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The radiative charge transfer for H++Na�3s� collisions has been investigated by using both the optical-
potential and semiclassical methods in the energy ranges of 10−6–10 and 10−2–100 eV, respectively, which
are in agreement in the overlapping energy region. The relevant molecular potentials and dipole matrix ele-
ments were obtained from the multireference single- and double-excitation configuration interaction approach.
The radiative charge-transfer cross sections display rich resonance structures, due to the formation of quasi-
bound rotational-vibrational molecular states, in the energy range below 0.2 eV. The present radiative charge-
transfer cross-section results disagree with the calculations of Watanabe et al. �Phys. Rev. A 66, 044701
�2002��. The rate coefficient is obtained for temperatures between 0.1 and 20 000 K. Below 7000 K, it has a
nearly constant value of approximately 1.7�10−13 cm3 s−1, which is about 1/3 of that of Watanabe et al. The
nonradiative charge transfer becomes dominant at energies above 4 eV.
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I. INTRODUCTION

The distribution of sodium between its ionized and neutral
forms is important for the interpretation of observations of
the resonance line of sodium atoms in the atmospheres of
planets and comets �1�. Charge transfer between neutral so-
dium atoms and protons may modify the ionization distribu-
tion in stellar winds �2�. Nonradiative charge transfer of Na
to H+ has been investigated extensively for energies from eV
to keV �1,3–11�. However, at low temperatures such as in
interstellar space �12� or in cold and ultracold experiments
�13�, the collision energies are much less than 1 eV, and
radiative charge transfer may become dominant over nonra-
diative charge transfer. The radiative charge-transfer process

Na�3s� + H+ → Na+ + H�1s� + h� �1�

was previously investigated by Watanabe et al. �14� using an
optical-potential method and the molecular data were ob-
tained by a pseudopotential approach. The radiative cross
sections they computed have a 1 /E dependence at energies
above 10−2 eV, and the rate coefficient changes slowly with
temperatures below 102 K, but decreases rapidly above
102 K. On the other hand in the Langevin formula for a
polarization potential, the cross section behaves as 1 /E1/2.
For collisions of Li with H+, Kimura et al. �15� also found
that the cross section has a 1 /E dependence. But the calcu-
lations of Stancil and Zygelman �16� showed that the cross
section scaling is the same as in the Langevin formula.

In order to re-examine this energy dependence and pro-
vide the exact radiative charge-transfer parameters for appli-
cations, we perform an investigation of the radiative charge-
transfer process in collisions of ground-state Na atoms with
H+ ions using both the optical-potential and the semiclassical
methods. The molecular potentials and dipole matrix ele-

ments are calculated by an ab initio multireference single-
and double-excitation configuration interaction �MRD-CI�
package �17,18�. The obtained cross sections and rate coef-
ficients are compared with those of Watanabe et al. �14�.
Atomic units will be used in the remaining part of this paper,
unless explicitly indicated otherwise.

II. THEORETICAL METHOD

An optical-potential method for treating radiative decay,
including radiative charge transfer and radiative association,
induced by ion-atom collisions was described in detail by
Zygelman and Dalgarno �19� and successfully applied to cal-
culations of some collision systems �16,20–23�. Here we
only outline the optical-potential method and relevant formu-
las. During the ion-atom collisions, the transition probability
per unit time, i.e., the Einstein coefficient, is represented by
the imaginary part of a complex optical potential. The scat-

tering wave FA�R� �, where R is the internuclear distance and
the subscript A denotes the initial upper molecular state
�A 2�+�, is obtained by solving the Schrödinger equation

�−
1

2�
�

R�
2

+ VA�R� − E�FA�R� � =
i

2
A�R�FA�R� � , �2�

where E is the collision energy in the entrance channel, � is
the reduced mass, and A�R� is the transition probability for
the radiative transition given by

A�R� =
4

3
D2�R�

�VA�R� − VX�R��3

c3 , �3�

where c is the speed of light, and VA�R� and VX�R� are the
adiabatic potential energies for the upper A 2�+ and the
lower X 2�+ states, respectively. D�R� is the dipole-
transition-moment matrix element between the A 2�+ and
X 2�+ states. For large R values, the A 2�+ state separates
asymptotically into the atomic states Na�3s� and H+, while*yzqu@gucas.ac.cn
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the X 2�+ state separates into the atomic states Na+ and
H�1s�.

The cross section for collision-induced radiative decay
can be written as

��E� =
�

kA
2 �

J

�

�2J + 1��1 − exp�− 4�J�� , �4�

where �J is the imaginary part of the phase shift for the Jth
partial wave of the radial Schrödinger equation which is
given in the distorted-wave approximation by

�J =
�

2
	

0

�

dR�fJ
A�kAR��2A�R� , �5�

where kA=
2��E−VA����, and fJ
A�kAR� is the regular solu-

tion of the homogeneous radial equation

� d2

dR2 −
J�J + 1�

R2 − 2��VA�R� − VA���� + kA
2� fJ

A�kAR� = 0,

�6�

and is normalized asymptotically according to

fJ
A�kAR� =
 2�

�kA
sin
kAR −

J�

2
+ 	J

A� . �7�

In order to extend the calculation to higher energy, by
replacing the summation in Eq. �4� and applying the JWKB
approximation, one obtains the expression for the semiclas-
sical cross section,

��E� = 2�
2�

E
	 pdp	

RA
ctp

�

dR
A�R�


1 − VA�R�/E − p2/R2
,

�8�

where p is the impact parameter and RA
ctp is the classical

turning point in the incoming channel �19,24�. For large en-
ergies �E
VA�, the double integral is nearly energy indepen-
dent, and therefore ��E� varies as 1 /E1/2 �16,22,23�.

III. RESULTS AND DISCUSSION

As in our previous work �7�, an ab initio CI calculation is
carried out for potential curves of four �+ plus one � elec-
tronic states in A1 symmetry and two electronic 
 states in
B1 symmetry of the �NaH�+ system by using the MRD-CI
package �17,18�. A �6s ,3p ,2d ,1f� contracted to
�4s ,3p ,2d ,1f� basis set is employed for hydrogen. An effec-
tive core potential �ECP� adapted basis set �4s ,4p ,2d ,1f�
�25� is used for the Na atom. A diffuse �2s2p� basis set
centered on the Na atom is employed to describe its Rydberg
states, while a diffuse �2s3p� set is used for H atom. The
adiabatic potential energies and dipole matrix elements are
calculated for internuclear distance R=1.4–30 a.u., as
shown in Fig. 1. The adiabatic potentials X 2�+, A 2�+,
B 2�+, and C 2� correspond to Na++H�1s�, Na�3s�+H+,
Na++H�2p�+�, and Na++H�2p�� states in the asymptotic
regions, respectively. The initial state is Na�3s�+H+ �A 2�+�,

so we only need to consider the radiative charge-transfer
process between A 2�+ and the lower state X 2�+.

The dipole matrix elements between the X 2�+ and A 2�+

states are given in Fig. 2, and comparison with the results of
Watanabe et al. �14� shows good agreement within a devia-
tion of 5% except for R�2.6 a.u. We calculate the transition
probability A�R� from Eq. �3�, as shown in Fig. 3. The A�R�
value increases as the internuclear distance increases, reach-
ing a maximum near R=4.8 a.u., and then decreases gradu-
ally thereafter. Our calculated A�R� is similar in shape to that
of Watanabe et al. �14�. The unit of A�R�, shown as 10−8 s−1,
in Ref. �14� is apparently in error, however, so that our A�R�
cannot be compared to it.

Beyond R=30 a.u., the potential of the A 2�+ state can be
described by the long-range form

FIG. 1. Adiabatic potentials of �NaH�+ as a function of internu-
clear distance. The X 2�+, A 2�+, B 2�+, and C 2� correspond to
Na++H�1s�, Na�3s�+H+, Na++H�2p�+�, and Na++H�2p�� states
in the asymptotic regions, respectively.

FIG. 2. Dipole matrix element between the X 2�+ and A 2�+

states as a function of internuclear distance. Dotted line: Watanabe
et al. �14�; solid line: present calculation.
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VL�R� = −
1

2
�C4

R4 +
C6

R6 +
C8

R8� , �9�

where C4, C6, and C8 are the dipole, quadrupole, and
octupole polarizabilities of the Na�3s� atom, respectively,
and are chosen to be same as those used in Ref. �14�. For the
ground state X 2�+, the form of the long-range potential is
VL�R�=−�1 /2���d /R4�, where �d is the dipole polarizability
of the H�1s� atom. The long-range asymptotic behavior of
the dipole matrix element is fitted to the form d0 /Rn.

Using the optical-potential method described above, we
calculate the radiative decay cross sections. Because in the
present system of interest, the lower X 2�+ state only has a
very shallow well ��0.125 eV� at short range, contributions
from radiative association to collision-induced radiative de-
cay can be very small and it is assumed that the radiative
decay only contributes to the charge-transfer process �22�.
The computed radiative cross sections are given in Fig. 4.
The cross section decreases as the collision energy increases.

Rich resonance structures appear in the energy region of
10−5–0.2 eV. These resonances are attributed to the pres-
ence of quasi-bound or virtual rotational-vibrational levels in
the entrance channel, and may give rise to an enhancement in
the rate coefficients �16,23�. It is interesting to check the
effects of the long-range form of potentials on the radiative
charge-transfer cross sections by applying the first dipole
term in Eq. �9�, and the cross section is plotted in Fig. 4 with
a dashed line. Comparison shows that the quadrupole and
octupole terms in Eq. �9� only influence the position of the
resonance structures at very low collision energies. This is
because the quadrupole and octupole terms can change the
shape of the potentials, which modifies the positions of the
vibrational levels in the entrance channel. The discrepancy
will become smaller if the ab initio molecular calculation is
extended to a larger internuclear distance, say 50 a.u. For
practical purposes, this effect changes the radiative charge-
transfer rate coefficients by less than 2% and can be ne-
glected.

In Fig. 5, we compare our radiative charge-transfer cross
section with that of Watanabe et al. �14� in the energy range
between 10−6 and 10 eV. Perhaps because of the fewer cal-
culated energy points, Watanabe et al. �14� did not find the
rich resonance structures. In addition, for collision energy
E�10−2 eV, their calculated cross sections are about three
to four times larger than ours except at the positions of reso-
nances. For E�10−2 eV, their calculated cross sections de-
crease much faster than ours. For E�0.3 eV, our cross sec-
tions become larger than theirs. Our cross section has an
energy dependence of 1 /E1/2, which is consistent with the
Langevin cross-section behavior for a polarization potential.
The cross section of Watanabe et al. �14� has a 1 /E depen-
dence at energies above 10−2 eV, however. This 1 /E depen-
dence also appears in the work of same group for calculating
H++Li�2s� collisions �15�. In a later study, Stancil and
Zygelman �16� found the radiative charge-transfer cross sec-
tion behaving as 1 /E1/2. In order to clarify this discrepancy,

FIG. 3. Transition probability A�R� between the X 2�+ and
A 2�+ states as a function of internuclear distance.

FIG. 4. Comparison of the radiative charge-transfer cross sec-
tions by considering different asymptotic behaviors for potentials
when R�30 a.u. Solid line includes dipole, quadrupole, and octu-
pole terms as shown in Eq. �9�, and dotted line includes only the
dipole term.

FIG. 5. Radiative charge-transfer cross sections for
H++Na�3s� collisions. Solid line: the present results employing an
optical-potential method; crosses: the present results using the semi-
classical method; dotted line: the present results using the code in
Ref. �26� and cross-section convergence parameter �cross=0.05;
open circles: Watanabe et al. �14�; filled circles: nonradiative
charge-transfer cross sections �7�.
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we repeated the cross-section calculations by using the code
in Ref. �26�, the same as that of Watanabe et al. �14�. In this
code, because the wave function is complex in Eq. �2�, we
can obtain two coupled differential equations. By solving the
coupled equations, the radiative decay cross section can be
expressed in terms of the imaginary component of the phase
shift. When running this code, we chose the convergence
parameters for cross section �cross and phase shift �phase to be
10−3 and 10−4, respectively. The cross sections obtained in
this way are almost identical to our present results. In the
work of Watanabe et al. �14�, the �cross value was chosen to
be 0.05. If we also choose �cross to be 0.05, then the slope of
the cross section is similar to that of Watanabe et al. �14�, as
shown in Fig. 5. Therefore, it can be concluded that the
calculation precision in Refs. �14,15� was probably not suf-
ficient, and this results in the incorrect energy dependence of
the cross sections.

Even if we choose �cross=0.05 using the code in Ref. �26�,
the slope of the cross section is similar to the result of Wa-
tanabe et al. �14�, but the magnitude of the cross sections is
still a few times smaller than theirs except at the position of
resonances. This discrepancy may come from the difference
in the transition probability A�R�. But the A�R� unit of
10−8 s−1, as we have mentioned before, in Ref. �14� may be
an error, so that our results cannot be compared directly to it.
On the other hand, the molecular data of Watanabe et al. �14�
are obtained by a pseudopotential approximation, and the
calculation accuracy may therefore be lower than our ab ini-
tio MRD-CI results.

In order to extend the treatment to higher energy, we have
also performed a semiclassical calculation using Eq. �8� for
collision energy between 10−2 and 100 eV, and give the re-
sults in Fig. 5. In the overlapping energy range of
10−2–10 eV, our optical-potential cross sections are in fair
agreement with the semiclassical results. Also given in Fig. 5
are the nonradiative charge-transfer cross sections which
have been published in Ref. �7�. There is a weak avoided

crossing between the A 2�+ and B 2�+ states at R=12 a.u.,
as shown in Fig. 1, which induces the charge transfer at an
energy of approximately 2 eV. As the collision energy in-
creases, the rotational coupling between A 2�+ and C 2� be-
comes the dominant mechanism and the nonradiative charge-
transfer cross sections increase rapidly. When E�3 eV, the
radiative charge-transfer cross section is much larger than the
nonradiative one. But when E�4 eV, the nonradiative
charge transfer becomes dominant over the radiative charge-
transfer process.

The rate coefficients for temperatures between 0.1 and
20 000 K are obtained by averaging the optical-potential ra-
diative charge-transfer cross sections in Fig. 5 over a Max-
wellian velocity distribution. The results are displayed in Fig.
6 and compared to those of Watanabe et al. �14�. In Ref.

TABLE I. Rate coefficients for radiative and nonradiative
charge transfers in H+ /Na�3s� collisions. Note: units for ai and ci

are 10−12 cm3 s−1 and K, respectively.

T
�K�

��T�
�10−12 cm3 s−1�

0.1 0.171

0.2 0.187

0.3 0.189

0.5 0.183

0.7 0.178

1.0 0.174

3.0 0.167

5.0 0.164

7.0 0.162

10 0.161

30 0.161

50 0.163

70 0.165

100 0.169

300 0.172

500 0.169

700 0.166

1000 0.161

3000 0.143

5000 0.136

7000 0.145

10000 0.278

20000 5.115

a1 10.59

b1 7.6175

c1 5311.3

a2 1.338

b2 −0.0895

c2 71835

a3 −0.2825

b3 0.167

c3 177.2

FIG. 6. Radiative and nonradiative charge-transfer rate coeffi-
cients as functions of temperature. Only the radiative charge-
transfer process is included: present calculation �filled circles�; Wa-
tanabe et al. �14� �open circles�. Both radiative and nonradiative
charge-transfer processes included: present calculation �triangles�;
fitted present results �dotted lines�.
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�14�, the unit of rate coefficients 1012 cm3 s−1 is apparently a
typographical error, and we have modified it in Fig. 6. Our
rate coefficient approaches a constant value of about 1.7
�10−13 cm3 s−1 at T�7000 K, which is similar to the re-
sults for collisions of Li with H+ �16� and O with He+ �22�.
This is because the cross section behaves as 1 /E1/2. When
T�7000 K, the rate coefficients increase quickly because
the contribution from the nonradiative charge-transfer pro-
cess becomes dominant. In contrast to the present study, the
rate coefficients of Watanabe et al. �14� vary smoothly for
T�100 K, and then decrease sharply for T�100 K. Our
rate coefficients are about three to four times smaller than
those of Watanabe et al. �14� for T�100 K; at 2000 K, the
two calculations come into close agreement.

For convenience in future applications, we also give the
rate coefficients for temperatures between 0.1 and 20 000 K,
including both the radiative and nonradiative charge-transfer
processes, in Table I. Finally, the rate coefficients are fitted to
the form

��T� = �
i

ai
 T

10 000
�bi

exp
−
T

ci
� . �10�

The fitting parameters are also provided at the end of Table I.
Units for ai and ci are 10−12 cm3 s−1 and kelvin, respectively.
The fitting is reliable to within 3% over the temperature
range of 0.5–20 000 K, and to no more than 6% from 0.1 to
0.5 K. The fitted data are also plotted in Fig. 6.

IV. CONCLUSION

In the present study we have re-examined the radiative
charge-transfer cross sections in collisions of protons with
Na�3s� atoms for collision energies from 10−6 to 10 eV using
the optical-potential method and from 0.01 to 100 eV using
the semiclassical method. The results of these calculations
are consistent in the overlapping energy region, but they dif-
fer significantly from the results of Watanabe et al. �14�. The
discrepancy in the magnitude of the cross sections may come
from the differences of transition probability. The distinction
in the energy dependence of the cross section may be due to
the inadequate precision in the calculation of Watanabe et al.
�14�. Our optical-potential calculation shows that the
asymptotic form of the potentials will influence the position
of the resonance structures. The rate coefficient is also pre-
sented and is found to have a nearly constant value below
7000 K. The nonradiative charge-transfer process becomes
the dominant contributor to the rate coefficients above
7000 K.

ACKNOWLEDGMENTS

This work was supported in part by NSF of China under
Grants No. 10774186, No. 10876043, and No. 10676014,
and the National Key Laboratory of Computational Physics
Foundation under Grant No. 9140C6904030808.

�1� C. Courbin, R. J. Allan, P. Salas, and P. Wahnon, J. Phys. B 23,
3909 �1990�.

�2� T. Royer, D. Dowek, J. C. Houver, J. Pommier, and N. Ander-
sen, Z. Phys. D: At., Mol. Clusters 10, 45 �1988�.

�3� V. S. Kushawaha, Z. Phys. A 313, 155 �1983�.
�4� H. Croft and A. S. Dickinson, J. Phys. B 29, 57 �1996�.
�5� C. M. Dutta, P. Nordlander, M. Kimura, and A. Dalgarno,

Phys. Rev. A 63, 022709 �2001�.
�6� A.-T. Le, C.-N. Liu, and C. D. Lin, Phys. Rev. A 68, 012705

�2003�.
�7� C. H. Liu, Y. Z. Qu, L. Liu, J. G. Wang, Y. Li, H.-P. Lieber-

mann, P. Funke, and R. J. Buenker, Phys. Rev. A 78, 024703
�2008�.

�8� M. Gieler, F. Aumayr, P. Ziegelwanger, H. Winter, and W.
Fritsch, Phys. Rev. A 43, 127 �1991�.

�9� K. Finck, Y. Wang, Z. Roller-Lutz, and H. O. Lutz, Phys. Rev.
A 38, 6115 �1988�.

�10� A. Jain and T. G. Winter, Phys. Rev. A 51, 2963 �1995�.
�11� R. Shingal and B. H. Bransden, J. Phys. B 20, 4815 �1987�.
�12� D. M. Meyer and J. T. Lauroesch, Astrophys. J. 520, L103

�1999�.
�13� T. C. Killian, M. J. Lim, S. Kulin, R. Dumke, S. D. Bergeson,

and S. L. Rolston, Phys. Rev. Lett. 86, 3759 �2001�.
�14� A. Watanabe, C. M. Dutta, P. Nordlander, M. Kimura, and A.

Dalgarno, Phys. Rev. A 66, 044701 �2002�.
�15� M. Kimura, C. M. Dutta, and N. Shimakura, Astrophys. J.

430, 435 �1994�; 454, 545 �1995�.
�16� P. C. Stancil and B. Zygelman, Astrophys. J. 472, 102 �1996�.

�17� R. J. Buenker and S. D. Peyerimhoff, Theor. Chim. Acta 35,
33 �1974�; 39, 217 �1975�; R. J. Buenker, Int. J. Quantum
Chem. 29, 435 �1986�.

�18� R. J. Buenker, in Proceedings of the Workshop on Quantum
Chemistry and Molecular Physics, Wollongong, Australia, ed-
ited by P. G. Burton �Wollongong University Press, Wollon-
gong, Australia, 1980�; in Study in Physical and Theoretical
Chemistry, Current Aspects of Quantum Chemistry Vol. 21,
edited by R. Carbo �Elsevier, Amsterdam, 1981�, p. 17; R. J.
Buenker and R. A. Phillips, J. Mol. Struct.: THEOCHEM 123,
291 �1985�; S. Krebs and R. J. Buenker, J. Chem. Phys. 103,
5613 �1995�.

�19� B. Zygelman and A. Dalgarno, Phys. Rev. A 38, 1877 �1988�.
�20� B. Zygelman, A. Dalgarno, M. Kimura, and N. F. Lane, Phys.

Rev. A 40, 2340 �1989�.
�21� B. W. West, N. F. Lane, and J. S. Cohen, Phys. Rev. A 26,

3164 �1982�.
�22� L. B. Zhao, P. C. Stancil, J. P. Gu, H.-P. Liebermann, Y. Li, P.

Funke, R. J. Buenker, B. Zygelman, M. Kimura, and A. Dal-
garno, Astrophys. J. 615, 1063 �2004�.

�23� L. B. Zhao, J. G. Wang, P. C. Stancil, J. P. Gu, H.-P. Lieber-
mann, R. J. Buenker, and M. Kimura, J. Phys. B 39, 5151
�2006�.

�24� D. R. Bates, Mon. Not. R. Astron. Soc. 111, 303 �1951�.
�25� L. Fernandez Pacios and P. A. Christiansen, J. Chem. Phys. 82,

2664 �1985�.
�26� A. C. Allison, Comput. Phys. Commun. 3, 173 �1972�.

RADIATIVE CHARGE TRANSFER IN COLLISIONS OF H… PHYSICAL REVIEW A 79, 042706 �2009�

042706-5


