is shown that the electric field shifts the positions of intrinsic magnetic Feshbach
resonances, generates copies of resonances previously restricted to a particular partial-wave collision to other
partial-wave channels, and splits Feshbach resonances into multiple resonances for states of nonzero angular
momenta. It was recently observed that the magnetic dipole-dipole interaction can also lift the degeneracy of
a p-wave state splitting of the associated p-wave Feshbach resonance into two distinct resonances at different
magnetic fields. Our work shows that the splitting of the resonances produced by an applied electric field is
more than 1 order of magnitude larger. This phenomenon offers a complementary way to produce and tune an
anisotropic interaction and to study its effect on the many-body physics of heteronuclear atomic gases.
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I. INTRODUCTION

The discovery of magnetic-field tunable Feshbach reso-
nances (FRs) has led to many ground-breaking experiments
in the field of ultracold atomic and molecular physics [1-3].
Magnetic FRs provide a powerful tool to control microscopic
interactions in ultracold quantum gases [4,5], offer an ex-
tremely sensitive probe of interatomic interaction potentials
for collisions at ultracold temperatures [6—8], and can be
used to create ultracold molecules by coherently linking ul-
tracold atoms [9,10]. FRs arise due to coupling between a
quasibound molecular state in a closed collision channel and
the scattering wave function of the colliding atoms in an
open channel. Because the quasibound states and the free
atomic pair have, in general, different magnetic moments,
both their absolute energy and relative energy difference can
be tuned using an external magnetic field. When the energy
of the quasibound state is degenerate with the energy of the
free atomic pair, a resonant scattering process occurs, the
s-wave scattering length diverges, and both elastic and in-
elastic collisions are dramatically enhanced. Recent theoret-
ical work has also demonstrated the possibility of inducing
FRs in heteronuclear mixtures of atomic gases by applying a
static electric field [11,12]. The mechanism is based on the
interaction of the instantaneous dipole moment of the hetero-
nuclear collision complex with the external electric field.
This interaction is distinct from and for bi-alkali-metal mix-
tures with a large electric dipole moment, much larger than
that responsible for electric-field control of ultracold colli-
sions based on the electric polarization of colliding atoms
and the resulting dipole-dipole interaction [13-15]. The in-
teraction considered here, for heteronuclear collisions,
couples collision states of different orbital angular momenta,
and the coupling becomes very significant near a FR. This
coupling gives rise to new s-wave scattering resonances in-
duced by the presence of FRs in higher partial-wave states
and can shift the positions of the quasibound states resulting
in a shift in the positions of the intrinsic magnetic FRs (i.e.,
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those present in the absence of an external electric field).
Moreover, the electric field can induce a strong anisotropy of
ultracold scattering by exerting a torque on the collision
complex of ultracold atoms [12].

The use of combined electric and magnetic fields to con-
trol interatomic and intermolecular interactions has several
distinct advantages over using magnetic fields alone. It has
been demonstrated that the combination of electric and mag-
netic fields may be used to control both the position and
width of FRs independently even for homonuclear collisions,
leading to complete control over the character of ultracold
collisions [15]. In addition, for the relevant field strengths
considered here (=100 kV/cm and =1 kG), the electric
fields can be varied much faster than the magnetic fields, in
large part, because the corresponding field energy density is
ten times smaller. Electric fields introduce anisotropic inter-
actions and angle-dependent scattering at ultracold tempera-
tures, which may affect the dynamics of quantum degenerate
gases in unanticipated ways. It is also interesting to note that
the electric-field control of heteronuclear collisions can be
achieved at fields low enough that they do not perturb the
separated atoms or nonpolar molecules since they only inter-
act significantly with electric field when in a collision com-
plex. For these reasons, electric-field control of interatomic
interactions may also be preferable to magnetically or opti-
cally tunable scattering resonances in certain applications.

Silber et al. [16] recently created a quantum degenerate
Bose-Fermi mixture of °Li and *'Rb atoms in a magnetic
trap and detected interspecies FRs [17]. These resonances
may eventually be useful to improve the efficiency of sym-
pathetic cooling in this mixture and for the study of boson-
mediated BCS pairing [18]. These FRs also provide a
method to create loosely bound LiRb dimers. LiRb mol-
ecules have a relatively large electric dipole moment (up to
4.2 D) [19], which makes the Li-Rb system a good candidate
for research on ultracold dipolar gases and the experimental
study of electric-field-induced FRs [11,12]. Recently, we
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have generated accurate singlet and triplet interaction poten-
tials for ultracold collisions in °Li-*’Rb gaseous mixtures by
fitting the experimentally measured FRs [7]. In this work, we
use these potentials to investigate in detail the effects of
combined external electric and magnetic fields on elastic col-
lisions in ultracold Li-Rb mixtures. To guide future experi-
mental studies, we predict the positions and widths of
electric-field-induced FRs for several spin states and explore
the effect of the orientation of the electric field with respect
to the magnetic field on ultracold elastic collisions. The work
presented here represents the quantitative analysis of
electric-field-induced resonances based on precise inter-
atomic potentials. In addition, our analysis provides insights
into the detailed physical mechanism of electric-field-
induced interactions in ultracold binary mixtures of alkali-
metal atoms. We report the observation that the coupling
induced by electric fields splits FRs into multiple resonances
for states of nonzero angular momenta. Recently it was ob-
served that the magnetic dipole-dipole interaction can lift the
degeneracy of a p-wave state [20]. This splits a p-wave FR
into two distinct resonances at different magnetic fields
[20,21]. The splitting of the resonances studied here is pro-
duced only in heteronuclear collisions by a coupling between
different quasibound states, is continuously tunable using an
applied electric field, and is more than 1 order of magnitude
larger than the splitting induced by magnetic dipole-dipole
interactions. This phenomenon offers a complementary way
to produce and tune an anisotropic interaction and to study
its effect on the many-body physics of heteronuclear atomic
gases.

II. THEORY

The Hamiltonian for the °Li-*’Rb collision system (or any
bi-alkali-metal system) in the presence of superimposed elec-
tric and magnetic fields is

H=Hy+ Vi(R) + Vz+ Vyp, (1)

where I:Irel accounts for the relative motion of the atoms,
\7E(R) describes the interaction between LiRb and an exter-
nal electric field, \73 models the interaction of the collision
complex with an external magnetic field, and \>hf represents
the hyperfine interactions. I:Irel can be written as

. 1 & Pees -
Hoy=-——">5R+——5 +V(R), (2)
2R IR 2R

where u is the reduced mass of the colliding atoms, R is
the interatomic distance, [ is the operator describing the ro-
tation of the collision complex, and the angles 6 and ¢
specify the orientation of the interatomic axis in the space-
fixed coordinate frame. Here, we neglect the magnetic
dipole-dipole interaction since it has a negligible effect on
the observables described in this paper. The atomic and mo-
lecular quantum numbers used in this paper are defined in
Table I.
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TABLE I. Definition of quantum numbers used in this paper.

l Orbital angular momentum of the diatomic system
m; Projection of / on the space-fixed quantization axis

Total electronic spin angular momentum of the
N diatomic system

Projection of S on the space-fixed quantization
Mg axis
Iy; Nuclear spin angular momentum of Li
Projection of I ; on the space-fixed quantization
M. axis
Irp Nuclear spin angular momentum of Rb
Projection of Iy, on the space-fixed quantization
M., axis
SLi Electronic spin angular momentum of Li
Projection of Sy; on the space-fixed quantization
Mg, axis
Skrb Electronic spin angular momentum of Rb

Projection of Sy, on the space-fixed quantization
M axis
SRb

We expand the total wave function of the diatomic system
in a fully uncoupled space-fixed basis set,

1
I/l: I;E E 2 Falm[(R)|lml>|a’>’ (3)
a I m
where F gy (R)|Im;) and |

= |ILiM1Li>|SLiMSLi>|IRbM1Rb>|SRbMSRb> are the radial baSiS
states and the atomic spin states, respectively. In the above
sum, we include s-, p-, and d-partial waves and all spin states
which are coupled to a given open channel. Since the electric
field only couples partial-wave states differing by one unit of
angular momentum, our results for the s-wave cross section
are correct to third order in the electric-field coupling. More-
over, we have verified that omitting the d-partial wave does
not significantly affect the s-wave observables.

The substitution of this expansion in the Schrodinger
equation with Hamiltonian (1) results in a system of coupled
differential equations,

> 11+1)
R g T2me|F aim(R)
=24, 2 > (alm|V(R) + Vg(R) + V
a1 m;
+ Vadl @ U'm)F oo (R, (4)

which we solve at fixed values of total energy e. To
ensure the proper convergence of the calculations, we
employ a dense propagation grid from 2.0ag to 800ap
(ag=0.052917 7 nm) with a step of 0.005ag.

The electronic interaction potential \7(R) can be repre-
sented as
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V(R) =X 2 |SM)VS(R)(SMy], (5)
S Mg

where Vg(R) denotes the adiabatic interaction potential of the
molecule in the spin state S. As described in [7], we model
the triplet @3 and singlet X'S interaction potentials of LiRb
by an analytical function of the form originally proposed by
Esposti and Werner [22],

V(R) = G(R)e~“R-Ro) _

with G(R)= E L ogiR' and T(R)= [1+tanh(1+tR)]. The po-
tential parameters were determlned by varying this function
to reproduce the overall shape and approximate number of
bound states for the LiRb dimer expected from the ab initio
calculations [23]. The long range behavior was adjusted to
match the van der Waals coefficient C6=2545Ehag (where
E,=4.359 74X 1078 J) determined by Derevianko et al.
[24]. We then fine tuned these potentials by making small
adjustments to the short range repulsive wall while keeping
the long range behavior fixed. As described in [7], this final
refinement of the potentials was done so that they reproduced
the positions and widths of the known Feshbach resonances
as well as the experimentally measured triplet scattering

length.
To evaluate the matrix elements of the interaction
potential V(R), we write the atomic spin states

1M )ISLM s, ) TroM 1 )| SreMs,,,) in terms of the total elec-
tronic spin

1My MSuM s MroM 1 )|SroM s, )
=22 (- )"Es+ 1"

5 Mg
( e )IIUM, My ISM)
Mg Mg, —Ms Li Rb
(7)
and note that
<SMS|‘A/(R)|S,M§> =Vs(R) 555'5MSM§~ (8)

The term enclosed in parentheses in Eq. (7) denotes a 3j

symbol. The operator V(R) is diagonal in the nuclear spin
states and / and m; quantum numbers.

The operator Vi(R) can be written in the form

E-d=

VE(R) ==
S Mg

)

where é; and é, are the unit vectors pointing along the
electric field and dipole moment of the LiRb dimer, respec-
tively, dg denotes the spin dependent dipole moment func-
tions of LiRb, and FE is the electric-field magnitude. Clearly,
the electric-field coupling depends on the orientation of
the field with respect to the dipole moment. Specifically,

PHYSICAL REVIEW A 79, 042711 (2009)
z E

N

BI

S

FIG. 1. (Color online) The coordinate system used for our cal-
culations. E and d represent the vector of the external electric-field
and the dipole moment vectors, respectively; 7y specifies the angle
between the electric-field vector and the quantization axis; 6 is the
angle between the dipole moment vector and the z axis; and y is the
angle between E and d. The azimuthal angles, ¢, and ¢, are mea-
sured from the positive x axis to the orthogonal projection of the E

and d vectors in the x-y plane.

ég-é4=cos(x) where y is the angle between E and d. If the
electric-field and dipole moment vectors are oriented at
angles y and @ with respect to the quantization axis (taken to
be along the Z axis), then this term can be written in terms of
the first-degree Legendre polynomial as

€ éq=cos(x) = P(cos(x))
4
= %T[YTA(% ¢y) Y1_1(6,bg) + YTO(% ¢7)Y10(67 b0
+Y1,(7.0,)Y11(6, $p)], (10)

where the Y, are spherical harmonics and we have used the
spherical harmonic addition theorem. The azimuthal angles,
¢, and ¢y, are measured frorn the positive x axis to the

orthogonal projection of the E and d vectors in the x- y plane.
Figure 1 illustrates this coordinate system.
The dipole moment functions are modeled by

dg(R) =D exp[- a(R - R,)*] (11)

with the parameters R,=7.2ag, a=0.06a]"32, and D=4.57 D
for the singlet state and R,=5.0ap, a:0.045a§2, and D
=1.02 D for the triplet state, where the Bohr radius is ag
=0.052 917 7 nm. These analytical expressions that approxi-
mate the true functions were fit to the numerical data for the
dipole moment functions computed by Aymar and Dulieu
[19].

The collision dynamics in Li-Rb system depends on the
relative angle (y) between the electric and magnetic fields.

Without loss of generality, we can assume that E lies in the

x-z plane, i.e., ¢,=0. The matrix elements of VE(R) are
therefore evaluated using the expressions
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1 —_—
(Imj|ég- el'm]) = Esm v(— 1)’”1\(21+ QI + 1)(
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1 I"\[I 1 ! /
+ -D™MNQRI+ D)2 +1
EEA S

X(z 1 1’)(1 (A ) 1 1) m( 1 1’)(1 10 ) (1)
_ ml ’
00 0N\m o —m/) FM v * 1 —m!

-m;

and

<SMS|<§‘, > |S"MUd gl S" M, )|S’Mg> = dySss g
s" My

(13)

It is important to note that the electric-field coupling opera-
tor, Vz(R), has a spin structure identical to the electronic

interaction potential, \7(R). Namely, they are both diagonal in
the total electronic spin and its z projection. However, as is
clear from Eq. (12), the geometric factor, é-¢é,, introduces
this additional electric-field-induced coupling only between
states of different orbital angular momenta. The first 3j sym-
bol in Eq. (12) is nonzero for [+!’==*1. The second 3j
symbol in Eq. (12) selects states with orbital angular mo-
menta projections differing by Am;=m;—m;=*1,0. If the
electric field is directed along the z axis (the quantization
axis) then y=0 and Eq. (12) reduces to

(= "L+ DRI+ 1)

1 "\f1 17!
-m; 0 m/\0 0 O

In this case only those states with the same orbital angular
momenta projections are coupled.

In the absence of an electric field, the Hamiltonian (ne-
glecting magnetic dipole-dipole interactions) preserves the
projection of the total angular momentum along the quanti-
zation (magnetic field) axis, i.e., the sum Mg +M St M,
+M Iy T is conserved. In addition, the orbital angular mo-
mentum is also conserved. Therefore, the intrinsic (E=0)
FRs which are present for a particular atomic spin state arise
from its coupling to the set of bound states with the same
total angular momentum projection and orbital angular mo-
mentum. The energy of the bound states relative to the
threshold state and their relative magnetic moments deter-
mine the magnetic fields at which resonances will occur and
the strength of the coupling to a particular bound state deter-
mines the width of the resulting resonance. The electric field
induces additional couplings between the threshold state and
bound states of different angular momenta but still within the
same set of states sharing the same total spin angular mo-
mentum projection mp=M st Ms, +My +M . The result
is that FRs previously restricted to a particular partial-wave
collision will appear on adjacent partial-wave scattering
states. The widths of these electric-field-induced FRs depend
on the strengths of the couplings and therefore on the mag-
nitude of the electric field, E. In addition, the electric-field

(Imy|cos O|l'm[) =

000 m|

coupling among the bound states (of the same my values)
will shift their absolute energies and therefore the position of
the intrinsic FRs. Moreover, this coupling and the resulting
shifts are, in general, dependent on m; and, as a consequence,
resonances associated with bound states with />0 will split
into /+1 distinct resonances.

The interaction of the atoms with an external magnetic
field B is described by

,LL
Rb[sz) (15)

MLig
Vg=2uoB(S, +8 B\ —1I,
8= 240B( Z; sz) ( I 7, T Ins

where B is the magnetic-field strength (directed along the z
axis), po is the Bohr magneton, and gy denote the
nuclear magnetic moments of Li (Rb). § Ziike) & and I Ziire) give
the z component of the operators descnblng the electronic
and nuclear spins of Li (Rb), S‘Li(Rb) and iLi(Rb), respectively.
The hyperfine interaction \A/hf can be represented as

Ve = YeilLi - Sti+ Yrolry * Skros (16)

where y;; and g, are the atomic hyperfine interaction con-
stants: y;;=152.14 MHz and yR,=3417.34 MHz (where we
work in units with A=1).

The operator representing the magnetic-field interaction is
diagonal in the representation
1M )ISLM s, M oMy M SreMs,, ), while the matrix ele-
ments of the hyperfine interaction operators are not but can
be readily evaluated using the relations

e e e A
Iy Sui=1Iz Sz + 53U + I Suis) (17)

and
Iry - Sro =17, Sz, + 3 UrpiSo- + Irp-Swos) . (18)

1 + and S + are the raising and lowering operators. Because of
these terms, the matrix of the Hamiltonian in the basis |alm;)
does not become diagonal as R— . Therefore, we find the

basis which diagonalizes the matrix of 17E+ \73+ Vhf and
transform the solutions of Eq. (4) into this basis. At this
point, the boundary conditions are applied and we construct
the scattering S matrix. This procedure has been described in
Ref. [25]. The scattering matrix thus obtained yields the
probabilities of elastic and inelastic scatterings of Li and Rb
in the presence of electric and magnetic fields.

III. RESULTS

The Li-Rb mixture is an important system for the study of
both ultracold atomic and molecular gases. A quantum de-

042711-4



EFFECTS OF ELECTRIC FIELDS ON HETERONUCLEAR ...

Cross section (a.u.)

D

o

500 1000 00 1200 1300
Magnetic field (G)

FIG. 2. (Color online) Magnetic-field dependence of the elastic
cross section for collisions between Li and Rb in the atomic spin
state %,%)m ® |1,1)87z;,. These results were obtained for a collision
energy of 1077 cm™! and two different electric fields. The solid and
dashed-dotted curves show the s- and p-wave cross sections with
E=0, while the dotted and dashed curves show the s- and p-wave
cross sections when E=100 kV/cm. Here, only the cross section
for the m;=0 state is shown for p-wave scattering. At A an s-wave
resonance is induced by an intrinsic p-wave resonance. Figure 3
shows this feature in more detail. At B and at C an intrinsic s-wave
resonance is shifted to higher magnetic fields (corresponding to a
shift of the associated bound state to lower energy) due to the
electric-field coupling between bound states. The observation that
the shift of higher field resonances (e.g., C) is typically larger than
that of lower field resonances (e.g., B) is discussed in the text. At D
an intrinsic p-wave resonance is shifted to lower magnetic fields
(corresponding to a shift of the associated bound state to higher
energy). At E an induced p-wave resonance appears (invisible on
this scale) due to the intrinsic s-wave resonance at C.

generate Bose-Fermi mixture of °Li and *’Rb atoms has
been recently created [16] and may be important for research
of ultracold fermionic and bosonic mixtures. By tuning an
external magnetic field through a FR, researchers can create
an ensemble of LiRb molecules, a polar dimer, from this
gaseous mixture. Since LiRb molecules have a large electric
dipole moment, the Li-Rb system is also a good candidate
for the research of ultracold dipolar gases and the experimen-
tal study of electric-field-induced FRs [12]. Motivated by
these features and the availability of accurate potentials [7],
we analyze the collision properties of Li-Rb mixtures in the
presence of both magnetic and electric fields.

As discussed above, in the absence of electric fields, dif-
ferent partial-wave states |Im;) of the Li-Rb collision com-
plex are uncoupled and s-wave scattering entirely determines
the collision dynamics in ultracold Li-Rb gases. The pres-
ence of an external electric field, however, induces couplings
between states of different orbital angular momenta with
Al==*1. As a result, a resonant enhancement of the s-wave
cross section appears at magnetic fields near intrinsic p-wave
resonances. Figure 2 shows the magnetic-field dependence of
s- and p-wave elastic cross sections for Li and Rb atoms in
the spin state |3,3)61;® |1, 1)s7g, (Where |£,m,) is the usual
notation for the atomic hyperfine states) computed at zero
electric field and at E=100 kV/cm. Here the electric field is
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FIG. 3. (Color online) Magnetic-field dependence of s- and
p-wave elastic cross sections for atoms in the atomic spin state
%,%)6“@ 1,1)s7g, computed at different electric fields. This is the
same feature at A in Fig. 2. The solid and dotted curves show the
s-wave cross sections at E=0 and E=100 kV/cm, respectively.
The dotted-dashed and dashed curves show the p-wave cross sec-
tions at E=0 and E=100 kV/cm, respectively. This intrinsic
p-wave resonance shifts to lower magnetic field (corresponding to
the shift of the associated bound state to higher energy) as the
electric-field magnitude is increased. The s-wave induced resonance
appears at the same location as the intrinsic p-wave resonance, and
its width grows with the strength of the electric field (see Fig. 4).
Here only the cross section of the #;=0 component is shown for the
p-wave state (Fig. 8 shows the cross sections for all three compo-
nents). The collision energy is 10~/ cm™.

directed along the quantization axis (y=0). In the presence
of the 100 kV/cm electric field, an s-wave resonant peak
appears (indicated at A) at the magnetic field of 877.50 G
arising from an intrinsic p-wave resonance. We refer to this
resonance as an electric-field-induced Feshbach resonance.
Figure 3 shows this feature in more detail. We present in
Table II the positions and widths of electric-field-induced
FRs for several atomic spin states of the °Li-*’Rb system at
magnetic fields below 2 kG. For each resonance, we extract
the position (By) and width (AB) from the magnetic-field
dependence of the scattering length,

AB
a(B):abg<1 _B—O—B>’ (19)

where ay, represents the background scattering length. In this
calculation, we also observe new p-wave resonances induced
by the coupling to a d-wave state, and we find that these
p-wave resonances give rise to new s-wave electric-field-
induced FRs, denoted by (d) in Table II.

The width of the electric-field-induced FRs is determined
by the strength of the coupling, which is, in turn determined
by the magnitude of the electric field. In Fig. 4, we plot the
width of the s-wave resonance (shown in Fig. 3) induced by
the intrinsic p-wave resonance near 882 G as a function of
the electric-field magnitude. We find that the width can be
well represented by a quadratic function of E, at least for the
electric fields below 200 kV/cm, which suggests that this
induced resonance arises from an indirect coupling [26].
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TABLE II. The positions (By) and widths (AB) of s-wave reso-
nances induced by an external electric field of 100 kV/cm for
°Li-*’Rb at magnetic fields below 2 kG. (d) denotes an s-wave
electric-field-induced Feshbach resonance arising from a second-
order coupling through the p-wave channel to a d-wave closed
channel state. As a consequence, these resonances are exceedingly
narrow.

Atomic states B, AB
fsmpe fsmp)ss (G) (G)
11
3:3) 1,1) 536.65(d) 0.01
877.5 2.3
654.52 <0.01
11
3530 1,0) 555.88(d) <0.01
885.8 2.6
ST 1,1) 578.58(d) 0.01
707.70 <0.01
770.50 <0.01
5.-3) 1,0) 596.01(d) <0.01
926.8 2.6
3 3
3.5) 1,-1) 1242.5 12.7

The electric field not only induces new resonances but
also shifts the position of intrinsic magnetic FRs. Figure 2
shows that the interaction of Li-Rb dipole moment with the
electric field shifts the position of both the s- and p-wave
resonances. At B and at C an intrinsic s-wave resonance is
shifted to higher magnetic fields (corresponding to a shift of
the associated bound state to lower energy) due to the elec-
tric field. At D an intrinsic p-wave resonance is shifted to
lower magnetic fields (corresponding to a shift of the asso-
ciated bound state to higher energy). For the most part, the
shift of the FR positions arises from the coupling between

(=)
T

Width (G)
T

| L | L L
o 100 150
Electric field (kV/cm)

| .
200 250

FIG. 4. (Color online) The width (AB) of the s-wave electric-
field-induced Feshbach resonance arising from the intrinsic p-wave
resonance at 882 G as a function of the electric-field magnitude.
Here y=0 and the collision energy is 1077 cm™!. The width appears
to scale quadratically with E, at least for the electric fields below
200 kV/cm, and suggests that this induced resonance arises from
an indirect coupling [26]. The solid line is the fit AB=1.76
X 107*E% G, where E is in units of kV/cm.
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FIG. 5. (Color online) Magnetic-field dependence of the s-wave
elastic cross section for atoms in the atomic spin state %r%)f’u
®|1,-1)87z, computed at different electric fields: E=0 kV/cm
(solid curve), E=30 kV/cm (dotted curve), E=70 kV/cm (dashed
curve), and E=100 kV/cm (dotted-dashed curve). An intrinsic
s-wave resonance (whose position is 1611 G in the absence of an
electric field) is observed to shift to lower magnetic fields as the
electric-field strength is increased. Note: the shift direction is in the
opposite sense to that of the intrinsic s-wave resonances in Fig. 2.
These results were obtained with a collision energy of 1077 cm™.

bound states whereas the coupling of a given bound state to
the scattering state results in a broadening of the associated
electric-field-induced resonance. We note that the shift of
magnetic FRs at higher magnetic fields (e.g., C) is more
significant than the shift at lower magnetic fields (e.g., B).
This generic behavior results from the fact that resonances
associated with higher magnetic fields are typically more
deeply bound than those associated with lower magnetic
fields. As a result, the wave function of the bound state giv-
ing rise to FRs at higher fields samples smaller interatomic
distances where the dipole moment function is much larger.

Another example of the shift induced by the electric-field
couplings is shown in Fig. 5 for atoms in the atomic spin
state |3,~3Ye;® |1, —1)s7g,. An electric field of 30 kV/cm is

large enough to shift the position of this s-wave resonance by
almost 2 G—much larger than its width—while a field of
100 kV/cm produces a shift of almost 9 G. It is important to
note that this s-wave resonance shifts to lower magnetic
fields as the electric field increases, and this is opposite to the
shift of the s-wave resonances shown in Fig. 2. The shift of
a resonance results from level repulsion between the closed
channel bound states and therefore depends on the proximity,
position, and coupling strengths of the nearby bound states.
Therefore, the direction of the resonance shift and its depen-
dence on the electric-field magnitude do not exhibit a generic
behavior but depend on the particular environment of a given
resonance.

These shifts provide a way to dramatically and rapidly
modify the s-wave scattering length by tuning into and out of
an intrinsic magnetic-field resonance. Figure 6 presents two
such tuned resonances arising from the variation in the elec-
tric field for atoms in the atomic spin state |%,%>6Li
®|1,1)87x,,. This figure shows the cross section for s-wave

collisions as a function of the electric-field strength with the
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FIG. 6. (Color online) Variation in the cross section for s-wave
collisions as a function of the electric-field strength with the mag-
netic field fixed at 1066 G (solid line) and 878 G (dotted line) for
atoms in the spin state %,%)6Li®|1,1>87kb. The large resonance
feature shown in the solid curve is due to the shift of the intrinsic
magnetic Feshbach resonance just below 1066 G to higher magnetic
fields, while the small resonance feature at 16 kV/cm arises from
the shift of an intrinsic p-wave resonance just above 1066 G to
lower magnetic fields as the electric field increases. The dotted
curve shows a resonance feature associated with an electric-field-
induced resonance (shown in Fig. 3) which moves from 882 G at
E=0 down to a magnetic field below 877 G at E=120 kV/cm. The
collision energy is 1077 ecm™.

magnetic fields fixed at 1066 G (solid line) and 878 G (dot-
ted line). The solid curve shows a large resonance feature
due the intrinsic magnetic FR at 1067 G which shifts to
higher magnetic field (lower absolute energy) as the electric
field increases (see Fig. 2). The small resonance feature
which appears at the electric-field strength of approximately
16 kV/cm in the solid curve arises from an electric-field-
induced resonance arising from the intrinsic p-wave reso-
nance just above 1066 G which shifts to lower magnetic field
(higher energy) as the electric field increases. In the same
plot, the dotted curve shows a resonance feature due to the
shift of an electric-field-induced resonance arising from the
intrinsic p-wave resonance at 882 G. Figure 3 shows that the
p-wave state responsible for this resonance shifts to lower
magnetic fields (higher energy) as the electric field increases.

In the presence of an electric field, the couplings between
different partial-wave states can push the bound states in, for
example, the s-wave and p-wave interaction potentials apart.
This level repulsion gives rise to the electric-field-induced
shift of the intrinsic s- and p-wave magnetic FRs. Since the
couplings depend on the orbital angular momentum projec-
tion, m;, we also expect the electric-field induced coupling to
also split FRs for states of nonzero angular momenta. This
mechanism is illustrated in Fig. 7 where three adjacent
bound state levels are shown as well as the coupling induced
by an applied electric field with y=0. Without external elec-
tric fields, the bound states in the p-wave interaction poten-
tial are degenerate, whereas the electric field lifts this degen-
eracy. In the case where the electric field points along the
quantization axis (y=0), the m;=0 bound state in the p-wave
potential is coupled to bound states in both the s- and d-wave
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FIG. 7. (Color online) A schematic illustrating the mechanism of
the splitting of p- and d-wave bound states resulting in the splitting
of the corresponding Feshbach resonances. For simplicity, only
three adjacent bound state levels are shown. The different partial-
wave potentials of each state are on this scale almost indistinguish-
able and are drawn here as a single potential. The inset shows the
energy levels associated with these three states. The dotted lines
indicate their energies in the absence of an electric field. The cou-
pling induced by the electric field is represented as double-ended
arrows and shown for the case when the electric field is aligned
along the magnetic field, i.e., when y=0 states with the same m,
value are coupled. The coupling results in level repulsion and the
new position of the states is indicated by the solid lines. The degen-
eracy of the p- and d-wave bound states is broken and the associ-
ated Feshbach resonance splits into a multiplet with /+1 distinct
resonances as shown in Figs. 8 and 9. This simple picture predicts
that the s-wave resonance should shift to higher magnetic fields
(given the energy of the threshold moves down with increasing
magnetic fields) and that the m;=0 partial-wave component should
produce a new resonance at a magnetic field below the m;=1 com-
ponent, consistent with the motion of the resonances in Figs. 2 and
8. Of course, each state is coupled to all other bound states within
the same spin manifold and with an orbital angular momenta dif-
fering by Al==*1, resulting in splittings and shifts (e.g., Fig. 5)
which may not follow the predictions of this simple picture.

potentials whereas the |m,|=1 bound states are only coupled
to bound states in the d-wave potential. This occurs because
the system is cylindrically symmetric and the couplings be-
tween internal spin states and partial-wave states are negli-
gible. As a result, the coupled states repel and the m;=0 state
is shifted differently than the |mj]=1 states splitting the
p-wave resonance into a doublet. For the purposes of simpli-
fying the discussion, we have neglected the coupling to yet
higher order partial-wave states and we have neglected the
possible presence of other closed channel states in the near
vicinity. This mechanism generally applies to all nonzero-
partial waves. For a state with an orbital angular momentum
1, the number of peaks is /+ 1 corresponding to the number of
distinct values for |m|. Figures 8 and 9 show the splitting of
a p-wave and a d-wave FR, respectively. In the presence of a
100 kV/cm electric field, the p-wave resonance splits into
two peaks (corresponding to the |n;|=1 and m;=0 compo-
nents) with a separation of 4 G (dashed-dotted line in Fig. 8).
The shift of the |m|=1 peak in Fig. 8 to higher magnetic
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FIG. 8. (Color online) Magnetic-field dependence of p-wave
elastic cross section (averaged over all three orbital angular mo-
mentum components) for atoms in the atomic spin state |%,%>6Li
®|1,1)87z,, computed at zero electric field (solid curve) and at E
=100 kV/cm (dotted-dashed curve). The thin dotted curves show
the magnetic-field dependence of the cross section for the |m|=1
and the m=0 components, separately. The p-wave resonance splits
into two distinct resonances, one occurring for the m;=0 component
and one for the |m;|=1 components. When the electric and magnetic
fields are not colinear, this segregation of the resonance multiplet
breaks down as seen in Fig. 12. The collision energy is 10~/ cm™.
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FIG. 9. (Color online) The upper panel shows the magnetic-field
dependence of the d-wave elastic cross section for atoms in the
atomic spin state %,%)m@ 1,1)87g, computed at zero electric
fields (dotted-dashed curve). The lower panel shows the magnetic-
field dependence of d-wave elastic cross section (solid curve). The
contributions to the cross section from the |m;|=2, |m;|=1 and the
m=0 components are shown (dotted curves) at E=100 kV/cm. The
d-wave resonance splits into /+1=3 distinct resonances corre-
sponding to the splitting of the d-wave bound state levels drawn
schematically in the lower panel. The collision energy is
1077 ecm™'.
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fields (lower energy) is consistent with coupling between the
p-wave bound states and a d-wave state which resides at a
higher energy (illustrated in Fig. 9). The splitting of a d-wave
bound state gives rise to three separated resonances and is
shown in Fig. 9. An interval of 1 G opens up between m,
=0 and |m;|=1 and the an interval of 2 G appears between
|m|=1 and |m;|=2. Since it is only very weakly coupled to
higher partial-wave states, the |m;|=2 component remains in
essentially the same location as the resonance at zero electric
field.

The splitting of FRs in states with nonzero orbital angular
momenta has been previously discovered in experiments by
Regal and co-workers [20] and studied theoretically by Tic-
knor et al. [21]. They found that p-wave FRs for collisions of
homonuclear gases of “°K split into a doublet due to the
magnetic dipole-dipole interaction. In the work presented
here, we neglect the magnetic dipole-dipole interaction since
it produces a negligible effect compared to the electric-field
coupling and the splitting we predict for FRs is entirely due
to the effect of the electric field. As discussed in [20], the
ability to introduce and tune an anisotropic interaction using
high-partial-wave resonances may have far reaching conse-
quences for the study of novel forms of superfluidity using
cold atomic gases [27].

The splitting of the nonzero-partial-wave resonances aris-
ing from magnetic dipole-dipole interactions is very small
and will disappear as the resonance becomes broad with in-
creasing temperature. In contrast, the splitting observed here,
occurring for heteronuclear atomic mixtures, is more than 1
order of magnitude larger. This phenomenon offers a
complementary way to produce and tune an anisotropic in-
teraction and to study its effect on the many-body physics of
heteronuclear atomic gases.

So far, we have discussed the modifications of FRs in-
duced by the application of an electric field parallel to the
magnetic field (y=0). In addition, we study the effect of
nonparallel fields (y#0). In Fig. 10, we show the variation
in the total elastic cross section for p-wave collisions given
fixed electric (100 kV/cm) and magnetic fields as a function
of the angle between them 7. In the upper panel, the mag-
netic field was 877 G which is near the p-wave resonance for
the m;=0 component (see Fig. 8). Whereas, in the lower
panel, the magnetic field was 881.9 G and falls in between
the m;=0 and |m;|=1 resonances in the p-wave doublet. In
the latter case, the variation in the cross sections as a func-
tion of 7y is only a factor of 10, while at a magnetic field near
one of the resonances, the cross section varies by almost 4
orders of magnitude as y changes by less than 30°.

Figure 11 presents the magnetic-field dependence of the
total elastic cross section for different components of p-wave
scattering at y=45° near the intrinsic p-wave resonance at
882 G. In this case, because the electric field couples states
of differing m; values, the doublet structure of the p-wave
resonance appears on each of the three m; components of the
open channel. This is in contrast to the case with y=0 shown
in Fig. 8 where the coupling is only between states with the
same m; value and each component exhibits a single reso-
nance. It should be clarified here that the electric-field-
induced s-wave resonance arising from this p-wave reso-
nance exhibits only the single resonance corresponding to
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FIG. 10. (Color online) Total elastic cross section for different
components of p-wave scattering versus the angle, vy, between the
applied electric and magnetic fields. The cross sections are shown
for collisions in the m;=0 state (dashed curve), the |m|=1 states
(dotted curve), and the average (solid curve) of the cross sections
%’ %>6Li® I, 1>87Rb
and for E=100 kV/cm. The upper panel shows these cross sections
at an applied magnetic field of 877.0 G which is near the resonance
for the m;=0 component while the lower panel is at a field of 881.9
G which is in between the resonances for the m;=0 and |m|=1
components (see Fig. 8). We observe that the shape of this variation
changes dramatically near a resonance. The collision energy is
1077 em™!.

over all three components for the atomic state

the m;=0 component of the p-wave bound state. This is be-
cause (neglecting the magnetic dipole-dipole interaction) the
orbital angular momentum projection along the electric-field
axis is conserved by the Hamiltonian, and m;=0 for s-wave
collisions in all coordinate frames. On the other hand, a state
with orbital angular momentum / and projection m; defined
with respect to the magnetic-field axis will be a linear com-
bination of states with all possible values of m; when repre-
sented with respect to the electric-field axis [28].

Figure 12 presents the magnetic-field dependence of the
average p-wave elastic scattering cross section (averaged
over all three components) for atoms in the spin state
%,%)6”@ |1,1)87q, at E=100 kV/cm and with three orien-
tations of the electric field, y=0°, 45°, and 90°. The main
point of this plot is to illustrate that the position of the reso-
nances remains unchanged for different values of . This is
particularly important for the experimental search for these
effects since it means that any variation in the orientation of
the electric and magnetic fields does not adversely affect the
visibility of these multiplet features. Consequently, any inho-
mogeneities in the direction of the electric field over the
confinement size of the atomic ensemble would also not af-
fect their visibility. Of course, since the positions of the reso-
nances do depend on the electric-field strength, any inhomo-
geneities in the magnitude of the electric field would result in
inhomogenous broadening of the observed resonances.

PHYSICAL REVIEW A 79, 042711 (2009)
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FIG. 11. (Color online) Magnetic-field dependence of the elastic
cross section for different components of p-wave scattering with an
electric field, E=100 kV/cm, tilted with respect to the magnetic-
field axis by y=45°. The cross sections are shown for collisions in
the m;=0 state (dashed curve), the |m;|=1 states (dotted curve), and
the average (solid curve) of the cross sections over all three com-
ponents for the atomic state %,%)6“@ 1,1)87gp. The doublet struc-
ture of the p-wave resonance seen also in Fig. 8 now appears on
each of the three angular momentum projection components. The
collision energy is 1077 cm™'.

Moreover, these inhomogeneities would also introduce addi-
tional forces on the atomic sample which would need to be
taken into account.

IV. CONCLUSIONS

We have presented quantitative predictions of the effects
of combined external electric and magnetic fields on elastic
collisions in ultracold Li-Rb mixtures. This work is the
analysis of electric-field-induced interactions based on pre-
cise experimentally verified interatomic potentials. In addi-
tion, we have provided important insights into the detailed

Cross section (a.u.)

L 1 L 1 L 1 L 1 L 1 L
876 878 880 882 884 886 888
Magnetic field (G)
FIG. 12. (Color online) Magnetic-field dependence of elastic
cross sections for atoms in the atomic spin state %,%>6Li
®|1,1)87z, computed at E=100 kV/cm with the orientation of the

electric field at y=0° (solid curve), 45° (dotted curve), and 90°
(dotted-dashed curve). The collision energy is 1077 cm™!.
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physical mechanism of electric-field-induced interactions in
ultracold binary mixtures of alkali-metal atoms. We have
shown that the electric field both shifts the position of intrin-
sic FRs and generates copies of resonances previously re-
stricted to a particular partial-wave collision to other partial-
wave channels. To facilitate the experimental search for these
phenomena, we have provided predictions for the positions
and widths of electric-field-induced FRs for several spin
states and we have analyzed the effects of a nonparallel ori-
entation of the electric field with respect to the magnetic field
on ultracold elastic collisions. We also have reported the ob-
servation that the coupling induced by electric fields splits
FRs into multiple resonances for states of nonzero angular
momenta. It was recently observed that the magnetic dipole-
dipole interaction can also lift the degeneracy of a p-wave
state splitting the associated p-wave FR into two distinct
resonances at different magnetic fields [20,21]. The primary

PHYSICAL REVIEW A 79, 042711 (2009)

differences with that work are that the splitting studied here
is produced only in heteronuclear collisions, is continuously
tunable using an applied electric field, and is more than 1
order of magnitude larger than the splitting induced by mag-
netic dipole-dipole interactions. We believe the additional
degrees of control offered by electric-field interactions will
play an important role in future experiments on the many-
body physics of heteronuclear atomic gases.
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