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We introduce symmetric extensions of bipartite quantum states as a tool for analyzing protocols that distill
secret key from quantum correlations. Whether the correlations are coming from a prepare-and-measure quan-
tum key distribution scheme or from an entanglement-based scheme, the protocol has to produce effective
states without a symmetric extension in order to succeed. By formulating the symmetric extension problem as
a semidefinite program, we solve the problem for Bell-diagonal states. Applying this result to the six-state and
Bennett-Brassard 1984 schemes, we show that for the entangled states that cannot be distilled by current key
distillation procedures, the failure can be understood in terms of a failure to break a symmetric extension.
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I. INTRODUCTION

An important quantity characterizing the performance of a
quantum key distribution �QKD� scheme is the maximum
amount of channel noise which can be tolerated before the
protocol fails to produce a secure key.

This threshold has clear implications for QKD as a poten-
tially realizable technology and not just as a possibility in-
herent in the formalism of quantum mechanics. It also relates
to an important issue of principle, namely, the connection
between quantum mechanics and privacy. What aspects of
quantum mechanics are responsible for the possibility of key
distribution and other cryptographic protocols? Determining
the threshold, or at least bounding it, gives us insight into
this issue. Particular properties of quantum states and chan-
nels which are sufficient for generating privacy in some way
lead to lower bounds, while identifying properties necessary
for privacy leads to upper bounds.

One such property is the symmetric extendibility of bipar-
tite quantum states. Suppose that two honest parties Alice
and Bob share a state �AB from which they would like to
extract a secret key using one-way public communication
from her side to his. This task is impossible should there
exist a tripartite state �ABB� such that the AB� marginal state
is identical to the AB marginal �AB�=�AB. If such a state
exists it can always be chosen to be symmetric between B
and B�, i.e., the state is invariant when B and B� are
swapped. Such a tripartite state is called a symmetric exten-
sion of the original state, and the equality of the marginals
means that the extra system B� essentially functions as a
copy of system B. Assuming the worst-case scenario that an
eavesdropper Eve holds B�, whatever process Bob uses to
create an error free bit string after receiving the communica-
tion from Alice can also be performed by Eve, and thus the
bit string cannot be private �1�.

The question of symmetric extendibility is relevant in
many areas of quantum information theory, from Bell in-
equalities �2� to quantum channel capacity �3�. In QKD, the
necessary condition of not having a symmetric extension has
been translated into upper bounds on the key rate and thresh-
old noise rate for one way procedures in �1�. A considerable
advantage of this approach stems from the fact that the upper
bounds are determined without having to construct concrete
eavesdropping attacks. Moreover, for systems described by
Hilbert spaces of modest dimension, symmetric extensions
can be efficiently constructed—when they exist—by means
of semidefinite programming.

In this paper, we consider the case of two-way communi-
cation and use the symmetric extension to derive attack-
independent upper bounds for the Bennett-Brassard 1984
�BB84� �4� and six-state �5� schemes. At first glance, sym-
metric extensions appear to be irrelevant to the problem,
since the two-way nature of the communication creates an
asymmetry between the honest and dishonest parties—Eve
cannot pretend to be one of the honest parties. However,
every two-way communication procedure consists of alter-
nating rounds of one-way communication, which must even-
tually terminate if the protocol is to establish a secret key
that can be used in other applications. The final step thus
involves only one-way communication, and the question of
symmetric extendibility again becomes relevant. From this
point of view, it becomes clear that the goal of the two-way
communication is to break any existing symmetric extension
of the input state.

To avoid confusion, we distinguish between a QKD pro-
tocol, a QKD scheme, and the various procedures such as
advantage distillation, error correction, and privacy amplifi-
cation. By a QKD scheme, we mean the generation of cor-
related data by distributing quantum particles and measuring
them. For simplicity we will also include the parameter esti-
mation and sifting in the definition of the scheme. Including
the sifting means that BB84 �4� and SARG04 �6� are differ-
ent schemes, even though the signal states and measurements
are the same. For a given scheme, the key distillation proce-*gomyhr@iqc.ca
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dures following it can be chosen in different ways which
give different thresholds. We call the whole process a QKD
protocol, so that at the end of the protocol the parties have a
secret key that is ready for use.

Given a particular two-way procedure, then, the question
of symmetric extendibility leads to an upper bound on the
noise threshold given by the noisiest state for which the pro-
cedure just fails to break the extension. Generally one must
resort to finding an approximate symmetric extension by
solving the semidefinite program numerically. For the well-
known BB84 �4� and six-state �5� schemes, however, the
relevant states can be assumed without loss of generality to
be diagonal in a basis of maximally entangled states: the
so-called Bell basis. By making use of the symmetries of the
Bell states, we can answer the question of symmetric extend-
ibility by solving the semidefinite program analytically,
which then leads to exact upper bounds for the tolerable error
rates. For the two-way procedure outlined by Chau �7�, we
show that the upper bound for the two schemes meets the
lower bound given therein and that this procedure is optimal
for a wide range of two-way procedures. This agrees with the
results reported by Acín et al. �8�, who based their upper
bound on an explicit eavesdropping attack.

Our results are organized as follows. In Sec. II, we exam-
ine in detail the role played by the symmetric extension in
two-way QKD protocols. In Sec. III we review the formula-
tion of the symmetric extension problem as a semidefinite
program �SDP�, simplify, and solve it for Bell-diagonal states
and give an analytic expression for the boundary of extend-
ible Bell-diagonal states. Section IV describes Chau’s two-
way communication procedure and shows that above the
known lower bound on the threshold, the procedure fails to
break the symmetric extension and can therefore not lead to
a secret key. We also discuss variations of this procedure
which turn out to be equivalent for distillability. In Sec. V we
sum up and discuss some open questions.

II. BREAKING SYMMETRIC EXTENSIONS

One goal of the portion of a QKD protocol involving
two-way communication is to transform a state having a
symmetric extension into one which does not. In a prepare
and measure �P&M� scheme, there is never an actual bipar-
tite entangled state, but any such scheme can be modeled as
an entanglement-based scheme where Alice prepares an en-
tangled state and sends half of it to Bob. When Alice mea-
sures her half of the entangled state, this effectively prepares
the other half in one of the signal states of the P&M protocol
�9�. Eve may interfere with the transmitted signal in any
manner of her choosing, so after making their respective
measurements, Alice and Bob compare a portion of the data
in order to determine—at least roughly—what particular
quantum state �AB they share. This state is the starting point
for our analysis and is any state obeying

pjk = Tr��AB�Aj � Bk�� , �1�

where Aj and Bk are the POVM elements of Alice’s and
Bob’s respective measurements and pjk are the probabilities
with which Alice and Bob obtain outcomes corresponding to

Aj and Bk, respectively. Any subsequent processing of the
measurement data is then modeled as a coherent processing
on the quantum states with any classical communication cor-
responding to measurement outcomes. This allows us to
track the effective state throughout the protocol.

Now we can investigate which two-way processing pro-
cedures can break symmetric extensions. By making a few
assumptions on the form of the procedure, we can simplify
the problem considerably. Assume that each round of one-
way processing is performed on blocks with a finite number
of systems, such that the output is considered as a single
system in the next round. As we are not concerned with the
rate of distillation, only whether the state is at all distillable
or not, we are led to the following two simplifications.

First, we only need to concern ourselves with filtering
operations—quantum operations defined by a single Kraus
operator—which do not always succeed when applied to a
state. There is a corresponding Kraus operator for failure,
which makes the operation trace-preserving, but we discard
the failure outcomes and therefore a filter is in general not
trace preserving. If �AB is the state of the block before post-
processing, the un-normalized state after Bob applies the fil-
ter K is �1 � K��AB�1 � K�† and the filter satisfies K†K�1. If
an operation with more than one Kraus operator is able to
break the symmetric extension—that is � j�1 � Kj��AB�1
� Kj�† �where � jKj

†Kj �1� has no symmetric extension—
then because of convexity at least one of the �1 � Kj��AB�1
� Kj�† must be without symmetric extension, so the filter Kj
alone will break the extension.

Second, we can reduce the finite number of one-way
rounds to only two, for the following reason. Assume that the
final round of communication is from Alice to Bob. Bob can
start the procedure already at his last round by guessing
ahead of time what Alice’s messages related to that block
would have been and perform the corresponding local opera-
tions. Usually this guess will be wrong and Alice will tell
Bob to discard those blocks in the final round. For the tiny
fraction of the blocks where Bob guessed correctly, Alice can
proceed with her last round. This means that if the symmetric
extension can be broken during a two-way procedure, it must
also be possible to break it with a single filter on a block of
copies of Bob’s system.

III. EXTENDIBILITY OF BELL-DIAGONAL STATES

Bell-diagonal states are two-qubit states that are diagonal
in the basis of maximally entangled states ����
= 1

�2
��00�� �11��, ����= 1

�2
��01�� �10��. Such states can be

produced by sending half of the maximally entangled state
��+� through a Pauli channel with error probabilities px, py,
and pz for the �x, �y, and �z errors, respectively. This results
in the state �AB= pI��+�	�+�+ px��+�	�+�+ py��−�	�−�
+ pz��−�	�−�, where pI=1− px− py − pz. For compactness, we
will also denote this as �AB=� jpj�� j�	� j� where the index j
runs over the set 
I ,x ,y ,z� or equivalently 
0,1,2,3�.

In the six-state and BB84 QKD schemes considered here,
the effective quantum states describing the systems held by
Alice and Bob can be taken to be Bell diagonal for the fol-
lowing reason. First, Alice and Bob discard all data from

MYHR et al. PHYSICAL REVIEW A 79, 042329 �2009�

042329-2



mismatched bases, and they can assume the worst-case sce-
nario which is that the corresponding outcomes are com-
pletely uncorrelated. This implies Tr��AB��i

A
� � j

B��=0 for i
� j, i , j�0, where �i are the Pauli operators. Further, Alice
and Bob randomly �but jointly� decide which state in each
basis corresponds to which bit value, so the correlations in
each basis are characterized by a single error rate qj =1− p0
− pj for j� 
1,2 ,3�. From this condition, it follows that
Tr��AB��i

A
� 1B��=Tr��AB�1A � �i

B��=0 for i�0, and this
leaves only �i � �i, and it is easy to verify that this means the
state is Bell diagonal. In the six-state scheme, there are three
bases, so the corresponding error rates determine the Bell-
diagonal state completely. In the BB84 case, the error rate in
the y basis is not known, leaving an equivalence class of
possible states.

The Bell-diagonal states have a number of appealing and
useful properties. For instance, it is possible to reduce any
bipartite qubit state to the Bell-diagonal form by “twirling,”
choosing a Pauli �i and applying �i

A
� �i

B on the state �10�.
Generic two-qubit states can also be filtered to the Bell-
diagonal form with a two-side filtering �11�. Finally, any
two-qubit state where both reduced states are maximally
mixed is Bell-diagonal with the right choice of local basis
�12�, and a local change of basis can also rearrange the pj in
any order.

For our purposes, a parametrization different from the pj
will be useful. The analysis of both symmetric extension and
key distillation is simplified using the following parameters:

�0 = pI + px + py + pz, �2a�

�1 = pI − px − py + pz, �2b�

�2 = �2�pI − pz� , �2c�

�3 = �2�px − py� , �2d�

which gives the inverse transformation

pI =
1

4
��0 + �1 + �2�2� , �3a�

px =
1

4
��0 − �1 + �2�3� , �3b�

py =
1

4
��0 − �1 − �2�3� , �3c�

pz =
1

4
��0 + �1 − �2�2� . �3d�

Because of normalization, �0=1 for all probability vectors.
So all Bell-diagonal states are uniquely defined by the
coordinates ��1 ,�2 ,�3�. The maximally entangled states
are in these coordinates ����: �1, ��2,0� and ����:
�−1,0 , ��2�. The convex hull of these four points is a tet-
rahedron, which represents the set of Bell-diagonal states.
This region is defined by the four inequalities

�1 � �2�2 	 − 1, − �1 � �2�3 	 − 1, �4�

each corresponding to a particular eigenvalue being non-
negative.

A. Formulation as a SDP

Recall that a state �AB has a symmetric extension if there
exists a state �ABB� which is such that TrB���

ABB��=�AB and
VBB��

ABB�VBB�
† =�ABB�, where VBB� is the unitary operation

swapping B and B�. The question of whether or not �AB has
a symmetric extension can be formulated as a SDP �13,14�: a
convex optimization of a linear function over the convex
cone of positive matrices. These can be efficiently solved
numerically for low-dimensional systems using interior point
algorithms �15,16�. The following discussion is adapted from
�16�. Consider the following maximization, a semidefinite
program:

maximize 1 − Tr�XABB�� ,

subject to Tr�L̃i
ABB�XABB�� = Tr�Li

AB�AB� ,

XABB� 	 0. �5�

The free variable to be optimized XABB� is an operator on
HA � HB � HB�, and 
Li

AB� is a basis for traceless operators

on HA � HB. Further, L̃i
ABB�

ªSymBB��Li
AB

� 1B�� for SymBB�
the quantum operation symmetrizing systems B and B�,
SymBB��M

ABB��ª �MABB�+VBB�M
ABB�VBB�

† � /2 using the
swap operator VBB�.

If the optimum value of the objective function is non-
negative, a suitable multiple t �	0� of 1ABB� can be added to
XABB� in order to satisfy the normalization condition
Tr�XABB�+ t1ABB��=1, and the extension is then given by
�ABB�=SymBB��X

ABB�+ t1ABB��. This symmetrization ensures
that VBB��

ABB�VBB�
† =�ABB�. To see that the constraints on

XABB� in the SDP ensure that TrB���
ABB��=�AB, we use the

facts that for any operators MAB and NABC, we have that
MAB TrC�NABC�=TrC��MAB � 1C�NABC� and that for any PABC

and QABC, Tr�PABC SymBC�QABC��=Tr�SymBC�PABC�QABC�.
We then get that for all i,

Tr�Li
AB TrB��SymBB��X

ABB����

= Tr��Li
AB

� 1B��SymBB��X
ABB���

= Tr�SymBB��Li
AB

� 1B��XABB�� = Tr�Li
AB�AB� ,

where the last equality is from the constraint of the SDP �5�.
Since 
Li

AB� is a basis for the traceless operators on HA
� HB, we therefore have that the traceless part of
TrB��SymBB��X

ABB��� is equal to the traceless part of �AB.
Also, Tr��ABB��=Tr��AB�=1, so TrB���

ABB��=�AB.
If the maximum value is negative, no positive semidefi-

nite extension can be constructed because if �ABB� were a
symmetric extension of �AB, the choice XABB�=�ABB� would
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satisfy the constraints and give the objective function a value
of 0.

To every SDP, there is an associated dual SDP which for
the symmetric extension problem is somewhat easier to work
with. The dual of Eq. �5� is

minimize Tr�KAB�AB� ,

subject to K̃ABB� 	 0, �6�

where KAB
ª1AB+� jljLj

AB, K̃ABB�
ªSymBB��K

AB � 1B��, and lj
are free variables to be optimized. We refer to this optimiza-
tion as the dual problem and the original optimization �5� as
the primal problem. Should �AB have a symmetric extension,

Tr�KAB�AB�=Tr�K̃ABB��ABB��	0, since the trace of the prod-
uct of two positive operators is non-negative. Thus a suffi-
cient condition for �AB not to be extendible is for the mini-
mum of Tr�KAB�AB� to be negative. As we discuss below, this
condition is also necessary, due to a property known as
strong duality.

Weak duality holds that the optimum value of the primal
problem is always less than the optimum of the dual, which
follows from the positivity constraints,

Tr�KAB�AB� − �1 − Tr�XABB��� = Tr�K̃ABB�XABB�� 	 0, �7�

where the equality follows from Tr�KAB�AB�
=Tr�K̃ABB��ABB��=Tr�K̃ABB��XABB�+ t1ABB��� and 1
−Tr�XABB��=Tr�t1ABB��.

Strong duality is the statement that the optimum values of
the primal and dual problems are equal. Sufficient conditions
for strong duality are known. In particular, a semidefinite
program is said to be strictly feasible if the constraints can be
satisfied by a matrix that is positive rather than just positive
semidefinite. The strict feasibility of either the primal or dual
semidefinite programs is sufficient to guarantee strong dual-
ity �theorem 3.1 �13��. If both the primal and the dual are
strictly feasible then we are also guaranteed that there exist

matrices Xopt
ABB� and K̃opt

ABB� that satisfy the constraints and at-
tain the optimum of the primal and dual program, respec-
tively, �theorem 3.1 �13��.

The dual problem is obviously strictly feasible just by
taking KAB=1AB. On the primal side, note that there must be
some—not necessarily positive—XABB� meeting the con-
straints, since these underdetermine the components. As the
constraints only involve the traceless part of XABB�, a suitable
multiple of the identity 1ABB� can always be added to ensure
positivity. From strict feasibility, we obtain the sufficiency
condition that min�Tr�KAB�AB��
0 implies �AB is extendible

�17�. Moreover, when the optima are equal, Tr�K̃opt
ABB�Xopt

ABB��
=0, and hence K̃opt

ABB�Xopt
ABB�=0. This condition is termed

complementary slackness and will play an important role in
the analytical solution.

B. Simplifying the SDP for Bell-diagonal states

Now consider the dual form of the SDP �Eq. �6��. By
exploiting the symmetry of the problem, we can find an ana-

lytic solution. The method for dealing with symmetry fol-
lows the general prescription of Gatermann et al. �19� but
takes advantage of several special properties of this problem.
Because �AB is Bell diagonal, it is invariant under the conju-
gation by Pauli operators �i � �i. This induces a symmetry of
the objective function, since Tr���i � �i�K��i � �i�†��
=Tr�K�� for any i� 
0,1 ,2 ,3�. Moreover, the constraint

K̃ABB=SymBB��K
AB � 1B��	0 is equivalent to SymBB����i

� �i�KAB��i � �i�† � 1B��	0. Hence, the set of allowable K
is invariant under arbitrary conjugation by Pauli operators
and since they all yield the same value of the objective func-
tion, we can focus on those formed by the convex combina-

tion K̄= 1
4�i=0

3 ��i � �i�K��i � �i�† without loss of generality.

Since K̄ is a “twirl” of K, it is also Bell diagonal: K̄

=� jkj�� j�	� j�. The kj satisfy � jkj =1, since Tr�K̄�=Tr���i
� �i�K��i � �i�†�=1, but not necessarily kj 	0. This simpli-
fies the objective function Tr�KAB�AB� to � jkjpj with the ad-
ditional constraint � jkj =1.

Next, we would like to use the symmetry of K̄ to simplify

the constraint K̃ABB�	0. For readability, we will—in this and
the next two paragraphs—write the Pauli operators as X, Y,
and Z, and tensor products such as 1 � �x � �z as IXZ. Ob-

serve that K̃ inherits invariance under the operators XXX and

ZZZ from K̄. We can simplify the calculation by observing
that XXX and ZZZ are logical operators for the BIT-FLIP code.

Because of the symmetry, it will be necessary for K̃ to be

proportional to the identity on the code space. K̃ has a sym-
metry under swapping B and B� that we will also wish to
take advantage of. We can proceed by identifying three
“logical” or encoded qubits F, G, and H on the Hilbert space

HA � HB � HB�, such that the form of K̃ is simpler when
expressed in the computational basis of HF � HG � HH. The
encoded X and Z operators on the logical qubits are

XF ª XXX, XG ª XIX, XH ª XXI ,

ZF ª ZZZ, ZG ª ZZI, ZH ª ZIZ .

Note that with these definitions swapping B and B� induces a
swap on G and H. It is simple to verify that the Pauli opera-
tors on different logical qubits commute and that X and Z
anticommute on the same logical qubit. They therefore de-
fine a valid encoding, and the encoded product vectors
�ijk�FGH are the eight simultaneous eigenvectors of the en-
coded Z operators,

�000�FGH = �000�ABB�, �100�FGH = �111�ABB�,

�001�FGH = �110�ABB�, �101�FGH = �001�ABB�,

�010�FGH = �101�ABB�, �110�FGH = �010�ABB�,

�011�FGH = �011�ABB�, �111�FGH = �100�ABB�. �8�

Since K̃ is invariant under the operators XXX and ZZZ, we

can immediately infer that K̃�1F � K̃GH� . Furthermore, K̃ is
by definition invariant under swapping the BB� systems and
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swapping BB� is the same as swapping GH. This means

that K̃GH� must be block diagonal with the support on the

triplet and singlet subspaces. Since K̄ is Bell diagonal and

SymBB� is a linear superoperator, we can write K̃
=� jkj SymBB���� j�	� j� � 1B��. Converting the terms
SymBB���� j�	� j� � 1B�� into operators on the logical qubits
can be accomplished by writing it out in the computational
basis and using the relation �8�.

Alternatively, the conversion can be done by noticing that
ZZI and XXI are encoded Z and X operators for logical qubits
G and H, respectively. Thus, ��+�	�+�AB � 1B� is on the +1
eigenspace of both ZG and XH, i.e., ��+�	�+�AB � 1B��1F
� �0+�	0+�GH. For ��−�AB, we use that ��−�	�−�AB � 1B�
= �ZII����+�	�+�AB � 1B���ZII�†, and since ZII commutes �an-
ticommutes� with ZZI �XXI�, ��−�	�−�AB � 1B� is on the +1
�−1� eigenspace of ZZI �XXI�. Therefore, ��−�	�−�AB � 1B�
�1F � �0−�	0−�GH. Similarly, ��+�AB and ��−�AB correspond
to �1+�GH and �1−�GH, respectively. Applying the swap sym-
metrization SymBB� to �� j�	� j� � 1B� is simple given this con-
crete representation, and the results have the following form.
First, each of the terms has the form SymBB���� j�	� j� � 1B��
� 1

81F � �Rj � �GH
− �, where Rj has support only on the triplet

subspace. A simple calculation shows that the R matrices are
given by

R�� =  2 ��2 0

��2 1 0

0 0 0
� , �9�

R�� = 0 0 0

0 1 ��2

0 ��2 2
� , �10�

in the basis 
�00� , ��+� , �11��.
The semidefinite program �6� now becomes

minimize �
i=0

3

kipi,

subject to �
i=0

3

kiRi 	 0,

�
i=0

3

ki = 1, �11�

where 
pi� �
ki�� are the eigenvalues of � �K̄�. The latter
constraint can be eliminated by a further change of variables
according to Eq. �2� for both pi and ki, so that p→� and
k→x. The latter constraint now becomes simply x0=1, and
only x1, x2, and x3 remain as free variables. The objective
function becomes �x0�0+� j=1

3 xj�i� /4. Instead of minimizing
this directly, we multiply by 4 and subtract the constant term
x0�0=1. This gives us the following much-simplified dual
SDP which is equivalent to Eq. �11� except for a rescaled and
shifted objective function,

minimize �
j=1

3

xj� j ,

subject to F�x� = F0 + �
i=1

3

xiFi 	 0, �12�

using the matrices

F0 = 1 0 0

0 1 0

0 0 1
�, F1 = 1 0 0

0 0 0

0 0 − 1
� ,

F2 = 0 1 0

1 0 0

0 0 0
�, F3 = 0 0 0

0 0 1

0 1 0
� .

If the minimum value of the objective function is greater
than or equal to −1, the state has a symmetric extension.
Because of the minimization, finding an x that satisfies the
constraints and such that the objective function is less than
−1 is sufficient to show that the state does not have a sym-
metric extension.

We can find the simplified form of the primal problem by
taking the dual of Eq. �12�,

minimize Tr�Z� ,

subject to Tr�FiZ� = �i,

Z 	 0, �13�

where again the state has a symmetric extension when
Tr�Z���1. We use � throughout to denote an optimal value
of a variable. Finding any Z that satisfies the constraints and
has trace less than or equal to 1 is sufficient to show that the
state has a symmetric extension.

C. Analytical solution of the SDP

In this section we will solve the simplified semidefinite
program using both the primal form �13� and the dual form
�12�. For the states which have a symmetric extension, we
prove this by finding an explicit Z with Tr�Z��1 which sat-
isfies the constraints of Eq. �13�. When the state has no sym-
metric extension, this can be proven by finding an x such that
the constraints of Eq. �12� is satisfied and � j=1

3 xj� j �−1, but
we will not use this.

As shown in Sec. III A, the optimum Z� and F�x�� from
the primal and dual problems obey the complementary slack-
ness condition

F�x��Z� = 0, �14�

and it is this condition that allows us to solve the semidefi-
nite program analytically and prove that certain states do not
have a symmetric extension. The first simplification we get
from condition �14� is that rank�F�x���+rank�Z���3 since
F�x�� and Z� must have support on orthogonal subspaces.
Since both F�x��=0 and Z�=0 are excluded by the con-
straints, at least one of F�x�� and Z� must have rank one.
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The solution will proceed as follows. We first consider Z
of rank one. This will give us a sufficient condition for a
symmetric extension. We then consider the case when this
condition is not satisfied. Under the assumption that the state
still has a symmetric extension, we use complementary
slackness to show that there can only be four possible Z�. If
none of these candidates satisfy Z	0, we get a contradiction
and the state cannot have a symmetric extension. It turns out
that the candidates all satisfy Tr�Z��1, though, so if one of
them also is positive semidefinite, it also proves that the state
has a symmetric extension.

Start by finding the possible values for the objective func-
tion when Z is rank one. From the constraints Tr�FiZ�=�i of
the primal problem, Z has the form

Z =
1

22��1 + z33� �2 2z13

�2 2z22 �3

2z13 �3 2z33
� . �15�

The objective function is the trace of this matrix, so we want
to determine z22 and z33 from the rank-one condition. Since Z
is real and symmetric, we can parametrize its eigenvector
with three real numbers ai. This gives an alternative charac-
terization of Z,

Z =  a1
2 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a3
2 � , �16�

and we can solve the problem by equating these. Taking the
ratio of the 1,2 and 2,3 elements, we get a1 /a3=�2 /�3 when
a2 ,a3 ,�3�0. The ratio of the 1,1 and 3,3 elements is the
square of this, which implies that z33=a3

2=�1�3
2 / ��2

2−�3
2�.

Now use the fact that the square of the 2,3 element equals
z22z33 to find z22= ��2

2−�3
2� /4�1. The objective function is

then

Tr�Z� =
��2

2 − �3
2�2 + 4�1

2��2
2 + �3

2�
4�1��2

2 − �3
2�

, �17�

and since it is fixed by the state �and the requirement that Z
be rank one�, no minimization is required. If this expression
is less than or equal to 1, the state has a symmetric extension
since Tr�Z���Tr�Z�. If the value is greater than 1, we cannot
conclude yet since it could be that Z� is of rank two and has
trace less than or equal to one. Thus,

4�1��2
2 − �3

2� − ��2
2 − �3

2�2 − 4�1
2��2

2 + �3
2� 	 0 �18�

is a sufficient but not necessary condition for the state to
have a symmetric extension.

If Eq. �18� is satisfied, we know that the state has a sym-
metric extension, so for the rest of this section we assume
that it is not. For a contradiction �in some cases�, we now
assume that the state has a symmetric extension. This means
that rank�Z��=2 and because of complementary slackness
rank�F�x���=1. We therefore want to find out for what pos-
sible x we get a rank one F�x�. The dual problem �12� gives
us the form of F�x�,

F�x� = 1 + x1 x2 0

x2 1 x3

0 x3 1 − x1
� .

In this case we proceed as before, expressing F�x� also as a
projection operator of the form �16� and using relations be-
tween the matrix elements. From the 1,3 element, it is clear
that either a3 or a1 must be zero. This zeroes out the first or
third column and row, and we immediately obtain x1= �1
and x3=0 or x2=0 for the former and latter cases, respec-
tively. This leaves a matrix with a nonzero 2�2 block,
which must have a determinant zero. From this we get x2

2

=2 and x3
2=2 in the two cases, so x= �x1 ,x2 ,x3� can only take

one of the four values �1, ��2,0� , �−1,0 , ��2�. The corre-
sponding four values of the objective function in Eq. �12� are

�1 � �2�2, − �1 � �2�3. �19�

If any of these would be less than −1, we would be able to
exclude the possibility of a symmetric extension at this point.
However, this is not possible for any states, since the four
inequalities �4� defining the border of the set of Bell-diagonal
states are saying exactly that these four values are greater
than or equal to −1.

The four possible candidates for x� cannot by themselves
contradict our assumption of a symmetric extension for pos-
sible values of �i. However, under this assumption one of
these candidates must be optimal. There must, therefore, be
a complementary optimal Z� of the primal problem for which
the complementary slackness condition �14� is satisfied. For
each of the four possible x�, we can impose the complemen-
tary slackness condition F�x�Z=0 to a Z of the form �15�,
and check if the resulting Z can be positive semidefinite as
required by the SDP conditions. For the two vectors x
= �1, ��2,0�, this gives the two possible matrices

Z =
1

2�2��2 �2�2 ��3

�2�2 �2�2 �2�3

��3 �2�3 − 2�2�1 � �2
� . �20�

Since the second column is proportional to the first, the ma-
trix is positive semidefinite if and only if the lower right
2�2 block is. This is positive semidefinite if and only if
both the determinant and one of the diagonal elements are
non-negative. The determinant is in this case proportional to
2��2

2−�3
2��4�2�1�2, so the matrix is positive semidefinite

if and only if ��2	0 and �2
2−�3

2�2�2�1�2	0. The pos-
sible matrices for x= �−1,0 , ��2� are the matrices we get
from Eq. �20� by interchanging the first and third rows and
columns and making the substitution �2↔�3, �1↔−�1. The
positivity conditions are ��3	0 and �3

2−�2
2�2�2�1�3	0.

Thus, if the state does not satisfy condition �18�, and also
none of the four positivity constraints,

�2
2 − �3

2 � 2�2�1�2 	 0, � �2 	 0, �21a�

�3
2 − �2

2 � 2�2�1�3 	 0, � �3 	 0, �21b�

we cannot have rank�F�x��=1�, so our assumption that the
state has a symmetric extension is contradicted.
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If on the other hand, one or more of the constraints are
satisfied, there is no contradiction and the state could have a
symmetric extension. Actually, we can use the Z which sat-
isfies Z	0 to prove that a symmetric extension exists. Tak-
ing the trace in Eq. �20� gives Tr�Z�=−�1��2�2�1, where
the inequality follows from the first two border inequalities
in Eq. �4�. For the Z corresponding to x= �−1,0 , ��2�, we
can show Tr�Z��1 by using the other two border inequali-
ties. The Z which is positive semidefinite will therefore sat-
isfy all the constraints of the primal SDP �13�, and since it
gives a value of the objective function which is less than or
equal to 1, the state must have a symmetric extension.

Altogether, we have shown that if any of the conditions
�18�, �21a�, or �21b� are satisfied, the state has a symmetric
extension, otherwise it does not. Since at least one of ��2
	0 always holds, we can combine the two options in Eq.
�21a� into one at the cost of adding an absolute value. We can
do the same for ��3	0 in Eq. �21b� and combining every-
thing we get that a state has symmetric extension if and only
if one or more of the following three inequalities hold:

4�1��2
2 − �3

2� − ��2
2 − �3

2�2 − 4�1
2��2

2 + �3
2� 	 0, �22a�

�2
2 − �3

2 − 2�2�1��2� 	 0, �22b�

�3
2 − �2

2 + 2�2�1��3� 	 0. �22c�

The set of Bell-diagonal states with symmetric extension is
pictured in Fig. 1. Condition �22a� describes a body that
includes the symmetric extendible states closest to the maxi-
mally entangled states. It is, however, not convex. The con-
ditions �22b� and �22c� describe four cones with vertex at the
maximally mixed state and a maximal circular base on each
face of the tetrahedron. The cones fill in the convex hull of
the first body, so that the body of symmetric extendible states
is just the convex hull of the body from condition �22a�.

IV. THRESHOLDS FOR QKD SCHEMES

A. Chau protocol

The two-way procedure to distill secret key from quantum
correlations in a prepare-and-measure scheme invented by
Gottesman and Lo �20� was proven by Chau �7� to work for
Bell-diagonal states with error rates that satisfy

�pI − pz�2 
 �pI + pz��px + py� . �23�

This corresponds to a quantum bit error rate �QBER� of
27.64% for the six-state scheme �px= py = pz� and 20% for
BB84 �px= pz , py =0�. In this section, we show that when this
condition is satisfied, the procedure breaks the symmetric
extension in a finite number of rounds, as implied by Chau’s
result. When it is not satisfied, however, the procedure can
only output states with symmetric extension, and therefore
no key can be distilled. This is similar to the analysis by Acín
et al. �8�; but since we know when a state has a symmetric
extension, we do not need to construct an explicit attack.

The procedure works by first applying a number of so-
called B-steps �for bit error detection� then P-steps �for phase
error correction� and in the end a one-way quantum error
correcting code. The B-step works on two bit pairs. On each
side, the parity of the bits is computed and compared to the
other side. If the parity differs, there must have been an error
and both pairs are discarded. If the parity is equal, the first
pair is kept. This step requires two-way communication since
both parties need to know if they should keep the first pair.
The P-step works on three bit pairs. The output bit on each
side is the parity of the three bits. This does not require any
communication at all, but it simulates a phase error correc-
tion step where two qubits are measured to give a phase error
syndrome which is sent from Alice to Bob for comparison.
Alternatively, we can look at it as keeping the two extra
qubits on each side in a shield system which limits Eve’s
knowledge about the key system �21�. Irrespective of how we
look at it, a P-step does not require communication from Bob
to Alice and can therefore not break a symmetric extension.
If states with symmetric extension are to be distilled into
secret key, the B-steps must break the symmetric extension,
and we will therefore concentrate on these in the following.

After a successful round of B-steps, the new error prob-
abilities are �7�

pI
out =

pI
2 + pz

2

�pI + pz�2 + �px + py�2 , �24a�

px
out =

px
2 + py

2

�pI + pz�2 + �px + py�2 , �24b�

py
out =

2pxpy

�pI + pz�2 + �px + py�2 �24c�

pz
out =

2pIpz

�pI + pz�2 + �px + py�2 . �24d�

To quantify how the procedure improves or deteriorates the
ability of a state to produce a key, as defined by Eq. �23�, we
define the quantity �22�

DC ª log2� �pI − pz�2

�pI + pz��px + py�
� . �25�

This quantity is positive on all distillable states, negative on
states where �pI− pz�2 �pI+ pz��px+ py�, and zero on the bor-
der. By inserting the recursion relation �24� into Eq. �25�, we
see that DC doubles for every successful B-step, DC

out=2DC.

FIG. 1. �Color online� The set of Bell-diagonal states that satis-
fies the rank-one Z condition �22a� �left�, rank-two Z condition
�22b� or �22c� �center�, and the union of the two �right�. The figures
have a maximally entangled state on each vertex and the surfaces
have the symmetry of the tetrahedron.
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Thus, if the state starts out with negative DC, it will remain
negative, if it starts out being zero it will remain so, and if it
starts out being positive it can reach an arbitrary positive
value in a finite number of steps. We will next show that this
allows the procedure to break the symmetric extension when
DC
0 and not otherwise. More precisely, we will show that
reaching DC	2 is sufficient for breaking the symmetric ex-
tension, whereas all states with DC�0 have a symmetric
extension.

To show this, we describe the states by the same param-
eters � that we used in the symmetric extension calculation
and defined in Eq. �2�. In these coordinates, DC
=log2�2�2

2 / �1−�1
2�� does not depend on �3 at all. The equa-

tions for the surfaces of constant DC are then

�1
2 + 2 � 2−DC�2

2 = 1. �26�

These are the equations for ellipses with center in the origin,
constant �1-semiaxis 1, and DC-dependent �2-semiaxis
2�DC−1�/2. The surfaces are plotted in Fig. 2. In the figure, the
ellipse that extends outside the state space and separates re-
gion A and B is the surface where DC=0. Inside that ellipse
are thin dashed lines indicating DC=−1,−2, . . ., and outside
are similar lines indicating DC=1,2 , . . .. The two other
curves relate to symmetric extension which we will deal with
next.

B. Symmetric extension for cross sections

If condition �22a� is satisfied, the corresponding state has
a symmetric extension. Since the conditions �22b� and �22c�
only fill the convex hull of this body, we will only need to
consider the body described by inequality �22a� and its con-
vex hull here.

Unlike the surfaces for constant DC, the surface of the set
of extendible states is dependent on �3. In comparing sym-
metric extension to the DC surfaces, we will be particularly
interested in three cross sections through the symmetric ex-
tension surface. One is through the center of the tetrahedron
that defines the state space, where �3=0 �px= py�. The
two others are the two faces of the tetrahedron where �3
= � �1−�1� /�2 �py =0 and px=0�.

For the cross section where px= py, we set �3=0 in Eq.
�22a� to get the equation

�2
2

4
�4��1 −

1

2
�2

+ ��2
2 − 1�� = 0 �27�

for the border. This tells us that any state with �2=0 �and at
the same time �3=0� has symmetric extension, and they also
happen to be separable. When �2�0, we get

4��1 −
1

2
�2

+ �2
2 = 1, �28�

which describes an ellipse with center in ��1 ,�2�= �1 /2,0�,
�1-semiaxis 1/2, and �2-semiaxis 1. In Fig. 2 this is the solid
curve separating regions C and D.

For the cases py =0 and px=0, we insert �3=
� �1−�1� /�2 into Eq. �22a� to get

−
1

36
�9

4
��1 −

1

3
�2

+
3

2
�2

2 − 1�2

	 0, �29�

which simplifies to

9

4
��1 −

1

3
�2

+
3

2
�2

2 = 1. �30�

This describes another ellipse, with center in �1/3,0�,
�1-semiaxis 2/3, and �2-semiaxis �2 /3. This is the solid line
separating regions B and C in Fig. 2.

The outer ��3=0� symmetric extension curve �between C
and D in Fig. 2� defines a border with no states with sym-
metric extension on the outside �for any �3�. This is because
if a state defined by ��1 ,�2 ,�3� has a symmetric extension,
so does the state defined by ��1 ,�2 ,−�3� since the states are
related by local unitaries. Then the convex combination
��1 ,�2 ,0� would also have a symmetric extension. The inner
symmetric extension curve ��3= �1 /�2�1−�1�, between B
and C� is the border where all the states inside it has sym-
metric extension for all �3, since they can be obtained by
mixing the states with symmetric extension on the surface of
the state space.

C. Distillability vs symmetric extension

We are now in a position to relate DC to symmetric ex-
tension. From Fig. 2, it is evident that in most of the state

Φ−

Φ+

1

−1

−2

−3

Ψ±

2

3
4α2

α1

(1, 0)

(−1, 0)

(0, 1√
2
)

(0,− 1√
2
)

A

C

D

A

B

C

D

B

S

FIG. 2. Plot of the Bell-diagonal state space as a function of �1

and �2, with �3 projected out. The thin dashed lines indicate the
value of DC. The shaded region S corresponds to separable states
�for at least some �3�. Region A is the set of entangled states for
which the B-steps fail to break a symmetric extension. The border
between A and B corresponds to DC=0. Regions A and B together
are the entangled states with symmetric extension for all possible
values of �3, while in region C all the states with �3=0 have sym-
metric extension; but some states with other �3 do not. In region D,
no states have symmetric extension. The borders between regions B
and C and regions C and D both have the shape of ellipses. The
former is described by Eq. �30�, while the latter is described by Eq.
�28�.
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space, the surface DC=2 lies strictly outside the outer border
for symmetric extension �the line between C and D�. Toward
the point �1,0�, however, all the lines for constant DC, sym-
metric extension border, and separability border converge.
This is also the state toward which the sequence of the states
after the B-steps converges for the most relevant starting
states �e.g. all states with pI	0.5, pz
0�. Even though this
is a separable state, in any neighborhood around it there will
be states without symmetric extension. By inserting DC=2 in
Eq. �26�, the DC=2 border can be described by �2

2=2
−2�1

2
¬ f��1�. Similarly, the outer border for symmetric ex-

tension from Eq. �28� can be expressed as �2
2=1−4��1

−1 /2�2
¬g��1�. Taking the difference, we get ���2

2�= f��1�
−g��1�=2��1−1�2	0, so the DC=2 surface is always out-
side the symmetric extension surface, except for the point
�1,0� where DC is not defined. Thus, no states for which
DC	2 has a symmetric extension. In a similar fashion, one
can show that the Chau border DC=0 never is outside the
inner symmetric extension border �between regions B and C�
in the interval �1� �0,1�, which is the region where the
Chau border is contained in the state space. They coincide at
the points �0,1 /�2� and �1,0�. Thus, any state with DC�0
has a symmetric extension.

To apply this to the six-state and BB84 QKD schemes, let
us assume that Alice and Bob discard the data specifying
which bits come from which bases, meaning the error rates
in the different bases are identical. Only one possible state
is consistent with the observed error rate q, namely, q /2
= px= py = pz. This immediately yields qmax= �5−�5� /10
�27.64% for DC=0.

From the BB84 measurements, only the error rates in
the x and z basis can be observed, meaning the state is not
completely determined, only that q=qx=qz for qxªpy + pz
and qzªpx+ py. If q is below 1/2, the possible eigenvalues
are �1−2q ,q ,0 ,q�+ t�1,−1,1 ,−1� for t� �0,q /2�. When
expressed in terms of ��1 ,�2 ,�3�, this becomes
�1−2q ,�2�1−3q� ,q�2�+ t�0,2�2,−2�2�. To determine if
DC�0 for any of the possible states, we minimize 2DC

=2�2
2 / �1−�1

2�. This amounts to minimizing ��2�, since �1 is
fixed by q, and it is obvious by inspection that t=0 gives the
minimum. Solving DC=0, we find qmax=1 /5.

D. Variations of B-steps

In our analysis, we have used the B-steps introduced in
�20� and inspired from the classical advantage distillation
�CAD� �23�. CAD works on blocks of N bits and Alice and
Bob both announce the parities of all bits with the first bit.
They keep the first bit if all the parities are equal, otherwise
they discard the block. Given the announced parities, there
are only two possible bit strings compatible with the an-
nouncements, namely, the correct string and the inverted
string. It is easy to see that when the block size for CAD is
N=2n, it is equivalent to n successful rounds of B-steps
�when the whole block is discarded if any of the B-steps
fail�. To make sure that even for N�2n CAD cannot break
symmetric extension for any states were B-steps fail, we can
compute the output state after CAD. The input state is N
copies of a Bell-diagonal state, which we think of as a maxi-

mally entangled state ��+� which has a probability pi for
having suffered a �i error on Bob’s qubit. The output qubit
has a bit error �either �x or �y� iff all the qubits in the block
had a bit error and it has no bit error iff no qubit in the block
had a bit error. The other bit error patterns are detected and
the block is discarded. The output qubit has a phase error ��y
or �z� iff an odd number of input qubits had a phase error,
and no phase error iff an even number of input qubits had
a phase error. So the output qubit is error free if and only if
an even number of input qubits had a �z error and the rest
were error free. The probability for this to happen given the
state of the input qubits is pI

CAD= pI
N+ � N

2 �pI
N−2pz

2+ � N
4 �pI

N−4pz
4

+ ¯ =� j=0
�N/2�� N

2j �pI
N−2jpz

2j. This is every second term in the ex-
pansion of �pI� pZ�N, and by taking the average of the �
cases we get the terms we want pI

CAD= 1
2 ��pI+ pz�N+ �pI

− pz�N�. By making similar arguments, we get pz
CAD from the

terms with an odd number of �z errors, and px
CAD and py

CAD

from the cases where there are �x and �y errors instead of 1
and �z. This gives the following generalization of Eq. �23�:

pI
CAD = �

j=0

�N/2� �N

2j
�pI

N−2jpz
2j =

1

2
��pI + pz�N + �pI − pz�N� ,

�31a�

pz
CAD = �

j=0

��N−1�/2� � N

2j + 1
�pI

N−�2j+1�pz
2j+1

=
1

2
��pI + pz�N − �pI − pz�N� , �31b�

px
CAD =

1

2
��px + py�N + �px − py�N� , �31c�

py
CAD =

1

2
��px + py�N − �px − py�N� , �31d�

where the sum of these probabilities gives the probability for
CAD to succeed. From this, it follows directly that DC

CAD

=NDC, so having the liberty to choose block sizes other than
2n does not help if DC�0.

Another observation is that the announcement of any
N−1 independent parity bits on a block of N bits is equiva-
lent to performing CAD on a subset of M �N of those bits.
This can be seen simply by counting the number of possible
strings. On the block of N bits, there are 2N possible strings.
Each announced parity bit halves this number, so after N
−1 parity bits there are only two possible strings left. Any
bits that are equal in the two strings are therefore completely
revealed by the announcement. The remaining M bits are all
different and the CAD on those M bits is the same as an-
nouncing that we have one of those possible substrings.
Hence, nothing that generates a bit from N bits by announc-
ing N−1 independent parity bits can break the symmetric
extension.
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V. DISCUSSION

We have characterized the Bell-diagonal states that have a
symmetric extension. Using this we have shown that the fail-
ure of Chau’s procedure to distill key from certain entangled
states can be understood in terms of failure to break a sym-
metric extension. Also, some simple variations in the B-steps
are shown to be equivalent with respect to distillability. The
natural question now is if any other modification of the pro-
cedure can distill key from these states. Bae and Acín �24�
attempted to improve the thresholds by adding noise in the
beginning of the procedure, allowing coherent quantum op-
eration on one side or measuring in a different basis, but
without success. Portmann �25� investigated BB84 with the
bit error detection using random parities but could only
prove security up to a QBER of 16.9%. We believe that the
symmetric extension can be a useful tool for narrowing down
which type of postprocessing, if any, can distill a secret key
beyond current thresholds.

In the analysis, we have depended on the fact that the
state after sifting can be considered to be Bell-diagonal,
when one only considers the quantum bit error rate in the
different bases. While the state really is Bell diagonal for a
Pauli channel, it may be different in general and this would
show up as correlations in the data where Alice and Bob
measure in different bases. For other protocols, such as
SARG04 �6� and protocols based on spherical codes �26�, the
sifting works as a filter so the state will not be Bell diagonal
even for a Pauli channel. In these cases, the twirling proce-
dure may actually turn a state without symmetric extension

into one that has. Any two-qubit pure state can be written in
the Bell basis

��� = �0��+� + �1��+� + �2��−� + �3��−�

and by choosing �� j�=�pj, twirling will give a Bell-diagonal
state with eigenvalues pj. If those pj are chosen such that the
Bell-diagonal state has symmetric extension and the pure
state is not a product state, the twirling will introduce a sym-
metric extension that was not there to begin with. The most
extreme example of this is when � j =exp�i�j /2�. Then the
pure state is maximally entangled and since the correlations
are in the wrong bases, the twirled state is maximally mixed.
A natural question is then what we can say about the sym-
metric extension for more general states, and this will be
considered elsewhere �27�.
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