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Exchange interaction strongly influences the long-range behavior of localized electron orbitals and quantum
tunneling amplitudes. It produces a power-law decay instead of the usual exponential decrease at large dis-
tances. For inner orbitals inside molecules decay is r−2, for macroscopic systems cos�kFr�r−�, where kF is the
Fermi momentum and �=3 for one-dimensional, �=3.5 for two-dimensional, and �=4 for three-dimensional
crystals. Correlation corrections do not change these conclusions. Slow decay increases the exchange interac-
tion between localized spins and the underbarrier tunneling amplitude. The underbarrier transmission coeffi-
cients in solids �e.g., for point contacts� become temperature dependent.
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I. INTRODUCTION

One of the first famous results of quantum mechanics was
that a particle may tunnel through a potential barrier. The
tunneling amplitude is exponentially small in the classical
limit. As we will see below this result may be incorrect if we
take into account the exchange interaction. The exchange
interaction is described by the nonlocal �integration� opera-
tor, and the well-known theorems proven for the Schrödinger
equation with a local potential U�r� are violated if we add
the exchange term �or any other nonlocal operator�. A similar
effect is produced by the correlation corrections. In this pa-
per we consider the influence of the exchange interaction and
correlations on an electron orbital in an atom, molecule, or
solid. The tunneling amplitude is still small in the classical
limit; however, the decay of the orbitals in the classically
forbidden area is much slower �r−�� and depends on the di-
mensionality of the system.

The Hartree-Fock equation for an electron orbital ��r� in
an atom, molecule, or solid has the following form:

−
�2

2m

d2

dr2��r� + �U�r� − E���r� = K�r� , �1�

K�r� = �
q

�q�r�� �q�r��† e2

�r − r��
��r��dr�. �2�

Here the summation runs over all electron orbitals �q�r�
with the same spin projection as ��r�. Now consider, for
example, an inner electron atomic orbital 1s. The solution of
the Schrödinger equation in potential U�r� has a very small
range aB /Z, where Z is the nuclear charge. Outside this range
the orbital decreases exponentially as exp�−rZ /ab�. In the
Hartree-Fock equation. �1� such rapid decay is impossible if
an atom has more than two electrons. Indeed, if ��r�
�exp�−rZ /ab� the left-hand side of Eq. �1� would be expo-
nentially small while the right-hand side is still large since
K�r� in Eq. �2� contains higher orbitals �q�r� which have
larger range. The behavior of the inner Hartree-Fock orbitals
inside atoms has been studied analytically �in the semiclas-
sical approximation� and numerically in Ref. �1� �see also
Sec. II A�. The dependence on the radius r can be found

from the multipole expansion of �1 / �r−r��� in K�r�; the
slowest decay normally comes from the dipole term
��r� /r2� and/or last occupied orbital �q�r�, K��q�r� /r2.
The extra nodes appear since the orbitals �q�r� oscillate. For
example, the 1s orbital in a Cs atom has three nodes �1�
�without the exchange term a ground state has no nodes�.
The existence of extra nodes in solutions of Hartree-Fock
equations was also mentioned in Ref. �2�. Outside the atom
all orbitals decay with an exponential factor for an external
electron �3�.

Inside solids there are electrons in the conduction band
which occupy the whole crystal. It has been pointed out in
Ref. �1� that the exchange interaction between a localized
bound electron and the conduction-band electrons leads to a
power tail of the bound-electron orbital. The effect of the
exchange interaction K�r� has been estimated in the free-
band electron approximation �q�r�=exp�iq ·r�. An orbital of
a bound electron decreases at large distances as �1�

��r� � cos�kFr�/r4, �3�

where kF is the Fermi momentum. Note that this solution
does not contradict the Bloch’s theorem since we consider a
localized bound electron �e.g., on an impurity atom� which
does not belong to any electron band in the periodic poten-
tial. It is curious that the 1s orbital of an atom placed in a
crystal has an infinite number of oscillations.

The derivation of this expression assumes the presence of
a partly filled conduction-electron band. However, in atoms
and molecules the exchange enhancement of the inner orbital
tail may be mediated by a complete electron shell. The ques-
tion is: can the exchange enhancement in solids be mediated
by a nonconducting electron band? A special interest in this
problem may be motivated by spintronics and solid-state
quantum computers based on spin qubits. The long-range tail
of the wave function could, in principle, lead to an enhance-
ment of the exchange spin-spin interaction between the dis-
tant localized spins and enhancement of the underbarrier tun-
neling amplitude.

A special feature of the “long-tail” mechanism is that the
state of the band electrons does not change, i.e., there is no
need to have polarization of the conduction band by the lo-
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calized spin. The mediating band electrons produce the mean
exchange field K�r� in Eq. �2� only. Therefore, this “long-
tail” effect is different from other effects such as the
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction �4� �in-
cluding coupling of nuclear magnetic moments by means of
the hyperfine interaction with the conduction electrons� and
the double-exchange spin-spin interaction suggested by Ze-
ner �5� �see also Refs �6,7� and a description of Anderson and
Kondo problems, e.g., in book �8��.

To investigate this problem in the present paper we per-
form calculation of the tail using the Bloch waves and tight-
binding band electron wave functions.

II. ATOM

A. Exchange

Let us first explain how the long tail appears in atoms �1�.
The radial equation for a Hartree-Fock electronic orbital
�i�r�=r�i�r� is

	−
�2

2m

d2

dr2 + �Ueff − Ei�
�i�r� = Ki�r� , �4�

Ueff = U +
�2l�l + 1�

2mr2 . �5�

The radial exchange term can be obtained using the multi-
pole expansion of 1 / �r−r��. Outside the radius of an inner
orbital �i �e.g., in the area r�aB /Z for 1s�,

Ki�r� = �
k�0,n

Cnkbnk
�n�r�
rk+1 . �6�

Here Cnk are the standard angular-momentum-dependent co-
efficients and bnk=�rk�n�r��i�r�dr. For the multipolarity k
=0 the integral bnk=0 due to the orthogonality of radial wave
functions with the same angular momentum.

Now we can discuss the large distance behavior of the
orbital �i�r�. We will use the 1s orbital in a Xe atom �Z
=54� as an example. The last occupied shells are . . .5s25p6.
The orbital 5s does not contribute to Ki�r� since in this case
the multipolarity of the exchange integral is k=0 and the
orthogonality condition makes bnk=0. The exchange integral
1s5p has k=1, therefore, at r�aB and outside the atom
K1s�r��C5p,1b5p,1�5p�r� /r2.

The solution of Eq. �4� may be presented as �9�

�i�r� = �i
free�r� + �i

ind�r� , �7�

�i
ind�r� = 	−

�2

2m

d2

dr2 + �Ueff − Ei�
−1

Ki�r� . �8�

Outside the radius of the inner orbital �r�aB /Z for 1s� the
energy Ei is much larger than other terms in the denominator
of Eq. �8� which are of the order of En �since the operator in
the denominator acts on �n�. In our example the energy of 1s
is �Ei�=Z2�13.6 eV=4�104 eV while the 5p energy is
�En��10 eV. Therefore, we can approximately write

�i
ind�r� =

Ki�r�
Ueff − Ei

+
�2

2m�Ueff − Ei�
d2

dr2

Ki�r�
Ueff − Ei

+ ¯ .

�9�

The free solution in this area may be described by
the semiclassical �WKB� approximation, �i

free�r�
��p�−1/2exp�−��p�dr /��; it has the usual range aB /Z
=0.02aB for 1s. Comparison with the numerical solution of
the Hartree-Fock equation for the 1s orbital has shown that
within �1% accuracy it is enough to keep the first two terms
in the expansion Eq. �9� beyond the classical turning point,
and only one term at r�10aB /Z. Similar results have been
obtained for the Dirac-Hartree-Fock orbitals which include
the spin-orbit interaction and other single-particle relativistic
corrections �1�. Thus we see that at large distances �1s�r�
�const �5p�r� /r2. The exponent in the decay of �5p�r� is 50
times smaller than in �1s

free�r�. Therefore, outside the atom the
exchange interaction enhances �1s�r� by more than 15 orders
of magnitude.

B. Correlations

The effect of the correlations may be described by the
nonlocal “correlation potential” 	�r ,r� ,E� �integration op-
erator� which modifies electron orbitals �see, e.g., �10��. The
correlation potential is defined such that its average value
coincides with the correlation correction to the energy,


Ei = 
i�	̂�i� , �10�

C�r2� � 	̂�i =� 	̂�r1,r2,Ei��i�r1�d3r1. �11�

By solving the Hartree-Fock equation for the electron orbital

including the correlation potential 	̂, we obtain “Brueckner”
orbitals and energies,

−
�2

2m

d2

dr2��r� + �U�r� − E���r� = K�r� + C�r� . �12�

It is easy to write the correlation potential explicitly. In the
second-order perturbation theory in the residual interaction

there are four terms. The direct term 	̂d�r1 ,r2 ,Ei� is given by

e4 �
n,�,�

� dr3dr4

n

†�r4�
��r4�
��r2�
�
†�r3�
�

†�r1�
n�r3�
r24r13�Ei + �n − �� − ���

.

�13�

Note that 	̂d is a single-electron and energy-dependent op-
erator. At large distance this term becomes the well-known
local polarization potential �1 /r4 �see, e.g., �10��, so it is not
interesting for us. An interesting contribution comes from the

exchange-correlation potential 	̂exch

e4 �
n,�,�

� dr3dr4

n

†�r4�
��r4�
��r2�
�
†�r1�
�

†�r3�
n�r3�
r24r13�Ei + �n − �� − ���

.

�14�

In this case we have the situation similar to the exchange
interaction. Consider, for example, the correlation correction
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to the Xe 1s orbital �i=1s� and n=5p. The energy of 1s is
large and to make an estimate we can neglect �5p−��−�� in
the denominator the Eq. �13�. After the summation over �
and � we obtain the exchange-correlation term Cexch�r�
�2e2 / �rE1s�K�r�, where K�r� is the usual exchange term.
Therefore, at large r the correlation term is suppressed in
comparison with the exchange term by the small factor
2e2 / �rE1s�. For the 1s orbital at r=aB the suppression factor
is 4 /Z2. The correlations are more important for higher or-
bitals where the suppression factor is 2e2 / �rEi� and �Ei�
� �E1s�.

We may conclude that within the perturbation-theory
treatment the correlations do not produce qualitative changes
in the properties of the long-range tail. Their effect is similar
to that of the exchange; however, the decay is faster �extra
1 /r�.

III. ONE-, TWO-, AND THREE-DIMENSIONAL SYSTEMS

If we consider a molecule instead of an atom, the inner
electron orbital will behave the same way, �inner�r�
�const �valence�r� /r2. In macroscopic systems there is a
large number of electrons occupying the valence band and
the contribution of different valence electrons interfere in the
exchange term in Eq. �2�. This interference changes the long-
range behavior.

The equation for a bound-electron wave function �b�r� in
a crystal contains the exchange term from Eq. �2� describing
the exchange interaction of the bound electron with 2F mo-
bile electrons,

K�r� =� g�r − r��	 e2

�r − r��
−

e2

r

�b�r��dr�, �15�

g�r − r�� � �
n

�n�r��n�r��†. �16�

Summation goes over F mobile electron states �n�r� with
the same spin projection. To account for the orthogonality
condition ��n�r��†�b�r��dr�=0 in Eq. �15� we excluded the
zero multipolarity term from the Coulomb integrals, replac-
ing e2

�r−r��
by e2

�r−r��
− e2

r . In “exact” expression �15� the sub-

tracted term e2

�r� disappears after the integration over r� since
��n�r��†�b�r��dr�=0.

Let us start discussion of crystals from the simplest
problem—a one-dimensional �1D� chain of N atoms sepa-
rated by distance a. The wave function of a mobile electron
can be presented as

�n�r� = L−1/2eiknxvk�r� , �17�

where vk�r� is a periodic function in the x direction and L
=Na is the length of the chain. To perform the summation in
Eq. �16� analytically we neglect dependence on k in vk�r�.
Taking the standard set of the wave vectors kn=2�n /L, n
=0, �1, . . . , �q, where F=2q+1, we obtain

g�r − r�� = v�r�v�r��
sin�kf�x − x���

x − x�
, �18�

where kF= f� /a and f =F /N is the band filling factor. Now
we can find the exchange term Eq. �15�. The leading term in

the multipole expansion �r��r� of e2

�r−r��
− e2

r � e2�r·r��
r3 leads to

the dipole approximation for K�r� at large distance,

K�r� =
e2v�r�

�r3 	sin�kfx�� x� cos�kfx��v�r���b�r��dr�

− cos�kfx�� x� sin�kfx��v�r���b�r��dr�
 . �19�

It is easy to extend the problem to two-dimensional �2D�
and three-dimensional �3D� cases. In the 2D case we obtain

g�r − r�� = v�r�v�r��
J1�kfR�

2�R
�

sin�kfR − �/4�
R3/2 , �20�

where R=r−r� and J1 is the Bessel function. In the 3D case

g�r − r�� =
v�r�v�r��

2�2R2 	− cos�kfR� +
sin�kFR�

kFR

 . �21�

Substituting these results into Eq. �15� we obtain in the di-
pole approximation that the exchange interaction term de-
cays as

K�r� � cos�kFr�r−�, �22�

where kF is the Fermi momentum and �=3 for 1D, �=3.5 for
2D, and �=4 for 3D crystals, i.e., �= �5+d� /2, where d
=1,2 ,3 is the dimension.

The long-range tail in Eq. �22� is due to the exchange
interaction between bound electrons and conducting elec-
trons which travel freely inside the crystal and may be found
at any distance from the bound electron. As we have seen in
Sec. II, the perturbation-theory treatment of the correlations
does not change our conclusions. This is the normal-metal
case where the correlations are relatively weak. In this case
the long-range tail of a bound-electron orbital is the real
physical phenomenon which should be taken into account,
for example, in calculating tunneling amplitudes or exchange
interaction between distant localized spins.

Note that expressions �19� and �22� do not vanish if the
conduction-electron band is complete. Instead they have fast
oscillations if the electron Fermi momentum kF is large. This
conclusion looks surprising since a complete band does not
contribute to the conductivity. One may compare this crystal
complete band case with a molecule where valence electrons
present on all atoms even in the absence of the conductivity.
Therefore, one may have, in principle, an enhanced tunneling
amplitude or enhanced exchange interaction between distant
spins �power suppression r−� instead of exponential suppres-
sion� even in nonconducting materials. However, if there are
strong electron-electron correlations �due to the strong repul-
sion between valence electrons located at the same site�, they
transform the Bloch-Hartree-Fock �conductor� state into the
Mott insulator state where there are no free electrons and no
long tail.

The long-tail effect does not appear in any approach
where the exchange interaction is replaced by an effective
potential or by a density-dependent potential. Approximate
calculations may also lead to other incorrect conclusions. For
example, the long-range tail for a complete band case does
not appear in the tight-binding approximation for the elec-
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tron wave functions. In the tight-binding approximation a
wave function of a mobile electron is

�n�r� = N−1/2�
l

eiknla�1�r − la� , �23�

where �1�r− la� is the one-site wave function. The substitu-
tion of �n from Eq. �23� into Eq. �16� and summation over n
gives the following results:

g�r − r�� = �
l,m

B�F,l − m��1�r − la��1�r� − ma�†, �24�

B�F,l� =
exp�i2�lF/N� − 1

N�exp�i2�l/N� − 1�
�

exp�i�fl�
�l

sin��fl� ,

�25�

where l�0, f =F /N is the band filling factor, and the last
expression is obtained for l�N. For l=0 we have B�F ,0�
= f . Substitution of g�r−r�� from Eq. �24� into Eq. �15�
shows that if the band is partly filled, the tight-binding ap-
proximation leads to the same conclusion K�r�
�cos�kFr�r−�. However, for the completely filled band f =1
and sin��fl�=0. This means that the long-range exchange
term vanishes in the absence of mobile carriers, electrons, or

holes. The explanation is simple: in the tight-binding ap-
proximation the complete band wave function made of the
running waves, Eq. �23�, is equal to the antisymmetrized
product of the localized electron wave functions �1�r− la�.
The exchange interaction with the localized electrons does
not produce the long-range tail. To compare with the Bloch
wave expression one may say that the tight-binding result for
the complete band corresponds to K�r��sin�kFr�=0 for r
= la. However, the oscillations of K�r� do not lead to vanish-
ing of its effect on the wave functions—compare with the
solution for atomic orbitals in the previous section.

At finite temperature conducting electrons and holes ap-
pear. This activates the long-tail mechanism even in the
tight-binding approximation and makes the underbarrier
transmission coefficient temperature dependent. Here it may
be appropriate to recall that a temperature dependence of the
transmission coefficient has been observed near the “0.7
�2e2 /h� structure” in the point-contact conductance measure-
ments �11,12�.
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