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Nonadiabaticity and large fluctuations in a many-particle Landau-Zener problem
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We consider the behavior of an interacting many-particle system under slow external driving—a many-body
generalization of the Landau-Zener paradigm. We find that a conspiracy of interactions and driving leads to
physics profoundly different from that of the single-particle limit: for practically all values of the driving rate
the particle distributions in Hilbert space are very broad, a phenomenon caused by a strong amplification of
quantum fluctuations in the driving process. These fluctuations are “nonadiabatic” in that even at very slow
driving it is exceedingly difficult to push the center of the distribution toward the limit of full ground-state
occupancy. We obtain these results by a number of complementary theoretical approaches, including diagram-
matic perturbation theory, semiclassical analysis, and exact diagonalization.
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I. INTRODUCTION

In many physical contexts, one is met with quantum sys-
tems that are subjected to “slow” time-dependent external
driving. The most elementary prototype in this category, the
Landau-Zener (LZ) system [1,2], contains just two coupled
levels driven linearly in time. In this system, the initially
occupied instantaneous ground-state level of its Hamiltonian

o N g
H_<g —)\t> W)

stays occupied in the infinite future with a probability
P=1-em"M 2)

where g is the coupling strength, N defines the driving rate

and exp(mwg?/\) is the so-called Landau-Zener parameter.
A—0

The approach P — 1 is manifestation of the quantum adia-

batic theorem, i.e., the statement that sufficiently slow driv-

ing keeps a quantum system in its adiabatic ground state.

Many quantum single-particle systems can be effectively
described in terms of the Landau-Zener setup or one of its
multidimensional generalizations [3—6]. The reason is that
the driven approach of pairs of instantaneous eigenstates will
generate “avoided crossings” which can be represented by
Hamiltonians such as in Eq. (1). The cumulative statistics of
these crossings then describes the behavior of the system in
the course of the driving process. In particular, the system
will remain in its ground state if only the latter is sufficiently
well separated from the first excited states.

But how do many-particle systems behave under driving?
Given the exponential abundance of energy levels in inter-
acting systems (or the fact that superimposed on the ground
state we often have a continuum of low-lying “soft” excita-
tions) reference to the adiabatic theorem will not be suffi-
cient to understand the consequences of driving. In some
instances, it is possible to reduce the problem to one of
studying the statistics of linear (oscillator) excitations super-
imposed on an invariant ground state. A system of this type
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has been studied in work by Yurovsky et al. [7] (see also
[8]), with the principal observation that the driving process
generates a number of x excitations, where

x = exp(mg?/\) (3)

coincides with the Landau-Zener parameter.

In general, however, many-particle systems cannot be lin-
earized. The ramifications of nonlinearities in a driven con-
text have been studied in Refs. [9-11], within the simplifying
framework of a low-dimensional system (specifically, a
Bose-condensed system which can be described in terms of a
single complex condensate amplitude.) Describing its dy-
namics in terms of a nonlinear Schrodinger equation, Refs.
[10,11] observed examples of rather interesting behavior, in-
cluding situations where the system does not remain in the
ground state even in the fully adiabatic limit. The problem is
also particular in that it has a low-dimensional Hilbert space.

References [12,13] considered an interacting driven sys-
tem which is generic in that it shows the two principal char-
acteristics of interacting quantum systems: a high-
dimensional Hilbert space and nonlinearity. In one of its
representations, the system describes a large assembly of de-
generate fermions which may pair combine into a bosonic
level as their energy gets pushed up (a cartoon of a fermion/
boson conversion process as realized in, say, a time-
dependent Bose-Einstein condensate (BEC) Bardeen-
Cooper-Schrieffer (BCS) superconductor crossover. Quite
strikingly, it turned out that this system resists getting close
to its adiabatic ground state, i.e., a state where all particles
eventually have become bosonic; even at very slow driving
an O(1) fraction of particles remains in energetically high-
lying sectors of Hilbert space. In fact, the methods employed
in Ref. [12] did not enable us to get close to the “adiabatic
regime” of the model. The approach to adiabaticity was dis-
cussed in Ref. [13] by mapping the evolution of the system
to an effective Hamiltonian dynamical system. In this way,
as we show in this paper, the exponential dependence (2)
gives way to a power law

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.79.042703

ALTLAND et al.

1=\
N

controlling the ground-state occupancy for a wide range of
initial conditions. Here n, € [0,N] is the number of particles
in the bosonic ground state and N is the total number of
particles. Formally, the reluctance of the system to approach
its ground state may be understood in terms of dynamical
instabilities [13] (to be discussed in some details further be-
low.) Physically, it reflects the general inertia of interacting
systems to adjust to (time-dependent) environmental
changes.

In this paper, we will discuss an interaction phenomenon
which is no less remarkable: the slow dynamical evolution of
the system goes along with an exceptionally strong buildup
of quantum fluctuations: although we are dealing with a sys-
tem that should behave “semiclassically,” on account of the
largeness of its number of particles, N, the distributions of
particles in Hilbert space turn out to be very broad. This
phenomenon can be attributed to an amplification of quan-
tum fluctuations: classically, the driving process changes the
relative energy of two many-particle systems. At some point,
the originally lower (stable) system becomes higher in en-
ergy (unstable). In a strict classical sense, however, the
ground state of the elevated system remains stationary. It
takes the action of weak [O(N~')] quantum fluctuations to
destabilize this state and initiate the evolution toward ener-
getically more favorable sectors of Hilbert space. The non-
linearity of that evolution (interactions) then leads to an am-
plification of the initial fluctuations, up to a point where they
become of O(1). Specifically, we find that

(i) in all but the extreme adiabatic limit N—n,<N the
ground-state occupation n;, shows massive fluctuations,
var(n,)/{(n,)*>=0(1). At intermediate mean occupancy {n,)
=N/2, the distribution P(n,) extends over almost the full
interval [0,N] and

(ii) at fast rates n, <N, the probability distribution is ex-
ponential: P(n,)<exp[—n,/{n,)]. At slower rates, it becomes
even broader and covers Hilbert space in a manner for which
we have no analytical expressions. At yet slower rates, upon
approaching the adiabatic limit, the distribution gets
’squeezed’ into the boundary region n,/N~1. It then as-
sumes a universal Gumbel form [14], with the latter fre-
quently appearing in the context of extreme value statistics.

In this paper, we will set the stage for the discussion of
fluctuations by establishing contact between our earlier
“quantum” approach to the problem—the latter adjusted to
regimes of fast and moderate driving—and a slow driving
semiclassical formulation. Our semiclassical approach is dif-
ferent from that of Ref. [13] in that it microscopically con-
nects to the early quantum stages of the evolution, a match-
ing procedure necessary to explore the role of fluctuations.

The rest of the paper is organized as follows. In Sec. II we
will present the spin variant of the model and discuss the
mapping to its other representations. We will then analyze
the system, in a manner that is structured according to the
driving rate. In Sec. III we discuss the regime of moderately
high driving rates, where the system can be effectively lin-
earized and admits a full analytical solution. In Sec. IV we
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go beyond the linear regime and consider driving rates 1
<\'<O0(nN) in terms of effective rate equations. Al-
though these equations become uncontrolled for values \~!
~O(In N), they are good enough to signal the system’s re-
luctance to approach the adiabatic limit. In Sec. V we will
formulate the semiclassical approach to the model and the
so-called truncated Wigner approximation (TWA). This ap-
proximation becomes highly accurate at sufficiently large N
= 10 and for all values of the driving rate. In Sec. VI we use
the method of adiabatic invariants to explore the semiclassi-
cal theory at very slow driving, \"'=0(In N). In Sec. VII,
the quality of the results obtained in this way will be checked
by comparison to direct numerical solutions of the
Schrédinger equation of our problem [which is feasible for
particle numbers up to N=0(10%)] and to the simulations of
the semiclassical approximation (the latter extensible to
much larger N). We will also compare to previous work in
the literature. In Sec. VIII we discuss a number of ramifica-
tions of our problem relating to previous theoretical and ex-
perimental works. We conclude in Sec. IX.

II. MODEL

In this section we will present the theoretical model dis-
cussed in most of the rest of the paper—a high-dimensional
generalization of the spin-boson model. We will also present
a number of less abstract equivalent representations, some
resonant with concrete experimental activity.

A. Definition of the model

Consider an SU(2) spin of value S=N/2> 1 coupled to a
time varying magnetic field of strength (=\7) in the z direc-
tion. This will be the first quantum system participating in
the driving process. Its partner system is a single bosonic
mode at energy (—Az). We couple these two compounds by
declaring that the creation of a boson goes along with a low-
ering of the spin by 1. The total system is then described by
the Hamiltonian

H=—Nb'b+MS*+ -=(b'S + bS*), (4)
VN

where g/+\N defines the coupling strength and S* =5, + iS,.
The Hamiltonian (4) obeys the conservation law [H,S
+b'h]=0, showing that the total Hilbert-space dimensional-
ity of the problem is 25+1=N+1. The linear growth of the
dimension of Hilbert space in N is of course not representa-
tive for “generic” interacting systems (dimensionality expo-
nential in N). An increase in the dimensionality of the prob-
lem can be effected by symmetry breaking, e.g., by
replacement of the large spin by an assembly of N nonde-
generate spin-1/2 compounds (cf. discussion in Sec. II C be-
low). While this generalization will make the problem
largely intractable, we believe it to have little qualitative ef-
fect, as long as the band splitting is smaller than the hybrid-
ization strength with the boson mode.

Below it will be useful to think of b as a transverse mag-
netic field acting on the spin. The above conservation then
implies that the transverse field strength is proportional to the
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deviation of the spin off total polarization S,=S§. This feed-
back mechanism of the spin precession into the field strength
encapsulates the effect of interactions in the spin variant of
our model. However, before proceeding, let us present a few
alternate representations which make the interpretation of the
model as one of interacting particles more transparent (cf.
Fig. 2):

(1) The variant dominantly discussed in earlier work de-
scribes the hybridization of energetically degenerate pairs of
spinful fermions with a boson mode [cf. the Hamiltonian (7)
below]. This may be viewed as a dispersionless approxima-
tion of the fermion-boson conversion processes realized in
BEC/BCS crossover experiments in fermionic condensates
[15,16] [cf. Fig. 2(b)]. [Although the initial full occupancy of
the flat fermion band assumed in [ 12] may not be adequate to
the description of the experimental situation [17] (see Sec.
VIII below.)]

(2) Identifying the empty (doubly occupied) configura-
tions of the fermion levels with the two states of a spin 1/2,
the system maps onto a time-dependent variant of the Dicke
model [18]. In this form it is relevant to the description of
super-radiance phenomena in molecular magnetism [19] and
to cavity QED with many two-level systems [20].

(3) In a somewhat less obvious representation, the model
describes the conversion of pairs of bosons into dimers. In
this incarnation it is of relevance to recent experimental work
of the JILA group. In these experiments, identical [21] or
different [22] species of atoms undergo sweep through a
Feshbach resonance to form diatomic molecules. (On the
level of effective classical equations of motions, this corre-
spondence was noted in earlier references [13]. Below, we
will establish the connection within a fully quantum-
mechanical setting.)

For the convenience of interested readers, the equivalence
between these different incarnations of the model is estab-
lished in Sec. II C below. While the “spin-boson” formula-
tion (4) does not relate to concrete physical systems in an
obvious way, we find it ideally suited to our theoretical
analysis and much of our later discussion will be formulated
in this language. However, it is straightforward to transcribe
all conclusions to the context of the other models.

B. Formulation of the problem

The problem we will address in most of the paper is for-
mulated as follows. Start the dynamics in the distant past in
the adiabatic ground state of the problem: spin fully polar-
ized S,=S=N/2 and zero bosons n,(t)=(b"(1)b(1))=0. The
goal is to find the number of produced bosons at large posi-
tive times,

n, = lim ny,(r) = lim{b"(1)b(1)). (5)

t— t—

The adiabatic limit is reached when n;, — N or, equivalently,
S,=-S. Alternatively, we can speak of the representation in
terms of bosonic atoms and bosonic molecules, given by
Egs. (8) and (10), where this initial condition implies the
absence of atoms in the distant past, and the goal is to find
the number of produced atoms at large positive times.
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FIG. 1. (Color online) Different theoretical approaches to the
problem. The Hilbert space of the problem contains a number of
different sectors: a (quantum fluctuation) dominated region where
only a few bosons have been created n,=0(1) and the spin remains
nearly polarized, a “linear region,” where the number of bosons
may be large but is small enough to justify linearization of spin
operators, 1 <n, <N, a generic region, n,=0O(N), and the adiabatic
limit n, — N. Theoretical approaches we will use to approach these
regimes include (1) solution of the linearized Schrodinger equation
(cf. Sec. IM), (2) Keldysh perturbation theory based on a self-
consistent RPA approximation (cf. Sec. IV), (3) semiclassical ap-
proach based on the approximate conservation of adiabatic invari-
ants (cf. Sec. VI), (4) an extended semiclassical scheme, where
semiclassical methods are employed to propagate the full quantum
distribution beyond the quantum regime (cf. Secs. V and VII), and
(5) numerical solution of the Schrodinger equation for moderately
large N.

As was anticipated in Sec. I, the operator b'b exhibits
strong quantum fluctuations. It will, thus, be of interest to
explore the distribution P(n) defined by the moments
((b'h)%y. Also, there may be physical situations where it is
not appropriate to start the process in the spin-up polarized
state. We have already mentioned the case of dilute fermion
gases [17] where a near south polar configuration may be a
more appropriate starting point. Similarly, a downward po-
larized state S,=—S (in an initially downward pointing field)
will model an atom— molecule conversion process with a
purely atomic starting configuration.

In the following, we will describe different stages of the
conversion process, where the organizing principle will be
the conversion efficiency, which in turn depends on the speed
of the sweeping process. For later reference, the different
parameter regimes, along with the theoretical methods we
will use to describe them, are summarized in Fig. 1.

C. Alternate model representations

The equivalence to a system of boson-coupled degenerate
two-level systems—the time-dependent Dicke model—is
best seen starting from the latter. Consider the Hamiltonian

N N

. A

A=-\b'b+= 3 0i+ =3 (b7 +bal).  (6)
i=1 VIV j=1

where "% are Pauli matrices acting in pseudospin space.
The fact that the spin operators appear in totally symmetric
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FIG. 2. (Color online) The different incarnations of the model:
(a) time-dependent Dicke model: an assembly of degenerate two-
level systems coupled to a boson mode, (b) flat-band approximation
(top) to a system of spinful fermions pair binding into bosonic
molecules, (c) system of atoms pair converting into molecules, and
(d) spin subject to a magnetic field and coupled to a bosonic level.

combinations X,0"¢ suggests considering the total spin op-
erator St = %Eia"’y’z. The operators S™* define an SU(2)
algebra. Denoting the maximum weight space “all fermions
occupied” by |S), we observe that S* has maximal eigenvalue
S=N/2,5%S)=S5|S). This shows that the operators $** act in
a Hilbert space of dimension 25+1=N+1. The global spin
representation of the Hamiltonian (6) is but the starting
Hamiltonian (4). The Hamiltonian (6) is represented in Fig.
2(a). As mentioned in Sec. I, a natural experimental realiza-
tion of Eq. (6) is a cavity QED with N two-level systems.

The Fermi-Bose crossover model describes a system of
2N-degenerate spinful fermion states. Two fermions occupy-
ing such a state may combine to form a boson populating one
(“condensate”) bosonic state. Starting from an infinitely low
initial value, the energy of the fermions gets pushed up lin-
early in time [cf. Fig. 2(b)]. This setup is described by the
Hamiltonian

N
. N\t
H=-\tb'b+ 321 (Cl%am + ajlaii)

N
8 ¥
+ /—2 (bTailaiT + ba;ail), (7)
VN =1

where A\ is the driving rate, g/ VN is the coupling amplitude
of the conversion process, and a; ;| and b are fermion and
boson annihilation operators. For convenience, we have split
the time-dependent energy symmetrically between bosons
and fermions. (By a gauge transformation any distribution of
energies with fixed difference 2\¢ between a boson and a
pair of fermions can be realized.)

Noting that the interaction couples only two (|T,]) and
|0)) of four possible (|T,1), |T), |l), and |0)) occupation
states of a spinful fermion level, we may consider a pseu-
dospin state to discriminate between these two states
T,l)H((l)) and |O><—>((1)). The pseudospin representation of
the Hamiltonian is but Eq. (6).
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We may think of the Hamiltonian (7) as a cartoon version
of more realistic models. For example, it can be interpreted
as a nondispersive (flat-band) approximation to a system of
free fermions coupled to the lowest mode of an electromag-
netic field in a cavity QED setup. Alternately, it may be
regarded as a cartoon version of a BCS/BEC crossover sys-
tem wherein a band of (lattice) fermions is initially filled, the
band dispersion is neglected, and only the lowest condensate
state of the bosons (“molecules”) is kept [Fig. 2(b) inset].
While the neglect of dispersion effects may be acceptable
[17], the assumption of full band occupancy might not be
met in experiment. [Reference [17] argues that the full band
assumption should be modeled by starting the dynamics in
incompletely “polarized” (pseudo)spin states, and we refer
the reader to this work for a discussion of this case.] For
completeness, let us mention that the problem of the dy-
namic BCS/BEC crossover has been addressed in many pub-
lications and using different approaches, beginning with [23]
and continuing with Refs. [13,17,24-26]. It is probably fair
to say that a consensus on whether this problem can indeed
be reduced to the flat-band model with a single Bose mode
(7) has not yet been reached in the literature.

Finally, consider a system of atoms sweeping through a
Feshbach resonance whereafter diatomic molecules form the
energetically preferred state (cf. Ref. [21] where the conver-
sion processes has been realized in condensates of °Rb or
40K atoms). This situation is described by the Hamiltonian

N A .
H=\td"d- —c’c+é(d’cc+dcTcT). (8)
2 VN

This Hamiltonian describes the conversion of atoms to mol-
ecules, where the former or latter are created by the bosonic

operators ¢'/d", and the symmetry [H,d'd+2c'c]=0 reflects
the conservation of the total number of particles. The time-
independent version of this model was extensively analyzed
in Ref. [27].

The (near) equivalence to the previous model representa-
tions is seen by computing matrix elements My, =(N-n
+1 ,2n—2|ﬁ|N—n,2n>, where the state [N—n,2n) contains
(N-n) d molecules and 2n ¢ atoms. Evaluating the matrix
element, we find

My, = \(N=n+ Dn(n—172).
VN

Now, let |N/ 2-n,n)’ be the state with n bosons and spin
polarization S,=N/2-n. Computing the matrix elements
M,’v,nE<N/2—n+l,n—l|I:I|N/2—n,n> of the Hamiltonian
(4), we find

M}, = %\/(N— n+ i, )
N

The matrix elements M and M’ are identical up to correc-
tions of O(n~') which vanish in the limit of large particle
number occupancies. This consideration shows that the con-
version of atoms to molecules can be discussed within the
framework of the spin Hamiltonian above, where the number
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TABLE 1. Survey of the equivalent representations of the model.

Model

System A System B

Spin-boson
Time-dependent Dicke model
Fermi-Bose conversion

Atom-molecule conversion

N two-level systems
Flat band of 2N fermion states
Dibosonic molecular state

Spin S=N/2 Boson mode
Boson mode
Boson mode

Boson mode

of molecules is counted in terms of the spin quantum num-
ber.

The correspondence between models can be made perfect
by considering heteromolecular conversion processes (cf.
Ref. [22] for a realization in an ®Rb-%’Rb gas). Straightfor-
ward generalization of Eq. (8) obtains the Hamiltonian

A N\t .
H=\td'd- E(CICI +chey) + %(chlcz +dcicl),
N

(10)

where ¢}, creates atoms of species 1/2 and d' the (1-2) het-
eromolecule. It is not difficult to verify that the matrix ele-
ments of this Hamiltonian exactly coincide with those of the
spin-boson Hamiltonian (4).

In this incarnation our problem has been analyzed by a
number of authors. Its classical version constitutes a specific
example of more general problems in the theory of nonlinear
differential equations studied in Ref. [28]. More recently, it
was analyzed by Ref. [7] (see also the more recent Ref. [29]).
It is also in this form that the problem is the closest to exist-
ing experiments [21,22].

Equations (4) and (6)—(8) define four equivalent defini-
tions of the model. For the convenience of the reader, the
correspondence between the systems involved in these defi-
nitions is summarized in Table L.

III. LINEARIZED DIABATIC REGIME

We first consider moderately fast driving rates where only
a small fraction of the particles undergo a conversion pro-
cess. In the language of the spin model this means that at
large times the spin will still be stuck close to the north polar
regions, lim,_.[S—S.(1)]/S<1, or n,/N<1. In this regime,
the curvature of the SU(2) spin manifold is not yet felt and
the problem can be effectively linearized.

This is best done in the Holstein-Primakoff representation
of spin operators

S =cf(25-cfe)'?,
St=(2S-cfe)"e,

sf=S-cle, (11)

where the algebra of bosonic operators ¢ and ¢’ defines the
Holstein-Primakoff bosons. Substitution of the linearized ap-
proximation S~=(28)"2¢", §*=(25)"?c, and §*=S-c'c into
Eq. (4) generates the quadratic Hamiltonian

I:IHP =—N(b'b+ce)+g(b'cT +cb). (12)

To compute the number of bosons created in the linearized
evolution, we switch to the Heisenberg representation b(r)

=eM'pe~H" and consider the expectation value

ny (1) = (b* (Db (1))

taken with respect to the vacuum state, {---)=(0|--+|0) with
bl0y=c|0)=0. Alternatively, one can consider a model of
bosonic atoms and molecules, in the regime where most of
the particles are molecules. In the Hamiltonians (8) and Eq.
(10) one may then replace d— VN to arrive precisely at Eq.
(12), which is an appropriate relabeling of operators under-
stood. In Ref. [7] a model equivalent to the linearization
above was introduced, and the mean conversion rates of the
linearized dynamics were computed (see also Ref. [8]).

The computation of n,=1im,_,., n,(f) is reviewed in Ap-
pendix A, with the principal result

n,=x-1. (13)

Equation (13) states that the number of converted particles
grows linearly in the LZ parameter. Unlike with the standard
(two-level) LZ problem, the many-particle system remains
parametrically detached from adiabaticity, even for large val-
ues of the LZ parameter. However, the linearization underly-
ing the derivation limits the validity of the result to n,<<N.

The techniques used in Appendix A actually yield the
entire (quantum) distribution of the number of produced par-
ticles,

P(n) = 1(1 —xhr

—n/x

(x>1). (14)
x

This distribution is very broad. Its width ((n*)—(n)*)"?=x is
of the same order as its mean. This is remarkable inasmuch
as our system is not subjected to any sources of fluctuations,
other than its intrinsic quantum fluctuations. We are met with
the unusual situation that quantum fluctuations are of the
same order as mean values, in spite of the “semiclassical”
largeness of the latter, (n)=x> 1. Similar phenomena have
been discussed in the context of dynamical sweeps through
quantum phase transition points (cf., e.g., Ref. [30]).
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IV. KINETIC EQUATION
A. Keldysh formalism

An alternative way of analyzing the problem starts from
the boson-fermion representation (7) and analyzing the cor-
responding kinetic equation [theory strand (b) in Fig. 2]. To
formulate this approach, we employ the Keldysh formalism
and consider the appropriate Keldysh Green’s functions (cf.
Ref. [31] for a review of the formalism). Readers not inter-
ested in the formalism are invited to proceed directly to the
discussion of the main result of this section, the rate Eq. (27).

Within the Keldysh formalism, the fermion subsystem is
described by the matrix Green’s function

Gt G¥
Go’a,a’a’([vt,) == i<aaa(t)a:r,fa/(tl)> = ( 0 GA ) (tvt,)9

where «,a’=1,2 index the two-component Keldysh space
(to which the matrix structure in the equation refers) and o
=(i, 1) is a container index comprising the fermion site and
spin index. G, GA, and GX stand, respectively, for the ad-
vanced, retarded, and the Keldysh Greens’ function. The lat-
ter is defined by

GK=GRof—foGA,

where the symbol “°” defines a temporal convolution

(AOB)(t,t’)Efdt”A(t,t”)B(t",t’)

and f=1-2n; defines the distribution of the fermions. In
what follows, it will be convenient to represent the Green’s
functions of the theory in the Wigner representation,

t t .
GK(T,a))zfdt GK(7'+ - T —>e"‘”, (15)
2 2
and similarly for all the other Green’s functions. In the ab-
sence of interactions, g=0, a straightforward calculation ob-
tains the Wigner representation of the free Green’s functions
as

G ()=
000\ BN N2
s,
G (rw)= ——,
0o (@)=

K
G(),()'U’

(1 w)==278,5fo(T,\/12) w = \t/2), (16)

where f(7,\t/2) =fy(7) describes the distribution of the full
fermion band f,(7)=1-2n(7)=—-1. In a similar manner the
bosons are described by

K R

D(t,t')=—i<ba(t)bz/(t’)>=( ) ,(t,t’), (17)

DY 0

where
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DEX=DRoF-FoDA

and F=1+2n,, with n;, describing the boson distribution.
The Wigner representation of the noninteracting boson
Green’s functions is given by

Dj(1,0) = ,
o(ne) o'+ 2\t
D7) = —
N W + M\t
D (7,w) = = 27Fy(1,— M) 8w + \1), (18)

where Fy(7,-\7)=F,(7) relates to the vanishing boson
number of the noninteracting problem as Fo(7)=1+2ny(7)
=1.

In order to calculate the number of produced bosons at the
end of the Landau-Zener process, we need to calculate the
exact bosonic Keldysh Green’s function, in terms of which

np = lim n(¢) = lim(iGX(¢,1) = 1)/2

t—0 t—00
1 d
= —<limf —wF(T,w)Ab(T,w) - l),
2 T—0© 2T

(19)

where A,=-2 Im DX is the spectral function of the bosons.
For large positive times, the Green’s functions become effec-
tively uncoupled, D®(w) asymptotes to the free form (18),
and A,(w)=278 w+\t). This means that the number of
bosons at the end of the process is given by

. F(r,—A7) -1
n,=lim——.

T— 0 2

(20)

B. Perturbation theory

First, we can try to calculate the bosonic Green’s function
perturbatively, in powers of g (which means, in practice, in
powers of the dimensionless parameter g>/\). This expan-
sion is valid at fast rate \, gz/ AN <<1. The lowest-order cor-
rection to the bosonic propagator is depicted in Fig. 3, dia-
gram (a). The calculation of this diagram, although
cumbersome, proceeds in a straightforward fashion, giving
the result

2
g
n, = T (21)

Each vertex of the diagram carries a factor of g/ VN. How-
ever, there are N fermions propagating around the loop, can-
celing the factor 1/N coming from the vertices. This results
in the cancellation of factors of N in the answer.

In the next order of perturbation theory two more dia-
grams contribute to the bosonic propagator. These are shown
on Fig. 3, diagrams (c) and (d). This leads to the second-
order answer
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FIG. 3. (Color online) (a)—(e) The lowest-order corrections to
the bosonic propagator.

2 2\2
, 1 1)\(m
nbz—g+(———><—g> . (22)
N 2 N/\ N
Note that at N=1, this indeed coincides with the Taylor ex-
pansion of the exact Landau-Zener formula

ny=1—e N, (23)

Notice also that at N> 1, the number of produced particles is
larger than at N=1. This is natural, as with larger N one can
produce more bosons.

Finally, we note that the calculation leading to Eq. (22)
closely parallels that employed in Ref. [25] to calculate the
molecule production in a Feshbach resonance experiment
perturbatively.

C. Self-consistent random-phase approximation
and Kkinetic equation

Our aim now is to calculate the number of produced
bosons in the large-N limit, with all other parameters includ-
ing g and N\ kept fixed. Our starting point is the system of
kinetic equations (the Wigner transforms of the Dyson equa-
tions, cf. Ref. [31]) for the boson and fermion distribution
function,

(0, = NI)F(r,0) =i(EX = (3R e F = F o 34))(7,0),
(24)

(57+%a€>f(r,e):i(oK—(O'ROf—f°0A))(T,6)- (25)

The first of these equations is obtained by evaluating the
Wigner transform of the general kinetic equation of a boson
system [31] (=id,+[H,])F=3K—(SReF—Fo34) for the
Hamiltonian H=—\z. The second equation is its fermionic
analog.

In the “collision integrals” of Eq. (24), KR4 (gK-RA) are
the components of the bosonic (fermionic) self-energies. It is
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not difficult to see that the dominant contributions to these
self-energies are given by the diagrams in Figs. 3(a) and 3(e),
with external legs truncated. Unlike with the lowest-order
perturbation theory discussed above, the fermionic and
bosonic propagators appearing in these diagrams are to be
understood as dressed propagators, containing self-energy in-
sertions by themselves. [Technically speaking, this means
that we will evaluate the self-energies in a self-consistent
random-phase approximation (RPA) approximation.] Self-
energy diagrams with crossing interaction lines, such as Fig.
3(b), carry factors of N-! relative to the self-consistent RPA
diagrams. (See, however, the discussion in the end of this
section.)

The derivation of the self-energies for the boson-fermion
interaction follows standard procedures [31] and we will not
repeat it here. As a result we obtain the equations

2

+flo-e)f(e) - [fle) + flw- &) ]F(w)},

A 2 (d A

(aT+ 5(95>f(6) - 287\/ f fTA(w— e {)Ab(aw A1
+ flo - e)f(e) - [f(€) + flw - € ]F(w)},

(26)

where we suppressed the explicit 7 dependencies for nota-
tional clarity and A=-2 Im G® and A,=-2 Im D¥ are the
spectral functions of the fermions and the boson, respec-
tively. Notice the factor of N~! multiplying the collision in-
tegral of the fermions. The absence of this factor in the boson
collision integral signals that the boson interacts with all N
fermions simultaneously. In contrast, each fermion interacts
only with a single boson, which means that the fermionic
self-energies carry the uncompensated squared coupling con-
stant g%/N.

Equation (26) defines a particle number conserving sys-
tem. Consider the quantity N(7)=n,(7)+Nn/7). Using Eq.
(19) and its fermionic analog I’lf(T)=—%( I g—;f(r, €)A(T,€)
—1), we obtain that the number of particles varies in self-
consistent RPA as

dN 1 dw de
Z = EdT<J ;F(T,a))Ab(T,w) —Nf 2—ﬂ_f(7,e)A(T,6)>.

Integrating the first (second) Eq. (26) over [ %";Ab(r, )
(f;—fTA(T, €)) and using Nd A,=d,A,, we find that the two
integrals cancel out and d, N=0.

This is about as far as we will get without further approxi-
mations. Below we will argue that the validity of the RPA
approximation is limited by the condition n, << N. In the limit
n,/ N—0, the self-energies o®4 broadening the energy de-
pendence of the spectral functions become vanishingly
small. (The detailed dependence of the broadening depends
on the value of time 7.) Relying on this limiting behavior, we
will approximate the spectral functions by A(e) =2md(€) by
6 functions. This is a bold approximation inasmuch as the
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pairs of & functions in Eq. (26) enforce the resonance condi-
tion 7=0. However, it is this “resonant” time window 7=0,
where the distribution functions entering the integral kernel
are expected to vary strongest. This means that the value of
the collision integral may well be sensitive to the detailed
temporal profile of the distribution functions around 7=0.
Ultimately, we will need to compare to the result of other
methods to verify the validity of the d-function approxima-
tion.

We substitute the approximations A,(7, w) =278 w+\7)
and A(7,€)=2w8e-N7/2) into Eq. (26), use ny(7)
=3[[32F (7, w)A,(7, )~ 1]=[F(7,~\7)~1]/2, and differen-
tiate with respect to time to obtain
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wg’ 2
(9,nb=—<9,nf=Tﬁ(T)[nf+nb(2nf— ] (27)

The meaning of this equation becomes transparent upon re-
writing the combination of distribution functions on its right-
hand side (r.h.s.) as (1 +nb)n%—nb(1 —ny)*. This factor weighs
the probability that two fermions convert into bosons and
back. To solve the equation, we take advantage of the con-
servation law

l’lb‘l‘N}’lf:N. (28)

It is then straightforward to obtain the solution

2N (e N mg?N)B(7) _ 1)

n(7) =

The singular behavior of n;, at 7=0 is a remnant of the above
o-function approximation. Incidentally, we note that the Tay-
lor series expansion of 7, with respect to g> gives

2 2\2
. mg 1 1)\ mg
n=tim n= " (1 1) 7

6-8N+N*( mg*\’

+ —2<_g (30)
6N N

The first two terms indeed match the direct perturbative ex-
pansion given by Eq. (22), confirming that this technique
does take into account all the diagrams up to the second
order. (In the context of perturbation theory, the S-function
approximation of the spectral functions amounts to the low-
est order in g Born approximation to the self-energy opera-
tor.)

On the other hand, taking the limit N — o gives

~ N(ewgzl)\ _ 1)

5 .
2e™M 4 N

(31)

np

This is the main result of the kinetic equation approach. For
2
e™ <N we find

ny=e™ N -1, (32)

This matches the large-N limit given by Eq. (13).

The kinetic equation produces the boson number (31)
which is monotonously increasing with decreasing A, until it
reaches its limiting small A value of N/2. The reason for this
behavior is that at large N, the r.h.s. of the kinetic equation
approaches zero at n,=1/2. In other words, the rate of fer-
mions converting into bosons is matched by the rate of
bosons converting into fermions. However, we need to re-
member that at n,=N/2 we are well outside the regime of
validity of the approximated kinetic equation. In fact, we are

o NHINEEMIA N 4 NN +4) + 2]+ N+ NN +4) -2

(29)

outside the limit of the RPA as such. This is because at n,
=N diagrams that are nominally small in N~' become size-
able, on account of the large value of the distribution func-
tion n,=N. For example, it is straightforward to verify that
its crossing interaction lines make the diagram in Fig. 3(b)
small in N~!, but this smallness gets counteracted by
n,-dependent propagators in the center regions of the dia-
gram. The bottom line is that the RPA is controlled only in
the limit n,/N—0. Our comparison with numerics below
will show that it works remarkably well beyond its nominal
limits, i.e., profile (31) represents a good approximation even
at n,/ N=0(1). However, in order to advance into the adia-
batic regime, n, — N, we need to employ different methods.

V. SEMICLASSICAL ANALYSIS

Our goal now is to understand the behavior of n, for
arbitrary driving rates \. We will use that for large N>1 our
problem approaches a well-defined classical limit where both
spin and the bosonic fields can be treated as classical objects.
The classical equations of motion, obtained by replacing op-
erators in the Hamiltonian (4) with ¢ numbers and commu-
tators by Poisson brackets, read

ib=—Nib+ =5,

\

. 8 e
S.=—i—=(bS*-b"S"),
z \’w

S.=—i—=(b*-b)S. - \1S,,
T D)8 M,
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$,=- \%(b +b7)S, + \IS,. (33)
Within the strictly classical setting, these equations have to
be solved for the initial conditions b(#;)=0, S.(1))=N/2, and
S(t))=S,(t))=0, where t,——o is the initial time. It is
straightforward to verify that the solution corresponding to
these initial conditions reads (b(¢),S.(1)=(b(1y),S.(%y))
=(0,N,), i.e., the initial configuration of zero bosons repre-
sents a classically stationary (if unstable) solution.

The prediction that no bosons will be generated is clearly
wrong. However, the purely classical treatment has yet an-
other, and related, drawback: for given initial conditions the
uniqueness of the classical solution does not permit the
buildup of fluctuations. This is in contradiction with our ear-
lier findings that the distribution of n,, is wide at least at fast
and intermediate rates.

It is thus obvious that a meaningful description of the
classical limit must account for the presence of quantum
fluctuations. These fluctuations will lead to an initial desta-
bilization of the configuration (b(¢),S.(r))=(0,Ny). The non-
linearity of the classical Hamiltonian then amplifies the fluc-
tuations and drives the system away from its initial state. The
expansion of dynamics in quantum fluctuations for bosons
was analyzed in detail in Ref. [32]. Using a path integral
construction similar to the Keldysh technique it was shown
that to leading order in quantum fluctuations the classical
(Gross-Pitaevskii) equations of motion do not change. How-
ever, the initial conditions become randomly distributed with
the weight given by the Wigner transform of the density
matrix. This so-called TWA originated in quantum optics
[33,34] and has later been adapted to cold atom systems [35].
By now the TWA has become a standard tool in describing
the dynamics of cold atoms in regimes where classical
Gross-Pitaevskii equations do not suffice (see Ref. [36] for
review).

The TWA is most conveniently adapted to our model by
using the Schwinger boson representation of spins. The small
parameter of this expansion is 1/§, where S— % describes
the classical spin. In Appendix B we give some details of this
derivation. The net result is that the classical equations of
motion (33) need to be supplied by stochastic initial condi-
tions distributed according to the Wigner function. For large
spin (pointing along the z direction) and vacuum state of
bosons, representing the initial conditions in our problem,
this Wigner function is approximately given by

i
?]5(52—5),

(34)

2 S
W(ny,S.,S ) = —exp[-2nglexp| -
) s

where § | = V”S§+S$ and n is the initial boson number. The
fact that S| and n are not exactly equal to zero is the result
of vacuum quantum fluctuations. In this work we are prima-
rily interested in the number of bosons created during the
dynamical process and its fluctuations. The connection be-
tween moments né,l:l,Z,... and the variables » and b is
established by the Wigner transform identities summarized in
Appendix B. For instance,
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ng—b'b—1/2, ni— (b*b)>=b*b. (35)

(The correction term b*b appearing in the expression for the
second moment ensures that zero-point fluctuations do not
affect the expectation value of n, and n(z), which should be
zero in the vacuum state. In the classical limit ny> 1, these
terms become inessential.)

By way of an illustration, let us outline how the TWA
reproduces the results of the quantum calculation in the lin-
earizable regime. For quadratic Hamiltonians the TWA is
exact [32,33] and we must be able to reproduce all the results
of Sec. IIl. Upon leaving the linear regime, the number of
bosons n(f)=(b'(1)b(t)) has become large and semiclassical
methods are expected to work with high accuracy. In other
words, the exactness of the TWA to the linear regime entails
its applicability to the full parameter space of our problem.

In the linear regime, we may assume approximate con-
stancy of S.: S.~S=N/2. Equation (33) then reduces to

ib=—N\tb+gs™,

is"=—gb+\ts~, (36)

where we used s=S5~/N. These equations are identical to
an exact reformulation of the Schrodinger equation [cf. Eq.
(A1) in Appendix A], a consequence of the linearity of the
problem. In Appendix B, Sec. B 3 we show that the solution
of these equations, with account for quantum fluctuations in
the initial data, indeed reproduces the results of the full quan-
tum calculation. In particular we show there that n,=x—1
and (n,§>=2x2—3x+1 [here as before, we reserve the notation
n,, for the number of bosons at the end of the process, as in
Eq. (5)]. Both results perfectly agree with the exact distribu-
tion (14).

At slow values of driving, x~ N the nonlinear equations
(33) no longer afford an exact solution. In Sec. VI we will
discuss an approximate solution scheme, based on the
method of adiabatic invariants. In Sec. VII we will analyze
in detail n;(\) and its distribution in various regimes using
both exact and TWA simulations.

VI. DEEP ADIABATIC LIMIT
A. Adiabatic Hamiltonian

In this section, we will apply the concept of classical adia-
batic invariance to the adiabatic limit of the driving process.
Considering a fixed initial value n,~ 1 [consistent with Eq.
(34)], we will be sloppy about initial conditions. This is good
enough to obtain reliable results for the mean value of pro-
duced bosons, (n,), but will not suffice to obtain the statistics
of the driving process. The latter will be explored in Sec. VII
below within the more sophisticated TWA scheme.

The concept of the adiabatic evolution of classical invari-
ants [37] was previously applied to the semiclassical limit of
a nonlinear Schrodinger equation [10] and later [13] to the
classical equations of our model. However (for all but very
small, compared with N, initial occupancy ny~ 1) the latter
reference predicts a power law ~\!"? for the conversion rate
which we can exclude on the basis of direct numerics, TWA,
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and our analytical calculation below. Yet, the conceptual ba-
sis for the emergence of power laws (as opposed to exponen-
tials such as in the original Landau-Zener problem) remains
valid: in driven classical dynamical systems, certain invari-
ants of the autonomous limit of the evolution (viz. the action
picked up upon traversal of periodic trajectories) become
weakly time dependent. While in most regions of phase
space this time dependence is very (exponentially in the driv-
ing rate) weak, it can become strong (algebraic) in the vicin-
ity of singular points. Such points reflect the presence of
nonlinearities in the Hamiltonian, which in our problem are
due to interactions. When the driving parameter sweeps
across a singular point, the topology of trajectories in phase
space (and thence the action picked up along these trajecto-
ries) may change profoundly. It is the dynamics of these
processes which we will investigate in the following. Spe-
cifically, we will consider the system in the following limit:

A

1 A
N>1, —2<1, —a<—21nN<1, (37)
g N% g

where a>0 is an arbitrary positive number.

We consider the Hamiltonian (4) in the limit of
c-number-valued operators. Using a number-phase decompo-
sition of the boson field, b — \e“'ne"‘*’, and a polar representa-
tion of spin variables, S,=S cos 6, S,=S sin fcos &, and §,
=S sin @ sin ¢, it assumes the form )

N !,_ .
H(n,p,0,6) =— \tn + )\tzcos 0+ g\Nn sin(6)cos(&— ¢).

The two angles & and ¢ can be combined into one angle ¢
=¢— @+ (where 7 is added for later convenience). The
angle 6 and the boson number n are not independent, but are
related via the conservation law

n:%](l —cos 6). (38)

This allows us to trade 6 for n. It is then convenient to
rescale

n— Nn, (39)

so that the new n varies from O to 1, with the last value taken
when all particles are bosons. Similarly, the rescaled initial
condition reads

1
I’l()"‘[T].

It is also advantageous to replace
H— NH. (40)

Throughout this section, we will work with the rescaled vari-
ables as described here, restoring the original variables at the
end.

Finally, without any loss of generality we can set g=1
since it can be scaled out by the appropriate rescaling of .
We arrive at the Hamiltonian
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FIG. 4. (Color online) Trajectories of H at y=-3. Here the
horizontal axis is n, varied from O to 1, and the vertical axis is ¢,
varied from —7 to .

H=—-yn-2nV1-ncos(¢), y=2\r. (41)

Here ¢ and n play the role of the coordinate and momentum,
canonically conjugate to each other. The equations of motion
of these variables read as

d,n:—&¢H,

dp=a,H. (42)

These equations of motion need to be supplied with initial
conditions. In this section, where the emphasis is on the cal-
culation of the “typical” number of produced bosons, we will
supply the dynamical system (42) with a fixed value of the
initial n. We take this to be the typical value ny~ 1/N of the
(rescaled) distribution (34). [As we will see below in the
slow limit n(¢— o) has only logarithmic sensitivity to n, and
precise form of the initial value is not important, as long as
we are interested in estimating mean conversion rates. For
the same reason the initial fluctuations in the angle 6, which
we ignored, are also unimportant. |

We begin our analysis of the initial value problem by
plotting lines of constant energy H=const at different fixed
values of y. Examples are shown in Figs. 4-7. The lines
shown in these figures represent trajectories of the Hamil-
tonian for vy fixed. In our problem, y changes in time. How-
ever, at small A, y changes slowly. Thus the system will
follow one of the trajectories for some time before it will
slowly drift to a different trajectory due to the slowly chang-

ing 7.
B. Fixed points

An important role in our analysis is played by the fixed
points of the Hamiltonian system [10,11,13]. This is where
the trajectory consists of a single point (y still kept fixed).
They are found by solving

9H oH
—=0, —=0. (43)

There are two families of solutions (1, ¢) of these equations
(in addition to the trivial solution n=0 appearing for y>
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FIG. 5. (Color online) Trajectories of H at y=—1.3. The critical
trajectory is shown as a dashed (black) line.

—2). The first exists for —2<<y<2 and has ¢=0, (n,¢)
=(n,(7),0), where

12— v+ W2+ 9
ni(y)= 18 . (44)

This solution appears at n;(2)=0 at y=-2. As vy is increased
above -2, n,(7y) starts increasing until it asymptotically
reaches lim,_.. ny(y)=1.

The other solution has ¢ = and requires y<<2. It is given
by

12—y = pWI2+ 9

ny(y) = 18 : (45)

This solution appears at n,(2)=0. As vy is decreased below 2,
n,(7y) starts increasing and asymptotes as lim,,_,_, ny(y)=1.

We thus arrive at the following picture. Initially the num-
ber of bosons is given by n=ny~ 1/N at undetermined ¢.
The coordinates n and ¢ evolve according to the approxi-
mate Hamiltonian H=—yn, where we used that at large
negative times 7y is very large to keep only the leading-order
contribution in this scale. This means that the motion is ini-
tially given by

OO 02 04 06 08 LO
n

FIG. 6. (Color online) Trajectories of H at y=1.
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FIG. 7. (Color online) Trajectories of H at y=4. The U-shaped
trajectory on the right of the picture is not critical, despite looking
superficially similar to the critical trajectory shown on Fig. 5.

p=—t. (46)

n=-—,

N
However, as 7 is increasing, the fixed point n(7y), given by
Eq. (44), appears at the critical value y=-2. As 7y keeps
increasing the point moves toward larger values of n. At a
certain moment of time, the trajectory (n, ¢)(¢) will drasti-
cally change: it will no longer perform extended propagation
in ¢ directions but start winding around the fixed point (45).
Eventually, at some large positive 7, the trajectory will stop
winding around the fixed point and merge into a new ex-
tended trajectory, which at large positive vy will take the form

d=—yr. (47)

n, is the final number of bosons we are trying to calculate.

The fixed point n,(7) has an intimate relationship with the
instantaneous ground state of the quantum Hamiltonian (4).
This is discussed in more details in Appendix C.

n=ny,

C. Adiabatic invariants

In the classical mechanics of slow parameter-dependent
Hamiltonians there exist approximately conserved “adiabatic
invariants” [37]. Generally, adiabatic invariants assume the
form of action integrals ~ [pdq, where the integral is over
one full revolution of the system’s motion. In the present
context, the invariant is given by

= %T f dén. (48)

To further elucidate the meaning of the adiabatic invariant in
our problem, let us go back to the angular variable 8 accord-
ing to Egs. (38) and (39). We find

I=Lfd¢(1—cos 0). (49)
4

This is nothing but the area of a part of the surface of a unit
radius sphere bounded by the trajectory 6(¢), where 6 and ¢
are thought of as spherical angles divided by 4. This geo-
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metric definition of the adiabatic invariant implies an ambi-
guity which needs to be resolved. A closed trajectory on the
surface of a unit sphere separates the surface into two do-
mains, and one needs to pick the area of one of them.

We define the adiabatic invariant as the area (divided by
47) of the domain on the surface of the unit sphere bounded
by the trajectory such that the trajectory, when the domain is
viewed from above, encircles the domain in the counter-
clockwise direction. We note that this definition does not
always conform to the algebraic expression (48). However, it
results in the adiabatic invariant continuous under smooth
deformations of the trajectory, while Eq. (48) can be discon-
tinuous under those transformations.

For trajectories such as the initial trajectory (46) or the
final trajectory (47) the adiabatic invariant is very easy to
calculate. Initially the trajectory encloses the north pole of
the sphere in the counterclockwise direction to result in

1 (" 1
IL...=] — Q)= — d —0) ~ —,
initial ('}/—’ ) 27TJ_77 ¢ ”(’}’—> ) N
At the end of the process Eq. (47) implies that the trajectory
now encloses the south pole in the counterclockwise direc-
tion. The adiabatic invariant is now given by

1 o
Ifina151(7—>°°)=1—;7_ dp n(y— ) =1-ny.

(50)

In the limit A — 0, [ is conserved;
1
Lipa=1-ny ~ N (51)

This implies that at the end oft the process all particles be-
come bosons, n,=~1 (with 1/N factor coming from a quan-
tum uncertainty irrelevant in the large-N limit).

As the rate N\ is increased, the adiabatic invariant starts
changing with time. In Sec. VI D, we will review the general
theory of adiabatic action changes and then apply it to our
particular problem at hand. Readers not interested in details
of the adiabatic dynamical evolution of the system may just
note the final result of our analysis, Eq. (63).

D. Theory of approximate conservation
of the adiabatic invariants

The theory of approximate conservation of adiabatic in-
variants is a well-developed subject, described in detail in
Ref. [37]. One of its main results is that the change in an
adiabatic invariant during some time-dependent process is
usually exponentially suppressed at slow rate,

const ) ’ (52)

Al ~ exp(—

where \ is the rate of the process. In fact, one may interpret
the standard Landau-Zener transition probability in terms of
this behavior.

However, the theory also states that if a singularity devel-
ops at a certain time during the evolution, Eq. (52) breaks
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down and gets replaced, typically, by a power law. We are
going to see that this is indeed the case in our problem.

For the convenience of the reader, we briefly summarize
the essentials of the theory of adiabatic invariants, as dis-
cussed in Chaps. 49 and 50 of Ref. [37]. Consider a Hamil-
tonian H=H(¢,n,y) depending on a pair of conjugate vari-
ables (¢,n) and a slowly varying parameter 7y. For starters,
assume y to be constant. Since H describes a system with
only one degree of freedom, we have integrability and it is
convenient to transform to canonical or “action-angle” vari-
ables. The action variable is defined as

|
1= 3gd¢ n(E, ¢, y),
'

where the integral is over a closed trajectory of the system’s
evolution. Such curves are specified by a value of the con-
served energy E and, in our case, by the value of . We thus
have a functional relation I=I(E,y). Now, consider the so-
called abbreviated action

¢
S(¢,E,7)Ef d¢' n(E,¢',y),
%o

where the integral extends only over a certain segment of the
trajectory. The relation I=I(E,y) may be inverted to express
S as

S(p,E(1,y),y) =S(¢.1,7)

as a function of the coordinate and the action variable. The
abbreviated action is the generator of a canonical transforma-
tion (¢,n)— (I,w) from the old coordinates to the (con-
served) action and a conjugate angular variable. Specifically,
we have the relation n=3,5(¢,1, y)|; and define the angular
variable as w=d;S(¢.1,7y)| 4. The equations of motion in the
new variables read

oH'
dl=-—,
ow
oH’
dw=——1,
al

where H'=H'(I,w,y) is the Hamiltonian expressed in terms
of new variables. For an autonomous system (y=const),
H'(I,w,y)=H(I,y)=E(,y) is but the old Hamiltonian ex-
pressed in terms of the action variable. In this case, the ac-
tion is conserved and the angle varies as w=td,E. During
each period of the motion, the action changes by an amount
AS=2l. The relation w=4;S then implies a change in w by
2qr. Thus,

21
f=t—.
w(1) T

For a nonautonomous system, classical mechanics states that
EA) aS
H,(I’W’ ')’) =H(I’ 7) + =H(I7 ')’) + _dt’)/’
ot dy

where S on the r.h.s. must be expressed as a function of (1,w)
after the parameter differentiation. In other words,
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H’(17W’ '}’) =H(I9 ')’) + A(17W’ ’Y)dt’ys

where

A,y = B0 . 53)

Y | =g,y

This then means that the action changes and it does so ac-
cording to

IN(IL,w,
_9ALw.Y)

dl=
ow

Y- (54)
The change in the action over a finite interval of time then
follows as

IN(Lw, dw dA(I,w,
A,z_fd,Mdﬁz_mf dw IALw,y)
ow [0} ow

(55)
where

27T
w=—

T

is the characteristic frequency of the trajectory. For time-
independent 7, the integral is over one full interval of a
w-periodic integrand and vanishes; it is temporal variations
in vy that give it its finite value. The relations above express
the evolution of the action entirely in terms of quantities that
do not contain explicit time dependence. One may argue that
AT evaluate to Eq. (52), unless the time dependence of ™'
and JA contains singularities. This will turn out to be the
case in our problem.

Figures 4-7 show examples of trajectories that enter the
computation of action integrals for our dynamical system.
(Each of these trajectories corresponds to a particular value
of I while w parametrizes the trajectory.) In computing the
above integrals, we will then be met with the following sce-
nario: consider a trajectory close to the left boundary of
phase space and at an initial value y<<0. Initially, that tra-
jectory will be “open,” i.e., its angular variable will periodi-
cally run from O to 2, at moderately changing n. To the
trajectory we may assign an instantaneous value of energy
H(n, ¢, y), which changes on account of increasing y. As y
approaches the value —2 from below, we run into a singular-
ity: at a certain value y=-2+¢,, where 0 < ¢,<<1, the energy
vanishes, H(n,¢,-2+¢€))=0. That point marks a drastic
change in the topology of the trajectory; it changes from
open to closed. See Fig. 5 for an example of a closed trajec-
tory and a “critical” trajectory with H=0. The latter begins
and ends at n=0 and has the form of a horizontally aligned
horseshoe. The passage time through the critical trajectory is
infinite, and it is logarithmically divergent on the closed tra-
jectories for e\ ¢, (in contrast, it can be checked that an-
other U-shaped trajectory, which starts and ends at n=1 and
can be seen on Fig. 7, is not critical and its passage takes
finite amount of time). The action integral receives its domi-
nant contribution from a range of € values above ¢,.

To describe this situation algebraically, we expand the
Hamiltonian (41) for small €, n, and ¢, where
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y=—2+¢€
as
H=n(¢>— e+n).

The singular trajectory is given by H=0 or n=e-¢* Its
frequency is zero (the period is infinity) and its adiabatic
invariant is given by

I PR R
1= 27Tf_\;d¢(e ¢)_37T63 : (56)

The trajectories inside the singular trajectory have H<0
(one of these is shown in Fig. 5). On these closed trajecto-
ries, n is a two-valued function of ¢, where the two branches
n.(¢p)=1{e-¢* £ [(¢*—€)>+4H]"?} represent the right and
left bending arcs as ¢ varies in —\Ve-2V-H=¢
=\ e-2+-H. The action of these curves equals the area en-
closed by the trajectories, divided by 2, or

1 Ve-2\-H
=_— dp\(¢* — €)* +4H
2m —Ve-2\-H

_e?)4 5[1( i) 1} .
Tox|3T 2l \T1ee) |- (57)

This expression is approximate and valid for small |H| < €.
The corresponding frequencies are given by

oH 277\";
w= E == (58)
ln(— 1652)

These frequencies indeed vanish logarithmically as H 0
approaches zero, confirming that the H=0 trajectory is criti-
cal.

The mechanical system we need to study starts its evolu-
tion at t——o0 by moving according to Eq. (46). Subse-
quently, at a time where vy is slightly larger than -2, the
system crosses the singular trajectory and starts moving
around the fixed point (45). It is at this time that the adiabatic
invariant receives most of its increase.

We estimate the increase by first calculating S for the part
of the trajectory represented by n_(¢), where ¢p<0

¢
= %f de'le—¢'* =\ (P> - €)* + 4H].
0

In this formula, H=H(I) must be understood as a function of
I, which can be found by inversion of Eq. (57). We then
calculate A according to Eq. (53) as follows:

(¢ e- ¢t + 2%
=5 4N - e |
2 0 V(ie—¢ ) +4H

where ¢ has to be substituted by ¢=¢(I,w, ¢) after the in-
tegration. We now use this result to compute the time varia-
tion of the action according to Eq. (54). Using that the w
dependence of A is in ¢(w,I,\) and that d,y=2\, we have
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IA 9¢ e- ¢ +250 oo
dr1=—2)\__=— 1—/= e
de Iw V(e— ¢?)*+4H | dw

Eventually, this quantity has to be integrated over time, and
to do so we need information on the time dependence of
(I, w,y)=¢(I,wt,y). The equations of motion tell us

dp=3,H=—\(e— ¢p*)*+4H. (59)

We next assume that during the time when the invariant /
receives most of its increase, ¢ takes values such that the
r.h.s. of this equation vanishes. The validity of this presump-
tion will be checked in the end of the section. This implies

¢~ - e (60)

Indeed, everything done so far implies |H|<¢€® and so the
right-hand side of Eq. (59) approximately vanishes if Eq.
(60) holds.

Using this stationarity condition and d,,¢=w"'d,¢ we ob-
tain

IN —
dl="=(-H-dH).
w

In this equation H=H(I,e) <€ is implicitly defined by Eq.
(57). This gives

OH a1<a1>—1~ 2e
de  de\dH _1n(_&)’

a term that is larger than the \V=H contribution to d,l. Using
Eq. (58), we arrive at the estimate

2)\61/2
1= .

Using e=2+2\t, we integrate this expression over € from
=€, remembering that =2¢,*/(3) when e= ¢, to find

[= 3%763/2. (61)

This expression looks formally identical to Eq. (56), but has
a different meaning. While Eq. (56) is the adiabatic invariant
of the critical trajectory, Eq. (61) signifies that this expres-
sion remains approximately true even at later times when the
system no longer follows the critical trajectory.

We finally need to find the maximum value e=e" for
which Eq. (61) still holds (at even higher values of €, the
adiabatic invariant will stop growing and just oscillate about
its average value). The criterion we will use to determine that
value reads w=r, i.e., we demand that the system proceeded
along half a period of the critical trajectory. At larger in-
stances of time (€) the transit into the domain of oscillatory
motion and no further systematic action increase has taken
place. In practice, the fixation of €" turns out to be somewhat
tedious, and we have relegated it into Appendix D. As a
result we obtain

3 2/3
€~ (E)\ In N) ) (62)
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Finally, with the help of Eq. (51) this leads to our final
answer
A
—InN ) , (63)
8

nb:N<l—7T

where we have reconsidered the coupling strength g and re-
turned to the original (unrescaled) n,. Note that in the deri-
vation above we relied only on the fact that the unrescaled
no~ 1 due to quantum fluctuations. If we start from the state
where ny, is nonzero (but smaller than N) due to initial occu-
pancy of the molecular state, result (63) remains valid with
the only difference that the argument of the logarithm should
be changed to N/ng. This is qualitatively different from the
results of Ref. [13] where an instant crossover to a ~\'3
power law the moment ny= 1/N was predicted. In our analy-
sis we do not find such a regime either analytically or nu-
merically for any n,.

VII. TWA AND COMPARISON WITH NUMERICAL
SIMULATIONS

In this section, we will apply a combination of numerical
diagonalization and the TWA to obtain accurate results for
both the mean value of n, and its distribution. For moderate
values of N, the Schrodinger equations for Eq. (4) can be
solved directly. Indeed, the Hilbert space corresponding to
that Hamiltonian, in the sector SZ+bTb=N /2, has only N+1
states. Thus the Hamiltonian reduces to a (N+1)-dimensional
matrix. This matrix can be diagonalized at reasonable nu-
merical cost up to values N<10° (see Appendix C for an
example of how this procedure can be set up).

At larger values of N, we simulate the classical equations
of motion, with initial conditions drawn from the quantum
Wigner distribution (34)—the TWA. In this way, we may
obtain results for significantly larger values of N. In the fol-
lowing we will apply both methods interchangeably. How-
ever, before doing so, let us first test the accuracy of TWA by
comparison to numerical diagonalization at values of N
where both methods are applicable.

A. TWA versus direct diagonalization

In Sec. V we have argued that the exactness of the TWA
in the linear regime entails its applicability to the whole
range of driving parameters. To back up this claim, let us
compare TWA results to those obtained by numerical diago-
nalization. In Fig. 8 we show (n,)(\) for two values of N
=2S5: N=64 and N=128. The solid and dashed lines represent
the exact and TWA solutions, respectively. There is no vis-
ible difference between them. To demonstrate that TWA is
not actually exact we show in the inset the difference be-
tween TWA and numerical results multiplied by a factor of
100. Clearly for N=128 the accuracy of TWA is better which
signals that as N increases TWA gives results of increasing
precision.

In Fig. 9 we plot the relative number fluctuations dén,/N
=\«"(n§>—(nb)2/N as a function of N\ for N=64. As with the
dependence nj,(\) the difference between TWA and exact
results is minuscule and it vanishes fast as N gets larger.
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= N=64
Z ‘\_\ —=—Exact--+--TWA
~~ .
e \ N=128
c ——Exact TWA
0.14

0.014™

FIG. 8. (Color online) Dependence of the scaled number of
bosons n,/N as a function of the rate N\. The two pairs of curves
correspond to N=2S5=64 and N=128. The solid lines represent the
exact solution while the dashed lines are the semiclassical TWA.
The inset shows the difference between exact and semiclassical
results (N=64 red solid line and N=128 orange dashed line) multi-
plied by a factor of 100.

These results make us confident that TWA represents high-
precision method which becomes asymptotically exact in the
limit N — 0.

B. Combined application of TWA and direct diagonalization

In the following we will analyze our system by combined
application of the two numerical methods. We will not indi-
cate which method was used for which particular curve, un-
less necessary. In all numerical simulations we set g=1.
(This can be always achieved by the rescaling A — \g2.) Un-
less stated differently, the notation n,(\) refers to the mean
value of the number of bosons.

In Fig. 10 we plot n,(\) for different values of N. For
small N the function n,(\) is qualitatively similar to an ex-
ponential form n,(\)/No1—1/x=1-exp(—a/\), as with the
conventional two-level Landau-Zener problem. However, as
N increases this exponential behavior disappears and the de-
pendence becomes much closer to the linear one predicted in
Eq. (63). To demonstrate the approach to linear scaling, we
plot n,,(\) for large values of N up to N~ 10® in Fig. 11. The

—s=— Exact

FIG. 9. (Color online) Dependence of the scaled standard devia-
tion of the number of bosons dn,/N after the process as a function
of the rate N for N=64. The two curves represent the exact and the
TWA results.
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FIG. 10. (Color online) Number of remaining bosons n,, vs the
rate N for different values of N. It is clear that as N increases the
dependence goes from exponential form characteristic for Landau-
Zener process to the linear one predicted analytically [see Eq. (63)].

dashed line is the fit to the linear dependence n,/N=1
—0.28\ In N. Note that the prefactor 0.28 is slightly different
from the 1/ in Eq. (63). But given that the analytical result
was obtained using a series of approximations we find this
level of agreement to be satisfying.

Figure 12 shows the results of numerical simulations at
N=10°, N=10*, N=10°, and N=10% plotted as (I
—n,/N)/In N vs N/ (mg?). The straight line in the plot repre-
sents the deep adiabatic limit Eq. (63), while the second
continuous line is the solution of the kinetic equation (31) at
N=103 only.

We see that the deep adiabatic relation (63) is confirmed
in the limit of slow rates. As to the solution of the kinetic
equation, while it describes well the relatively fast rates, it
deviates from the numerics at slower rates and eventually
breaks down when it saturates at nonzero value when A
—0.

Next, let us discuss the distribution function P(n,). In the
fast limit we have a well-defined analytical prediction given
by Eq. (14). It matches the numerical simulations very well,
as shown in Fig. 13. While for the slow limit we do not have
an analytical prediction for the distribution function, one can
make a good ansatz based on result (63). Note that this result
was obtained for a particular choice of ny=1. More generally
for each fixed initial value of n it should read

1.0 2
——N=10
Z os) ——N=10"
<o — N=10°
c s ——N=10°
R N 1-0.28 AIn(N)
0.4
0.2-
0.0 - :

. A In(N)é

FIG. 11. (Color online) Same as in Fig. 10 but for large values
of N. Note that the horizontal axis is \ In N.

042703-15



ALTLAND et al.
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0.05 0.10 0.15 020 025gx

FIG. 12. (Color online) Number of remaining bosons n; vs the
rate N for different values of N. Here circles represent N= 103,
squares N=10* rhombi N=10°, and triangles N=10%. The continu-
ous lines represent our analytical solutions, as discussed in the text.

A
i’lb(}’lo)/]\]g 1- FIH(CZN/H()), (64)
1

where C is a constant close to 7 and C, is another constant,
which in general can depend on A. Finding this constant is
beyond accuracy of our analytical derivation. Because we
know the distribution of ny: P(ny)=2 exp[—2n,] we can in-
vert Eq. (64) and derive the distribution function of n, as
follows:

C
P(n,) = 2T1C26_" exp[— 2C,Ne™],

_Gm
p_x( N)' (65)

The function P(n,) above describes the Gumbel distribution,
which often appears in the context of the extreme value sta-
tistics.

It is interesting to note that according to the theorem
proven in Ref. [50], P(0)=exp(—mg>\). It is straightforward
to see that Eq. (66) and Eq. (14) are indeed consistent with
this result within their respective applicability ranges.

We plot the distribution function P(n,) in Fig. 14. The

_'_7\,=4
0.4-

/\_Q _'_)\.=2
5 0.3
0.2-
0.1

003 : 10 1 20
5 5 n,

FIG. 13. (Color online) Distribution function of n;, for N=128
and two values of the rate: A\=2 and A=4. The distributions are
discrete and the lines are the guide for the eyes. The dashed lines,
which are barely distinguishable from the numerically computed
solid lines, are the analytical prediction (14).
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FIG. 14. (Color online) Distribution function of n,, for N=128 at
A=1, 0.4, 0.2. The solid lines are the result of the semiclassical
TWA approximation and the dashed lines are the distributions ob-
tained by exact diagonalization. The dotted gray line (which almost
coincides with the solid blue line) is the fit to the Gumbel distribu-
tion (65) with C;=~3.05 and C,~0.03.

solid lines are the result of the TWA approximation and the
dashed lines are the exact result. At slow rates the distribu-
tion function becomes highly asymmetric. At A=0.2 it is
very well fitted by the Gumbel distribution (65) (gray dotted
line) with C;=3.05 (instead of ) and C,=~0.03. The fact
that C, is so small probably indicates that this constant de-
pends on N. We checked that the fit also works well for N
=256 with the same constants C; and C,. From Fig. 14 it is
apparent that the semiclassical approximation correctly pre-
dicts the Gumbel-type shape of the distribution function at
small N\ but misses the oscillations on top of this shape.
These oscillations have a minor effect on the expectation
value of n;, and on its fluctuations. However, they are not
negligible and they do not vanish if we increase N (at least
they persist up to N=512). We are not sure what the origin of
these oscillations is. It is interesting to point out that a simi-
lar interpolation of the distribution function from the expo-
nential to the Gumbel form was found in the completely
different context of interference between two independent
Luttinger liquids [38].

C. Discussion

Result (63) implies that the thermodynamic limit of our
system never behaves adiabatically: no matter how small the
driving, in the limit N— oo, the adiabatic limit becomes elu-
sive. Such type of behavior has been found earlier [39] for
more general low-dimensional bosonic systems near insta-
bilities such as second-order phase transitions. The giant
quantum fluctuations accompanying this nonadiabatic behav-
ior result from the inversion of the classical ground states of
the participating systems. Zero-point fluctuations are re-
quired to trigger a macroscopic inversion of state occupan-
cies and the stochastic nature of this initiation process gen-
erates vast fluctuations at later stages.

Finally, it is worthwhile putting the results above in a
more general context: a number of previous works [40-46]
have addressed the slow dynamics of low-dimensional criti-
cal systems. In all these cases it has been argued that the
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number of excitations produced upon slow driving scales as
a power law of the rate (as opposed to the exponential de-
pendence Eq. (2) for the Landau-Zener problem.) The expo-
nent of this power law is related to the critical exponents
characterizing the phase transition [40,41] under consider-
ation. In low dimensions with their relatively higher density
of low-energy states there is a stronger tendency for smaller
powers, i.e., less adiabatic regimes. In a sense, our “infinite-
range interaction” or “mean-field” system exemplifies these
structures in the extreme setting of a zero-dimensional sys-
tem.

VIII. APPLICATION TO OTHER DRIVING PROCESSES

We spent most of this paper discussing driving processes
where the bosonic sector of the system was initially empty
[or there were no atoms in the language of the atom-
molecular conversion systems (8) and (10)]. For these initial
conditions, quantum fluctuations are needed to jump start
boson (or molecule) production, and this is what ultimately
leads to the power law (63). We here briefly discuss the
“inverse” problem, where initially all N particles were
bosons (or atoms). This variant was previously discussed in
Ref. [29]. What makes it different, is that no quantum fluc-
tuation is required to start the conversion process. Solution
of the classical equations of motion (41) at inverted driving
rate, y=—2\t, and with initial condition n(t— —°)=N cap-
tures the dynamics of the process and quantum fluctuation
introduce only minor corrections.

As a result of a straightforward adaptation of the discus-
sion of Sec. IV, we find that the number of bosons n,, for Eq.
(4) in the infinite future behaves as

N

2 e—wgz/)\ ’

At fast rates, this is equivalent to n,,zNe‘”gZ“‘, N> g2,
which is but the standard Landau-Zener prediction. As the
rate slows down, below x=e™™~1 the Landau-Zener pre-
diction breaks down. [Notice that the initial (linear) regime
in the direct problem was much more robust.]

Taken at a face value, Eq. (66) predicts that at slow driv-
ing rates n,, saturates at 1/2. This cannot be correct since Eq.
(66) must break down at slower rates. A detailed analysis
involving the quasiclassical Hamiltonian (41) with the initial
condition ny=1 gives

ny/N = 0.057\, (67)

where the constant of proportionality 0.057 was determined
numerically from the linear fit [note that unlike that in Eq.
(63), it is N independent]. In Fig. 15 we show numerical data
for the dependence n,(\) for the inverse problem for two
values of N=32 and N=64. The thin red dot-dashed line
represents the linear fit at slow rates n,/N=~0.057\ and the
numerical data approach this asymptotic in an N-independent
manner.

Thus the number of remaining bosons, a measure of de-
viation of adiabaticity, remains proportional to the rate at
slow rates, as opposed to the exponential suppression of the
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FIG. 15. (Color online) The number of remaining molecules vs
\ for the inverse problem, where we start from the full molecular
condensate and no atoms. Note that the results for N=32 and
N=64 almost identically coincide. The thin red line represents the
linear fit at slow rates: n;,/N=0.057\.

standard Landau-Zener process. Even though one approaches
the adiabatic regime when the Landau-Zener parameter is
close to 1, the deviation from adiabaticity is still significant
and much larger than in the standard problem. This may have
significant implications for the experiments such as those
reported in Refs. [21,22], provided the initial state is chosen
to be atoms and one is interested in the molecule production.
We also note that, as far as we can see, this point was not
discussed in Ref. [29].

In some applications it may be important [17] to explore
the sector of the theory where the total number of particles is
much smaller than N [i.e., much smaller than the number of
two-level systems in Eq. (6) or smaller than the number of
fermionic pair levels in Eq. (7)]. Once more, it is easiest to
analyze the system in its spin-N/2 incarnation (4). Translated
to the language of this Hamiltonian a sparse initial occupa-
tion of fermionic Hilbert space means that we start the pro-
cess at zero bosons and a spin that is pointing nearly down-
ward (while the total spin continues to define the dimension
of state space, S=N/2). The particle conservation law then
reads S,+n=-N/2+¢€, where e<N and 0 =n= € is the num-
ber of bosons. This regime can be modeled in terms of
Holstein-Primakoff bosons. However, as the spin continues
to move downward, the regime of Holstein-Primakoff linear-
izability will not be left. Using

St=c'(28 - cfe)'?,
S =28 =cfe)e,

St==S+cle, (68)

where S=N/2 [the version of Eq. (11) for the spin pointing
close to downward], we find

H=M(b'b-cTc)+g(bTc+c'b).

Here b'b+cic=e. This problem is equivalent to the standard
Landau-Zener problem. This proves that in this sector the
model reduces to the standard problem and does not have
any novel features.
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IX. CONCLUSIONS

Let us summarize the findings of our paper. The model
described by Eq. (4) [as well as its other incarnations, given
by Egs. (6)—(8) together with Eq. (10)], with the initial con-
ditions

lim (b ()b (1)) = 0,

t——00
results in a total final number of bosons n; defined by

n, = lim (b (1)b(1))
1—+%
given by the following expressions:
(i) For small values of the LZ parameter,

2 2
e™MN<N: py=e™M -1,

This result can be obtained within the Holstein-Primakoff
method, or by the large-N approximation within the Keldysh
formalism.

(i1) At intermediate values,

2
\
2 N(e™ ™ - 1)
IN — N ~ e =7
e™ N =N: n,= — .
2¢™8 ™+ N

This can be found using the kinetic equation approach within
the Keldysh formalism.
(iii) At large values,

A
e™ N > N: ny, = N(l - —zln(N)).
T8

This result was found using the quasiclassical approxima-
tion together with the adiabatic invariants formalism. We ob-
serve main distinctions between our results and what would
have happened had we extrapolated the standard Landau-
Zener to our problem [which would have given n,=N(1
—e e M. First, the transition between the fast rate and slow
rate regimes happens at

mg?

 InN’

the rate which becomes progressively smaller as N is in-
creased (unlike the Landau-Zener result A = 7g?). Second, if
N\ <mg?/In N, then n, approaches N as a linear function of \,
much more slowly than the Landau-Zener result which
would predict an exponentially fast approach. Finally, par-
ticle occupancies in our system show massive quantum fluc-
tuations, comparable in value to the mean particle numbers.

Note added. Recently, a preprint Ref. [47] appeared which
confirmed and further extended our results in the deep adia-
batic regime.
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APPENDIX A: DERIVATION OF EQS. (13) and (14)

Consider the Heisenberg equations of motion idx
:[ﬁ ,x], x=c,b corresponding to the Hamiltonian (12),

idh+\th+gc'=0,

—idct+ N cT+gb=0. (A1)

The structure of these equations suggests the linear combi-
nation

c=pucy+ ng,

b= pby+ (Tcg, (A2)

where cy=c(ty), 1,<<0 is some time in the distant past when
the dynamical evolution is started, and u, ..., are complex-
valued functions depending on time. Differentiating the first
of the two equations in Eq. (A1) once more with respect to
time and substituting the second equation, we obtain

[&zz—i)\+ (\)?-g*]x=0, x=c,b. (A3)

These two equations are coupled by the initial conditions,
which follow from the first-order ancestor equations (A1). To
make these dependencies explicit, we substitute expansion
(A2) and obtain

[ —iN+ (\)* = g*]k=0, «=p,vp,0,

k=pm,p:  klty)=1, 9k(ty) =ikty,
k=v,0: k() =0, dk(ty) =ig. (A4)
Notice that
u=p, v=o,
> =?=1, (A5)

where the first line is a consequence of (u,p) and (v,o)
obeying differential equations with identical initial condi-
tions and the second is enforced by the fact that the time-
dependent operators (c,c,b,b") obey canonical commuta-
tion relations.

These equations afford a solution in terms of parabolic
cylinder functions [8]. All we need to know about these func-
tions is that

—0

|,LL|2—> e'ﬂ'gz/}\‘

(A6)
Using n,={c’c)=((jmcy+vby)(uco+vb}))=1|> and Egs. (AS5)
and (A6) we then obtain Eq. (13).

The actual distribution of the particle number can be ob-
tained by a bit of linear algebra. We begin by condensing Eq.
(A2) into the matrix equation

-0 26 - G- :><;>»M

where we used Eq. (A5). Denoting the occupation number
eigenstates of the time-dependent operators by |k,I), i.e.,
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= Kk - 1,1),

=k |k+ll)

= \/7 ki1-1), =4 ,

We now expand the vacuum state (of the operators ¢, and b)
|0) in the basis {|k,l)} as follows:

To determine the coefficients ¢, ;, we use the defining rela-
tion

!
0=c,/0)

k.l

This equation and its partner by|0)=0 generate the set of
recursion relations

CQ|O> =0: /.L\'k+ lck+l,l+l = 1_/\1'1 + lck,l, k,l = O,
,U,Ck’O = 0, k= l,
b0|0> =0: 1_/\’k+ 1Ck,l= ILL\”I + 1ck+l,l+l’ k,l = 0,

/LCOJ:O,I = 1.

From these equations we deduce c; (=0 for k=0 and ¢,
=0 for /=0 (however, ¢ is not zero). The first and third
equations then imply ¢; ;=0 for k# /. The diagonal terms
successively descend from ¢ according to

7 \k
Cki= Oicoo| — ) -
M

The normalization condition 1=(0|0)=2, |c; |* generates
the additional condition

|C00|
1_ v

|Co o| |M|2

We thus arrive at the expansion

(2

| M k=0

From this, the moments of the particle number operator are
straightforwardly obtained as

= Ol o= s E v '|2kkm

Comparison with the formulation of moments in terms of the
discrete probability distribution P(n)

2 P(n)n"

leads to the identification P(n):ﬁﬁ;—n" or, using Eq. (A5),
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L(l L)"
P\ |l

Substitution of Eq. (A6) then leads to Eq. (14). From this
distribution, the mean value is readily obtained as Eq. (13).

P(n) = (A8)

APPENDIX B: DERIVATION OF THE TRUNCATED
WIGNER APPROXIMATION FOR THE SPIN-
BOSON MODEL

1. Truncated Wigner approximation

In this appendix, we first review the TWA for a general
system of bosons and then adapt to our specific spin-boson
problem. Consider a (generally time-dependent) Hamiltonian
formulated in terms of normal ordered bosonic creation and

annihilation operators H(¢/, /7). The hat notation ¢ is used
to distinguish operators from ¢ numbers. In the classical limit

the operators 1Z are substituted by complex numbers ¢ satis-
fying the Hamiltonian equation of motion (Gross-Pitaevskii
equation)

00 _ SHW 40
ih—=—"—""""",

ot oY

where the right-hand side denotes a variational derivative.
Classically, these equations have to be supplied by definite
initial conditions (¢, ;). Within the truncated Wigner
approximation—the first-order quantum correction to the

classical picture—the initial data becomes a distribution
Wiy, Yo)dpodis,. The kernel of this distribution is defined

by
plip+— >

X e—\lﬂo\z—(l/‘*)\ 770\26(1/2)(778%—770%) ,

Wo(tho, thp) = f dmyd 770< o —

(B1)

where p is the initial density matrix of the system. Expecta-

tion values of operators Q(t?/"’,t?/) at time ¢ are then to be
calculated as [32]

Q@) = f f dipodify Wo(tho, o) (1), (1), (B2)

where i(t) is the solution of the classical Gross-Pitaevskii
equations of motion with initial condition i, and Q. (&, )
is the Weyl symbol of the operator (). For a normal ordered
Q) the latter is defined by

ch(lﬁ, lﬂ*) =f f d77d77* Q(lﬂ_ 77/2’ lﬁk + 7]*/2)6_“7‘2/27
(B3)

where Q(i, ") is obtained by substitution of operators in
Q(h, ') as y—  and ¢ — . For example for the number
operator )= (Aﬁzz we get
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1
>
(B4)

The same result can be obtained by first symmetrizing num-
ber operator with respect to ¢ and ¢, i.e.,

A

o Vg1
fp— T
V=03

(BS)
and then substituting the operators tzﬁ and zAﬂ with the num-
bers ¢ and ¢ (see Ref. [36]) for more details.

2. Adaptation to the spin-boson problem

Our next task is to generalize the TWA to the Hamiltonian
(4). To this end, we employ the Schwinger representation of

spins through bosons & and ,é as follows:

(B6)

Here, the boson operators « and S satisfy the additional con-

straint A= &' &+ B7B=2S. The operator /# commutes with all
spin operators which means that the fulfillment of the con-
straint at an arbitrary time will be conserved for all later
times. The option of a purely bosonic representation means
that the TWA can readily be generalized to the Hamiltonian
(4). Once the TWA has been formulated for the Schwinger
bosons, we are at liberty to switch back to spin variables
(B6). However, at this point, the spins have become classical
numbers, defined in terms of the c-number-valued boson
variables « and 3.

The classical equations of motion are given by Eq. (33).
The initial density matrix describes a pure spin state, polar-
ized along the z axis or, in bosonic language, a state with 2.5
a bosons and no B bosons. (For the spin pointing along —z «
and B should be interchanged.) The corresponding Wigner
function then reads [32,33,48]

« " 2lal2-2| 812
W(a, o, 8,57 =2 22 L, (4] ), (B7)

where Ly(x) is the Laguerre polynomial of order N. At large
S, the latter is strongly oscillatory and the Wigner transform
is localized near |a|>=2S+1/2 (see Ref. [32]). So in this
case to a very good accuracy (up to 1/5%) one can use

W(a, o, B,8°) ~ V2B 8(|a|> ~ 25— 1/2).  (BS)

If we re-express this distribution function through spins then
to the same accuracy we will find

1
W(S..S ) ~ —eS158(s.~ S),
s

where Si=S§+S§. This Wigner function has a transparent
interpretation. If the quantum spin points along the z direc-
tion, because of the uncertainty principle, the transverse spin
components still experience quantum fluctuations, so that
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S
2\ _ 2\ _ ¥
(SH=(s=7.

which is indeed the correct quantum-mechanical result. Fi-
nally, the distribution of the b boson represents the Gaussian
Wigner function of the vacuum state,

W(b,b") =2 exp[- 2b*b] = W(n) =2 exp[- 2n],
where in the second representation we switched to a repre-
sentation in terms of the boson number n=>5b"b.

3. TWA versus quantum solution of linear regime

We here discuss how the solution of the equations of mo-
tion (36) obtains information equivalent to that of the full
quantum solution of the linear regime. To this end, we notice
that the equations afford a solution as [see Eq. (A2)]

b(t) = ub(to) + vs™(1y),  s7(t) = u"s™(19) + V'b(1o),

where at 1— o we have |u|*>=x and |v*|=x~1 [see Egs. (A5)
and (A6)]. If we are interested only in the statistics of the
number of bosons we do not need to know the phases of u
and v. Using the Wigner function (B1) to compute the aver-
age and the Weyl symbol (35) for the operators n;, and 7} it
is then straightforward to obtain

1
(npy = x(ny (1)) + (x = 1){|s™ (1) ") - et 1
and the second moment
() =4 3 + 2+ (e D5 () + x(a 1)

X (1) X|s™(1)|?) = 2x% = 3x + 1.

It is easy to check that this result conforms to distribution
(14).

APPENDIX C: MEANING OF THE FIXED POINTS

Let us consider the time-independent version of the model
studied in this paper. It is given by the time-independent
version of the Hamiltonian (4)

. 1
A=—2pib+ L5t 4 —(b's +bsY), (C1)
2 2 VN

where g has been scaled to 1. In the sector where
N
b'b+8=—,
2

which is the one mostly studied in this paper, this Hamil-
tonian can be thought of as simply a (N+1) X (N+1) matrix.
In the basis of states [n) where n denotes the boson occupa-
tion number, this matrix takes the form

—_—

1 — L,
Hy ==+ =n\N=n"6,1,1,+ =n"\N-nd,_y,
VN VN

(C2)

[compare with Eq. (9)]. It is easy to evaluate the eigenvalues
of this matrix numerically for moderate N.
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Emin
40t

20

FIG. 16. (Color online) The energy levels [eigenvalues of the
matrix Eq. (C2)] for N=10 are plotted as a function of . At the
same time, the minimum of the classical Hamiltonian, given by Eq.
(C3), is also plotted (dashed red curve). We see that Eq. (C3)
closely follows the ground-state energy of Eq. (C2).

Now consider a semiclassical version of this Hamiltonian
[Eq. (41)] which for completeness we reproduce here

H=—vyn-2nJ1—-ncos(¢).

Here both the Hamiltonian and the variable n were rescaled
according to Egs. (39) and (40) to ease comparison with the
language of Sec. VI, although we need to keep that in mind
when comparing it with Eq. (C2) which was not rescaled in
any way. Let us minimize this Hamiltonian with respect to n
and ¢. Its minimum is given by the substitution of the fixed
point ¢=0, and n,(y) given by n,;(y)=0 for y<-2 and by
Eq. (44), or

12— Y+ W2+ 9
18

ny(y) =

if y=-2. To find the energy minimum we substitute 7,(7y)
into H to find

E in=Nmin H=0,
n,¢

it y<-2

36y— Y +(12+ )2
54 !

E in=—N f y=-2. (C3)

The minimum of the classical Hamiltonian (C3), together
with the eigenvalues of Eq. (C2), is plotted as a function of y
on Fig. 16 for N=10. One can see that the classical minimum
closely follows the quantum ground state. Yet Eq. (C3) can-
not be the exact ground state of the problem at this value of
N since it is not analytical in 7. However, it can be the exact
ground state in the limit N— . Thus we conjecture that Eq.
(C3) is the ground state of the Hamiltonian in our problem in
the limit N —oo. If so, it implies that our problem undergoes
a quantum phase transition as a function of 7.

When vy depends on time, it follows that we drive our
system across the quantum phase transition. The existence of
the critical trajectory and the singular behavior of the adia-
batic invariants discussed in Sec. VI can be traced to the
existence of this transition. The transition in the time-
independent version of the Dicke model is well known in the
literature (see, for example, Ref. [49] and references therein).
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APPENDIX D: DERIVATION OF EQ. (62)

Here, just as in Sec. VI, we use the rescaled variables n
and H, according to Egs. (39) and (40). To obtain the value
of e=€" at which w=1r, we need to inspect the increment of
the angular variable w in the problem where 7y changes in
time. It satisfies the equation [37]

oA
dw=w+|— N,
al /,,

where A was defined in Eq. (53). At small X we neglect the
second term to arrive at
—

w(e)zf g e

€ A ln[— 1675,2] ‘

Here we used Eq. (58), the identity de/dt=2\, and €,>0
denotes the moment of time when the system crosses the
critical trajectory and switches to trajectories winding about
the critical point (45). This allows us to find w as a function
of €, which in turn represents time. To compute this integral,
we need to know H(e). This in turn can be estimated by
noting that

(D1)

dH=-2\n.

Here, n itself is a function of time, which satisfies its equa-
tion of motion dn=-2n¢. Using Eq. (60) we find

1(€ 32
n=ny eXp(— XJ de' ¢) = noe(2/3)\)(53/2_50 )’ (DZ)
€
which integrates to
€
H=— nof de' e(Z/SA)(er 3/2‘58/2). (D3)

€

This needs to be substituted into Eq. (D1). We are now in a
position to estimate the value € corresponding to w=1r. To
compute the integrals in Eq. (D1), we need to study the
behavior of H. At small e—¢€,, H can be approximated as

~ —ny(€— ).
At larger €, we can estimate it by
N

H=~—-ny—e
Ve

(213\) 2

Here, €, represents the moment in time when the system
crosses the critical trajectory. At this point n did not have
a chance to change appreciably from its initial value,
n(y— —). Thus ny~ 1Lv This means that to logarithmic ac-
curacy, we may use the approximation H(e)~—1/N in Egq.
(D1). Other factors, such as 16€> under the logarithm can
also be neglected. This leads to

o 2632 |

€ mVe
w=f de ~ ~
. ANIn[N] 3\NInN

0

Solution of this equation for € obtains result (62). Our deri-
vation has been self-consistent in the sense that even at the
maximal value €,
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)\]/3
2

where again the conditions (37) were used.

The last thing which remains to be done is to check that
Eq. (60) is consistent with the behavior of the system. The
equation of motion (59), together with the condition that
|H| < €, implies

|H(e")| ~

INd p=— e+ ¢,

assuming that ¢>=<e. This is a Riccati equation, which can
be brought to the form of the Schrddinger equation by the
substitution

PHYSICAL REVIEW A 79, 042703 (2009)

R= exp(—l/Z)\fzf)ds)

to give
ZAdZR R=0
-2\——>+€R=0.
dée

This is the equation for the Airy function. It can be investi-
gated using the WKB approximation, which reproduces the
ansatz ¢=—\e. Close to e€=0, the WKB approximation
breaks down, so this ansatz is no longer correct. However, it
is easy to modify relations such as Eq. (D2) and (D3) by
substituting R%, with R being the appropriate Airy function,
in place of the exponentials in these relations. This does not
affect the final answer for €, and consequently for I,
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