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A relativistic many-body perturbation calculation is applied to calculate the hyperfine constants on the
low-lying states of the alkaline-earth-metal ion 135Ba+. Orbital energies and wave functions are calculated by
solving Dirac equation. Zeroth-order hyperfine constants are calculated with Dirac wave functions. The finite
basis sets of the Dirac equation are constructed by B splines. With the finite basis sets, the core polarization and
the correlation effect are calculated for the hyperfine constants. The final results for 135Ba+ are a�6S1/2�
=3754.813 MHz, a�6P1/2�=658.042 MHz, a�6P3/2�=109.383 MHz, b�6P3/2�=61.220 MHz, a�5D3/2�
=180.649 MHz, b�5D3/2�=31.729 MHz, a�5D5/2�=−19.104 MHz, and b�5D5/2�=42.251 MHz.
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I. INTRODUCTION

With the development of experimental researches of the
new optical frequency standards, studies of the hyperfine
structure have become more and more important �1–3�. The
hyperfine structure is caused by the interaction between the
electrons and the electromagnetic multipole moments of the
nucleus. Through the study of hyperfine structures, one can
obtain both the information of nuclear structure and the elec-
tronic properties of atoms. During the last few decades, vari-
ous experimental techniques, such as atomic-beam magnetic-
resonance method �4–6�, cascade anticrossing spectroscopy
�7�, and fast-ion-beam laser spectroscopy �8,9�, have been
used to measure the hyperfine structure of different atoms or
ions. Simultaneously, many theoretical methods have been
developed for accurate calculations on hyperfine interactions,
including relativistic many-body perturbation theory
�MBPT� �10�, relativistic coupled-cluster method �11–13�,
multiconfiguration Dirac-Hartree-Fock, and relativistic
configuration-interaction methods �14�. The effective opera-
tor form of many-body perturbation theory was developed
and applied to calculate hyperfine structure by Garpman et
al. �15,16�. An important task of a perturbation calculation is
to carry out summations over all intermediate states.
Lindgren and Morrison �16� used a single-particle function
and a pair function by solving inhomogeneous one- and two-
particle equations instead of the summations. However, in
this paper, the finite basis sets of the Dirac equation are con-
structed by B splines. With the finite basis sets, the core
polarization and the correlation diagrams are calculated, and
the hyperfine constants on the low-lying states of 135Ba+ are
obtained. In our former work, we have obtained the hyper-
fine constants of 43Ca+ and 87Sr+ �17�.

II. THEORY AND METHOD

For single-electron systems outside closed shells, the gen-
eralized hyperfine structure constants are �18�

AK = ��j j�T0
�K���j j�M0

�K� = � j K j

− j 0 j
	��j��T�k����j�M0

�K�.

�1�

For the magnetic-dipole hyperfine constant K=1, and for the
electric quadrupole K=2. In the relativistic case, we get the
traditionally used hyperfine constants,

a =
A1

Ij
=

�I

Ij
��j j�T0

�1���j j� =
�I

Ij
� j 1 j

− j 0 j
	�j��T�1���j� ,

�2�

b = 4A2 = 2Q��j j�T0
�2���j j� = 2Q� j 2 j

− j 0 j
	�j��T�2���j� ,

�3�

where I, �I, and Q are the nuclear spin, magnetic-dipole
moment, electric-quadrupole moment, and j is the total an-
gular momentum of the electrons, respectively.

In order to evaluate second- and third-order perturbation
diagrams, a complete set of single-particle states is needed.
We construct a complete finite basis set of the Dirac equation
by B splines.

The relativistic Hamiltonian for an atomic system is given
by

H = H0 + V , �4�

where

H0 = 

i=1

N

�c�ipi + ��i − 1�c2 + Vnuc�ri�� + 

i=1

N

u�ri� , �5�

and

V = 

i�j

1

rij
− 


i=1

N

u�ri� . �6�

Then the large and small component radial wave func-
tions are expanded in terms of B splines of order k as

P��r� = 

i=1

n

pi
���Bi,k�r�, Q��r� = 


i=1

n

qi
���Bi,k�r� . �7�

Using the Galerkin method and the MIT-bag-model
boundary condition, we obtain a 2n�2n symmetric general-
ized eigenvalue equation �19�,

A� = 	B� , �8�

where the 2n-vector � is given by
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� = �p1,p2, ¯ ,pn,q1,q2 ¯ qn� , �9�

and A is a symmetric 2n�2n matrix with the form

A = � �Vd� + �Vex
PP� c��D� − ��/r�� + �Vex

PQ�
− c��D� + ��/r�� + �Vex

PQ� �Vd� − 2c2�C� + �Vex
QQ�

	
+ A�, �10�

where atomic units �a.u.� have been used in the above ex-
pressions.

Numerical techniques employing B splines are recognized
as extremely powerful tools for computational problems in
physics. Details of B splines can be found in the book of
deBoor �20�. Johnson et al. applied the technique of con-
structing finite basis sets from B splines to calculate the hy-
perfine constants of the alkali metals 7Li, 23Na, 39K, 85Rb,
and 133Cs �21�. The formalism underlying our computational
procedure can be found in Refs. �17,19�.

Following Lindgren and Morrison �16�, the contribution
of the hyperfine interaction can be divided into two parts:
core-polarization part and correlation part. The core polariza-
tion can be shown in Fig. 1.

After multiplying both sides in Fig. 1 with �	a−	r�, we
get the following equation:

�	a − 	r�ha
r �N� = �r��TK��a� + 


bsk

�G1Xk�rb,as�

− G2Xk�br,as��ha
r �N−1� �11�

and

ha
r �0� =

�r��TK��a�
	a − 	r

. �12�

With Eqs. �11� and �12�, we can use an iterative procedure to
carry out the core polarization to all orders. The diagrams
involving at least one double excitation are called correla-
tions. The remaining third-order hyperfine diagrams are the
lowest-order correlation diagrams. There are 65 such corre-
lation diagrams.

One of these diagrams is shown in Fig. 2, and the alge-
braic expression is

D�Fig. 2� = 

rsta

�m�TQ
K�t��ta�r12

−1�rs��rs�r12
−1�na�

�	m − 	t��	n + 	a − 	r − 	s�

= 

rsta


�jt, j�
�2jr + 1��2ja + 1��2js + 1�

2k + 1

�� j k jr

− 1/2 0 1/2 	
2� ja k js

− 1/2 0 1/2 	
2

�
�m��TK��t�Rk�ta,rs�Rk�rs,na�
�	m − 	t��	n + 	a − 	r − 	s�

. �13�

Where TQ
K is the hyperfine operator, the other expressions,

such as Rk�ta ,rs�, Xk�rb ,as ,¯� can be found in our former
work �17�. From this expression, we can see that the sums
run over all the virtual states of r, s, and t as the well as core
states of a. The property of two 3j symbols �

j k jr

−1/2 0 1/2 � and
�

ja k js

−1/2 0 1/2 � gives �j− jr��k� j+ jr, �ja− js��k� ja+ js, 0� jr,
js��, and jt= j. In the above expression, jm= jn= j; the total
angular momentum for the valence state is used. For numeri-
cal calculation it is impossible to take jr, js up to infinity. We
can choose a finite value jmax as the maximum and let jr, js
� jmax. But how can we choose jmax? First we take a small
positive floating number 	 as the precision, and search using
jtry to make the absolute value of the difference of the calcu-
lated results of the correlation diagram for two neighboring
jtry less than 	. When we find such a jtry, we take this jtry as
jmax. In our program, 	=0.001 and jmax=10 are used. We
have used an iterative procedure to carry out the core polar-
ization to all orders, and calculated all 65 lowest-order

TABLE I. Comparison of single-particle energies of 135Ba+ with
others. �B-spline parameter: N=50, KB=9, RB=80 a.u.; Nuclear
Fermi charge distribution parameters: t=2.3 fm, c=5.7476 fm,
root-mean-square nuclear radii i=4.8377 fm.�

Statesa
Othersb

�cm−1�
Ours
�a.u.�

Ours
�cm−1�

6s 75339 0.34327251 75339.597

6p− 57265 0.26092106 57265.545

6p+ 55873 0.25457782 55873.365

5d− 68138 0.31046422 68139.010

5d+ 67664 0.30830359 67664.807

aNotation: p−= p1/2, p+= p3/2, etc.
bReference �23�.

FIG. 1. The core polarization iterative diagram.
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FIG. 2. One of the 65 lowest-order correlation diagrams.
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correlation diagrams one by one. In order to get higher pre-
cision, in our programs, we treated the atomic nuclei as
Fermi nuclei �22�, not point charges, and we used the Gauss
integral which has higher precision in our program.

III. RESULTS AND DISCUSSION

In this paper we have calculated the Dirac-Fock single-
particle energies of 135Ba+ with the finite basis sets con-
structed by B splines. The results are given in Table I. In
order to compare with others, we convert our results with the
relation 1 a.u.=2.194 746�105 cm−1, and list the corre-
sponding results in column 4. Comparing columns 2 with 4,
we can see that our results of single-particle energies for

135Ba+ are in very close agreement with the recent data �23�.
This indicates that the wave functions in this work are quite
accurate and reliable to evaluate the core polarization and the
correlation effects in the hyperfine interactions.

Table II shows the comparison of our evaluated hyperfine
a constant results with other theoretical results and experi-
mental results. In order to compare with the parameters of
137Ba+, the factor of a

�I
is also listed in Table II by

�I�
135Ba�=0.838 26 �N and �I�

137Ba�=0.9377 �N, where
�N is nuclear magnetron. From the table, we can see that our
final results of 135Ba+ are generally in good agreement with
other calculations and with the available experimental data,
with the exception of D states. Such status also occurs in
43Ca+, 87Sr+ �17�, and 137Ba+ �14�. The differences of the

TABLE II. Hyperfine factor a for different states of 135Ba+ and 137Ba+ �unit of MHz�.

Isotope
a

�I

a

State Ours Other Expt.

135Ba+ 6s 4479.294 3754.813 3718a 3593.3�2.2�b

6p− 785.00942 658.042 621a 664.6�0.3�c,665.0�1.6�b

6p+ 130.48815 109.383 112.4a 113.0�0.1�c,113.1�0.5�d

5d− 215.50474 180.649 169.5892�9�e

5d+ −22.79 −19.104 −10.735�2� e

137Ba+ 6s 4343.425f 4072.83f

6p− 785.944f 736.98f

6p+ 139.639f 130.94f

5d− 201.301f 188.76f

5d+ −19.196 e −18 e

aReference �11�.
bReference �24�.
cReference �9�.
dReference �25�.
eReference �8�.
fReference �12�.

TABLE III. Hyperfine factors b for different states 135Ba+ and 137Ba+.

Isotope States

b /Q
�MHz b−1�

b
�MHz�

Ours Others Ours Expt.

135Ba+ 6p+ 382.625 373.5a 61.220 59.4�2.3�b,60.7�1.2�c

5d− 198.306 31.729 28.9536�25�d

5d+ 264.069 42.251 38.688�10�d

137Ba+ 6p+ 378d

5d− 193d

5d+ 258d

aReference �11�.
bReference �24�.
cReference �25�.
dReference �8�.
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factor of a
�I

between the present work on 135Ba+ and others
on 135Ba+ are small. It is reasonable.

In Table III, we give out our calculated hyperfine structure
b /Q values for 135Ba+ in column 3. The results of the b
values, of course, depend on the size of the nuclear quadru-
pole moment Q. However, there exists no experimental tech-
nique for determining nuclear quadrupole moments in a di-
rect way. In order to compare our results to Experiments,
Q�135Ba+�=0.160 b �23� is used, where 1 b=1�10−28 m2,
and the corresponding b constants are derived and listed in
column 5, from which we can see that our result is compat-
ible to the recent experiment results. Also we list the b /Q
values for 137Ba+ in column 4. Comparing to 135Ba+, we can
see that the difference between them are very small, just like
the a

�I
. This is because of their similar atomic structure.

In order to discuss the different parts of the hyperfine
constants, we listed the contributions from different parts of
the hyperfine operator to the final results for the hyperfine
structure constants a and b factors in Tables IV and V, re-
spectively. H�1� is the Dirac-Fock contribution and H�2� is
the complete polarization. In our work, H�2� is calculated to
all order. From Table IV, we can see that, for 6S1/2, 6P1/2,
and 5D3/2 states, H�2� are less than the lowest-order correla-
tion H�3� but for 6P3/2 state H�2� is about five times of H�3�.
In particular, for the 5D5/2 state, the final result is relatively
small and has the opposite sign, which seems to be caused by
the complete polarization. Our final result of D5/2 did not
agree with the experiment. In fact, the theoretical results of
D5/2 states of different alkaline-earth-metal ions, such as

43Ca+, 87Sr+ �17�, and 137Ba+ �14� did not agree with each
other. H�3� is the lowest-order correlation. The column
headed “Final” represents H�1�+H�2�+H�3�.

From Table V, we can see that for P3/2 state the complete
polarization effect is larger than the correlation effect. But
for D3/2 and D5/2 states, the complete polarization effects are
less than the correlation effect.

In conclusion, in this work we have performed a relativ-
istic MBPT calculation for 135Ba+, where the single-particle
energies and hyperfine constants are evaluated. The relativ-
istic wave functions used in this work are quite accurate to
calculate the core polarization and the correlation effect in
the hyperfine interactions. In this work, we have calculated
the core-polarization part to all orders and all the 65 lowest-
order correlation diagrams. But in addition to these dia-
grams, there are numerous second- and higher-order correla-
tion diagrams, which are rather time consuming to evaluate.
It is impossible to use an iterative program to calculate all
the second- or higher-order correlation diagrams so the prin-
cipal discrepancy between our results and experiments is due
to the uncalculated second- and higher-order correlation ef-
fects. It is believed that the accuracy of these calculations
could be improved by including the second- and higher-order
effects, which we are now trying to do. We hope that our
theoretical results will be useful for analyzing future experi-
ments.
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