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We propose an efficient scheme for the implementation of quantum information transfer in a one-
dimensional coupled resonator waveguide. We show that, based on the effective long-range dipole-dipole
interactions between the atoms mediated by the cavity modes, Raman transitions between the atoms trapped in
different nodes can take place. Quantum information could be transferred directly between the opposite ends of
the coupled waveguide without involving the intermediate nodes via either Raman transitions or the stimulated
Raman adiabatic passages. Since this scheme, in principle, is a one-step protocol, it may provide useful
applications in quantum communications.
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I. INTRODUCTION

The transfer of quantum states from one place to another
is an important goal in the field of quantum information sci-
ence for distributing and processing information �1,2�. To
accomplish this task, several approaches have been em-
ployed. For long distance quantum communications, optical
systems such as cavity QED system �3,4� are used to transfer
states from one node to another through photons transmitting
in a fiber �5,6�. For the case of short distance quantum com-
munications, spin chains are proposed �7�. In spin chains,
single spin addressing is difficult because the spatial separa-
tion between neighboring spins is very small. Thus the con-
trol over the couplings between the spins or over individual
spins is very hard to achieve. Therefore, these protocols
based on spin chains have some drawbacks, which impair the
performance for quantum information transfer �QIT�. Re-
cently coupled resonator waveguide has attracted great inter-
ests �8–14�. We have proposed a protocol for generating
atomic cluster states using coupled resonators for one-way
quantum computation �15�. Coupled resonator waveguide
has the advantage of easily addressing individual lattice sites
with optical lasers. Furthermore, the atoms trapped in the
resonators can have relatively long-lived atomic levels for
encoding quantum information. Therefore, it is desirable to
develop a technique for implementing short distance quan-
tum communications in a coupled resonator waveguide.

In this work, we propose a scheme for the implementation
of QIT between three-state atoms trapped in a one-
dimensional coupled resonator waveguide. We first demon-
strate that the coupled system can be reduced to an effective
� configuration which supports Raman transitions between
the first atom and the end one. Then we utilize this protocol
to implement short distance quantum communications. This
proposal exploits the effective long-range dipole-dipole in-
teractions mediated by the cavity modes between the atoms.
The nonlocal interactions combined with lasers are utilized
to induce Raman transitions between the atoms trapped in
the two ends of the waveguide via the exchange of virtual

cavity photons. Quantum states can be transferred directly
from the first node to the end one within the one-dimensional
coupled resonator waveguide, through either Raman transi-
tions or the stimulated Raman adiabatic passages �STIRAPs�
�16�. This proposal for QIT in a network using coupled reso-
nators should provide very interesting applications in the
field of quantum information processing, such as entangle-
ment distribution, teleportation �17�, and distributed quantum
computation �18�. Experimentally this protocol could be re-
alized with the state-of-the-art technology.

II. QUANTUM-INFORMATION TRANSFER
IN A ONE-DIMENSIONAL COUPLED

RESONATOR WAVEGUIDE

Consider a one-dimensional coupled resonator waveguide
consisting of N nodes, as sketched in Fig. 1. The coupled
resonator waveguide can be realized in a wide range of
physical systems, such as nanocavities in photonic crystals
�19�, and superconducting transmission line resonators �20�.
To implement QIT, each node consists of a cavity and a
trapped three-state atom. Each atom has the level structure
of a three-state system with two lower states �0� j and �1� j
�j=1,2 , . . . ,N� for storage of one qubit of quantum informa-
tion, and an upper state �e� j. The cavity mode is far detuned
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FIG. 1. �Color online� Schematic diagram of a one-dimensional
coupled resonator waveguide consisting of N nodes and three-state
atoms trapped in each resonator. The transition �0�↔ �e� is strongly
detuned from the cavity modes, which induces a long-range inter-
action between the atoms.
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from the atomic transition �0� j↔ �e� j �transition frequency
�0� with the coupling constant g and detuning �. The tran-
sition �1� j↔ �e� j �transition frequency �1� in each atom is
driven resonantly with lasers �frequency �Lj =�1� with Rabi
frequencies � j.

We consider each trapped atom interacting with the cavity
fields and lasers. The Hamiltonian that describes the photons
in the cavity modes is �8–13�

Ĥc = �c�
j=1

N

aj
†aj + Jc�

j=1

N

�aj
†aj+1 + ajaj+1

† � , �1�

where aj is annihilation operator for the photon in cavity j
and Jc is the hopping rate of photons between neighboring
cavities. For convenience we introduce the notation J
= �uj ,0 ,0� to denote the position of the jth site where u is the
length of the one-dimensional crystal cell. If the periodic

boundary conditions are considered, Ĥc can be diagonalized

through the Fourier transformation. Then we obtain Ĥc
=�k�kak

†ak, where �k=�c+2Jc cos k and k= �2�m� / �Nu� for
m=0,1 , . . . ,N−1. Under the rotating wave and dipole ap-
proximations, the interaction between the atoms and cavity
fields is

Ĥac = �
j=1

N

g�aj
†�0� j�e� + aj�e� j�0�� , �2�

and the interaction between the atoms and lasers reads

ĤL = �
j=1

N

�� je
−i�1t�e� j�1� + H.c.� . �3�

Here we add a laser to each resonator for generality, but in
the following when we discuss how to implement QIT, we in
fact only require the lasers added to the first and the last
cavities be switched on. In the interaction picture the Hamil-
tonian that governs the coupled system is

ĤI = �
j=1

N

	� j�e� j�1� + �
k

g/
N�0� j�e�ak
†eik·J+i�kt + H.c.� ,

�4�

with �k=�k−�0. To further reduce the model, we assume
�k�g �for all k�, then we can adiabatically eliminate the
photons from the above description �21,22�. By considering
the terms up to second order and dropping the fast oscillating
terms, we obtain the following effective Hamiltonian:

Ĥeff = �
j=1

N 	J0�e� j�e�

+ �� j�e� j�1� + �
l=1

N

Jl�0� j�e� � �e� j+l�0� + H.c.� ,

�5�

with J0=�k�g2 / �N�k��, Jl=�k�g2eikl / �N�k��, and the conven-
tions �e�N+i�0��0, �i=1,2 , . . . ,N�. The first term corresponds
to the level shift for each atom, the second term describes the
interactions between atoms and lasers, and the last term rep-

resents the effective dipole coupling of trapped atoms in-
duced by cavity modes.

We introduce the states �1i�= �000. . .1i . . .000� and �ei�
= �000. . .ei . . .000�, which denote that the atom at the ith site
has been flipped to the state �1� and �e� while other atoms
stay in �0�. Assuming that only the lasers �1 and �N are
switched on and the system initially stays in �11�, then the
coupling scheme can be schematically illustrated in Fig. 2�a�.
To gain more insight into this coupling configuration, we
turn to a new basis ��11� , �k� . . . , �1N��, where �k�
=1 /
N� j=1

N eikj�e j�. Then we could diagonalize the effective
dipole coupling Vd=� j=1

N �J0�e� j�e�+�l=1
N �Jl�0� j�e� � �e� j+l�0�

+H.c.�� in this subspace. The eigenstates of Vd are ��k� ,k
= �2�m� /N�m=0,1 , . . . ,N−1��. The eigenvalues are given
by Ek=J0+�l=1

N 2Jl cos�kl�. Thus we can write Vd as Vd

=�kEk�k��k�. In such a case, the effective Hamiltonian Ĥeff
can be rewritten in the subspace ��11� , �k� . . . , �1N�� as

Ĥeff = �
k

�Ek�k��k� + ��1k�k��11� + �2k�k��1N� + H.c.�� ,

�6�

with �1k= �k�Ĥeff�11�=�1eik /
N and �2k= �k�Ĥeff�1N�
=�NeiNk /
N. The schematic diagram of this coupling con-
figuration in this new basis is shown in Fig. 2�b�, from which
we see that Hamiltonian �6� describes an effective � system,
with two lower states �11�, �1N� and several upper states �k�.
Under the conditions Ek� ��1k ,�2k�, Raman transitions can
take place between the states �11� and �1N�. Through adia-
batic elimination of the states �k�, the effective Hamiltonian
describing this case is

Ĥeff = �r�1N��11� + H.c., �7�

with �r=�k�1k�2k
� /Ek as the effective Raman transition

rate. This Hamiltonian describes direct Raman transitions be-
tween the first node and the last one, assisted by the inter-
mediate nodes through virtual photon exchanges.

We now discuss how to implement QIT in this one-
dimensional coupled resonator waveguide. We assume that
the state sender Alice is located at the first node and the state
receiver Bob is located at the end of the waveguide. Alice
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FIG. 2. �Color online� �a� Schematic diagram of the system
under the interaction Hamiltonian �5�. �b� Coupling configuration
corresponding to �a� in a new basis ��11� , �k� . . . , �1N��.
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wants to transfer an unknown state to Bob through this
waveguide. To start the protocol, Alice places the atom at the
first site in the arbitrary unknown state 	�0�1+
�1�1, while
the atoms in other nodes are prepared in the state �0�. We can
describe the state of the whole system at this instant as
���0��=	�0�+
�11�, with �0�= �000. . .0�. Then under the in-
teraction of Eq. �7�, the state vector at the time t is

���t�� = 	�0� + 
�cos��rt��11� − i sin��rt��1N�� . �8�

At the moment �rtf =� /2 they turn off the couplings and
Bob gets the state ���tf��=	�0�− i
�1N�. If Bob performs a
gate operation U= �1, i�, he could retrieve the state 	�0�N
+
�1�N for the atom N. The procedure completes QIT inside
the one-dimensional coupled resonator waveguide, which in
principle could be extended to realize short distance quantum
communications. Different from the schemes based on spin
chains for short distance quantum communications, the prin-
ciple advantage of this scheme is that, in the coupled reso-
nator waveguide, individual lattice sites can be addressed
with optical lasers. Therefore, it is much easier to switch the
interactions of the qubit on which the initial state is encoded
and the qubit on which the final state is received with the rest
of the waveguide in this proposal.

It is noted that QIT can also be implemented through
STIRAP techniques �16� with this one-dimensional coupled
resonator waveguide. In such a case, we require the lasers to
select a resonant transition from the initial state �11� to the

final state �1N� via an intermediate state such as �k̃�, while
other transition channels are far off resonance. Then the sys-
tem is reduced to a typical � configuration, which supports a
dark state involving the two states �11� and �1N�. Adiabatic
passage following the dark state can be implemented by
varying the Rabi frequencies slowly. Then an arbitrary un-
known state 	�0�1+
�1�1 can be transferred directly from the
first atom to the end one following the STIRAP.

It is necessary to verify the model through numerical
simulations. We consider the case of QIT in three coupled
resonators. The system is initially prepared in the state
1

2

��0�1+ �1�1��0�2�0�3. Employing a quantum master equation
approach, we have simulated the dynamics of the system
through the Monte Carlo wave function �MCWF� formalism
�23,24�. In Fig. 3 the numerical solutions of the density ma-
trix equations for the full system described by the exact
Hamiltonian H are shown together with the dynamics of the
system undergoing the effective Hamiltonian �7�. Here the
parameters are chosen such that they are within the param-
eter range for which the scheme is valid �discussed in the
next paragraph�. It is clear that the agreement between the
exact and effective models is excellent under the given pa-
rameters. The system starts from the state 1


2
��0�1

+ �1�1��0�2�0�3. At the time t=� /2�r, the first atom evolves
into its ground state �01� and the third atom evolves into
1

2

��0�3− i�1�3�. This process completes the procedure for QIT
between these two atoms. During this process, the popula-
tions of the atomic excited states and the cavity modes keep
small.

We now study the performance of this protocol under re-
alistic circumstances and estimate the range of parameters

implementing optimal QIT. Consider a one-dimensional
coupled resonator waveguide consisting of N nodes. Alice
wants to transfer an arbitrary quantum state from the first
node to Bob who is located at the end. To quantify the per-
formance of QIT, we utilize the fidelity F= ��p� f��p�, where
��p� refers to the perfectly transferred state and  f is the final
reduced density matrix of the last atom under realistic cir-
cumstances. The fidelity is reduced due to the small prob-
abilities of populating either the atomic excited states or the
cavity modes. For this protocol, spontaneous emission from
the state �e� j at a rate � and cavity decay of photons at a rate
� lead to effective decay rates �E=�k��k /Ek�2� and �C

=�k�g / �
N�k��2�, with �k=max��1k ,�2k�. Hence to achieve
coherent interaction requires that ��E ,�C���r. These re-
quirements could be satisfied if ��JCg2 /�2 and ��JC.
Since photons are more likely to tunnel to the next cavity
than decay into free space, ��JC should hold in most cases.
For the condition ��JCg2 /�2 to hold, cavities with a high
ratio g /� are very good candidates. These two requirements
together imply that the cavities should have a high cooperat-
ivity factor. To make sure this scheme is valid, we also re-
quire that ��g and g2 /���i. Taking into account these
probabilities of error, the fidelity is estimated as F�1
−�Etf −�Ctf, where tf =� /2�r is the time to complete QIT.

For experimental implementation of QIT in a coupled
resonator waveguide, atoms or polar molecules trapped in
coupled superconducting stripline microwave resonators
�20,25� are promising candidates. It is noted that hybrid de-
vices combining solid state circuits with trapped atoms or
molecules have been explored �26�. We choose the param-

FIG. 3. �Color online� Evolution of the system from both exact
calculations of the master equation ��a1� and �b1�� and the solutions
for the effective Hamiltonian �7� ��a2� and �b2��. In all the figures,
solid lines represent the population of �1�1�0�2�0�3 and dot lines
represent the population of �0�1�0�2�1�3. The parameters are chosen
as �=10g, Jc=0.5g for ��a1� and �a2�� �1=�3=0.02g and for ��b1�
and �b2�� �1=�3=0.01g. Time is measured in unit of g−1.
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eters as g�2��200 MHz, ��2��2 GHz, JC�2�
�100 MHz, ��2��20 kHz, ��2��50 kHz �25�, and
��2��2 MHz. Then we can estimate the fidelity of this
state transfer channel. In Fig. 4 we display the fidelity for
various waveguide lengths N. We see that as the cavity num-
ber increases the fidelity decreases. For a waveguide con-
sisted of 100 coupled resonators, the fidelity is about 88%
and the time to complete QIT is tf �0.01 �s. Thus the num-

ber of cavities should be within 100 to make this scheme
efficient. To improve the fidelity and correct the error for
QIT in this network, the proposed methods for quantum error
correction can be utilized �27�.

III. CONCLUSION

We have presented a protocol for the implementation of
short distance quantum communications in a one-
dimensional coupled resonator waveguide. This protocol uti-
lizes the cavity field induced nonlocal interactions and Ra-
man transitions between trapped atoms at the opposite ends
of the waveguide. QIT could take place directly from the first
node to the end one without involving the intermediate
nodes, which represents an interesting step toward realizing
quantum communications.
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FIG. 4. Fidelity bars for different waveguide lengths N. Param-
eters are given in the text.
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