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Numerical optimization is used to design linear-optical devices that implement a desired quantum gate with
perfect fidelity, while maximizing the success rate. For the two-qubit controlled-sign �or controlled NOT

�CNOT�� gate, we provide numerical evidence that the maximum success rate is S=2 /27 using two unentangled
ancilla resources; interestingly, additional ancilla resources do not increase the success rate. For the three-qubit
Toffoli gate, we show that perfect fidelity is obtained with only three unentangled ancilla photons—less than in
any existing scheme—with a maximum S=0.003 40. This compares well to S= �2 /27�2 /2�0.002 74, obtain-
able by combining two CNOT gates and a passive quantum filter �T. C. Ralph, K. J. Resch, and A. Gilchrist,
Phys. Rev. A 75, 022313 �2007��. The general optimization approach can easily be applied to other areas of
interest, such as quantum error correction, cryptography, and metrology �M. M. Wilde and D. B. Uskov, Phys.
Rev. A 79, 022305 �2009�; G. A. Durkin and J. P. Dowling, Phys. Rev. Lett. 99, 070801 �2007��.
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Linear optics is considered as a viable method for scalable
quantum-information processing due in large part to the
seminal work of Knill, Laflamme, and Milburn �KLM� �1�.
These authors showed that an elementary quantum logic gate
on qubits, encoded in photonic states, can be constructed
using a combination of linear-optical elements and quantum
measurement. The trade-off in this measurement-assisted
scheme is that the gate is properly implemented only when
the measurement yields a positive outcome, i.e., the gate is
nondeterministic. Soon after the KLM scheme became a
paradigm for linear-optical quantum computation �LOQC�, it
became clear that there is a general unresolved theoretical
problem of finding the optimal implementation for a desired
quantum transformation �2�.

For the nonlinear sign �NS� gate, which acts on
photons in a single optical mode, �0�0�+�1�1�+�2�2�
→�0�0�+�1�1�−�2�2�, the maximum success probability
without feed forward has been theoretically proved to be 1/4
�3�. Here we focus on more complicated gates, taking as
examples the two-qubit controlled sign �CS� gate �equiva-
lently, the controlled NOT �CNOT� gate� and the three-qubit
Toffoli gate. For these physically important gates, existing
theoretical results are limited to upper or lower bounds on
the success probability �4–6�.

A linear-optical quantum gate or state generator �LOQSG�
�2� can be viewed formally as a device implementing a con-
traction transformation �for ideal detectors� that converts
pure input states into desired pure output states. The goal of
the optimization problem is to find a proper linear-optical
network �see Fig. 1�, characterized by a unitary matrix U,
that performs the desired transformation �7,8�. The problem
is naturally partitioned into two tasks: �i� finding a subspace
of perfect fidelity within the space of all unitary matrices U
and �ii� maximizing the success probability within this sub-
space. While in this paper we address transformations imple-
mented by linear optics, the method is universal and with
minor modifications can be successfully applied to any
quantum-information problem involving unitary operations
combined with measurements.

Originally, the linear-optical device was envisioned as a
network of linear-optical elements �9�, as, for example, in the
original KLM scheme, where the CS gate is constructed as a
combination of two NS gates �1�. In practice, a functional
microchip-based device may instead be considered as an in-
tegrated light circuit �9�, performing one large operation, as
shown schematically in Fig. 1. Here the input state
��in�= ��in

comp� � ��in
ancilla� � ��vacuum� is a product of a com-

putational input state, an ancilla state, and possibly a vacuum
state. Assuming dual-rail encoding, the computational state
will consist of Mc photons in Nc=2Mc optical modes encod-
ing an arbitrary state of Mc qubits, e.g., the logical two-qubit
state �↑ � � �↑ � may be represented in four optical modes by
�11 ,02� � �13 ,04� in the Fock basis. The ancilla input state of
Ma photons distributed over Na modes may be a separable
state, an entangled state, or even half of an ebit state carrying
spatially distributed entanglement, as required, for example,
in entanglement-assisted error correction �10,11�. Finally, Nv
auxiliary vacuum modes contain zero photons in the initial
state.

The core of the device is the transformation
ai

�in�†→Ui,jaj
�out�† of the photon creation operators between

the input and output states. Here U, which contains all physi-
cal properties of the device, is an N�N unitary matrix,
where N=Nc+Na+Nv is the total number of modes. The ma-
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FIG. 1. �Color online� A general measurement-assisted transfor-
mation �e.g., a quantum logic gate or a linear-optical quantum state
generator�.
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trix U associated with the physical device induces a transfor-
mation � acting on the input state, where � is a
high-dimensional irreducible representation of U �12�.
Writing the total input state in the Fock representation as
��in�= �n1 ,n2 , . . . ,nN�, where �ni=Mc+Ma is the total num-
ber of photons, � takes the form

��out� = ��U���in� = 	
i=1

N
1


ni!
��

j=1
Ui,jaj

�out�†�ni�0� . �1�

Next, a measurement is applied to the N−Nc ancilla and
vacuum modes. This measurement is formally described by a
Kraus POVM operator acting on these modes only:
P= �0Nc+1 ,0Nc+2 , . . . ,0N�
�measured�. In the most natural
case of a photocounting measurement, 
�measured�
= 
kNc+1 ,kNc+2 , . . . ,kN�, where ki is the number of photons
measured in the ith mode. Finally, the resulting transforma-
tion of the computational state is a contraction quantum map
��out

comp�=A��in
comp� / �A��in

comp�� �13�, where A�U� is defined
by

A�U���in
comp� = 
kNc+1,kNc+2, . . . ,kN���U���in� . �2�

The linear operator A contains all the information of rel-
evance to the gate or state transformation.

Now we consider the main properties of Eq. �2� relevant
to the optimization problem. In the Fock basis, the matrix A
is a submatrix of the larger matrix � and in accordance with
Eq. �1�, matrix elements of A are given as polynomials of
degree Mc+Ma in the matrix elements of U. For example,
the matrix element for transforming the two-qubit computa-
tional state �↑ � � �↑ � into �↑ � � �↓ �, with two ancilla photons
in modes 5 and 6, is


11020314�A�11021304�

= �
j1,j2,j3,j4

=permutations�1,4,5,6�

U1,j1
U3,j2

U5,j3
U6,j4

. �3�

More generally, in the Fock representation, all matrix ele-
ments are calculated as permanents of U �2�.

Furthermore, if the total number of measured photons
�i=Nc+1

N ki equals the number of input ancilla photons
�i=Nc+1

N ni, then Eq. �2� leaves the number of computational
photons invariant. The dual-rail computational basis is a sub-
set of all possible states of Mc photons in the 2Mc computa-
tional modes. Thus, the transformation matrix A is a rectan-
gular matrix, mapping the computational Hilbert space, of
dimension 2Mc, to a larger Hilbert space, of dimension
�3Mc−1� ! / �2Mc−1� ! �Mc�!.

We now define precisely the operational fidelity of a
transformation, which in general differs from the common
measure of fidelity for a state transformation �14�. Physically,
the transformation A has 100% fidelity if it is proportional to
the target transformation operation At, i.e., A=gAt, where g
is an arbitrary complex number �in which case S= �g�2 is the
success probability of the transformation �15��. In general,
we may consider complex rays �1A and �2At, �1, and �2�C
as elements of a complex projective space and define the
fidelity as

F�U� =

A�At�
At�A�

A�A�
At�At�

, �4�

where A�A�U� is defined by Eq. �2�. The Hermitian inner
product is 
A �B��Tr�A†B� /Dc and Dc=2Mc is the dimen-
sion of the computational space. F is closely related to the
Fubini-Study distance �=cos−1�
F� �16�, but for numerical
computations F has the advantage of being nonsingular near
F=1.

In general, the success probability S depends on the initial
state ��in

comp�. S is bounded above by the square of the
operator norm, �A�2��A�max

2 =max�
�in
comp�A†A��in

comp�� and
below by �A�min

2 =min�
�in
comp�A†A��in

comp��, where the
maximum and minimum are taken over the set of properly
normalized input states. As a more convenient measure,
we use the norm 
A �A�. It is easy to verify that
�A�min

2 � 
A �A�� �A�max
2 . As fidelity F→1, �A�min / �A�max

→1, and S becomes independent of the initial state. We refer
to S= 
A �A� as the success probability, keeping in mind that
it may not correspond to the success probability for every
initial state, except in the case of perfect fidelity.

Once the success rate S�U�= 
A�U� �A�U�� and fidelity
F�U� have been constructed for a given target transformation
and given ancilla resources, the task is to find the unitary
matrix U that maximizes S�U� on the constraint set

F�U�=1. We parametrize U=exp�� j=1
N2

xjH j�, where H j is a
complete set of complex anti-Hermitian N�N matrices, and
apply a standard derivative-based method to find a local
maximum of F starting from a random point in x space.
Convergence is excellent, since F is a rational function of
elements of U. We check whether this local maximum
of F has a value F�U�=1, in which case we proceed to find
a local maximum of success probability S�U� on the
F�U�=1 surface using a penalty function, i.e., we maximize
S�U�+�F�U� as �→�. Repeating the process with multiple
randomly chosen starting points, we obtain the best S, which
yields the optimal design for the quantum circuit.

We first apply our approach to the CS gate. For an arbi-
trary two-qubit gate, A�U� and At are 10�4 matrices; for the
CS gate matrix At is determined according to the action of
the gate �0101�→−��0101� and ��in

comp�→���in
comp� for


0101 ��in
comp�=0. The variable � is an arbitrary nonzero

complex constant, in agreement with the standard definition
of a projective complex space. Here, one easily checks that
the minimum number of unentangled ancillas needed to ob-
tain perfect fidelity is Na=2, so that U is a 6�6 matrix
�N=Nc+Na=4+2=6�. In this case, we find numerically that
the second optimization stage is unnecessary, i.e., S�U� is a
constant on every F=1 manifold �each such manifold con-
sisting of an equivalence class of matrices differing only by
phase factors�. Several inequivalent F=1 manifolds are
found. The best solutions have S=2 /27, corresponding to an
analytic solution found previously by Knill �6�. Due to the
complexity of the CS gate, it is not known if an analytical
proof for determining the maximum success probability is
possible. Our numerical evidence, however, strongly indi-
cates that Knill’s solution is indeed the global maximum.

Can the solution be improved by adding Nv vacuum
modes to the device? This question may be answered
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straightforwardly by repeating the above optimization with
�Nc+Na+Nv�� �Nc+Na+Nv� unitary matrices U, for various
values of Nv. However, there exists an alternative “unitary
dilation” approach �6�. The most general device design, al-
lowing for an arbitrary number of vacuum modes, is ob-
tained by allowing U to be an arbitrary complex
�Nc+Na�� �Nc+Na� matrix and replacing U→U / �U�, which
scales the maximum singular value to unity. The expression
�4� for fidelity as a function of U is invariant under scaling,
while the generalized success function for a nonunitary U is
given by

S̃�U� = S�U�/��U��2�Mc+Ma�. �5�

Since �U� is simply the maximum of the singular values of
U, it has a cusplike singularity whenever the largest singular
value of U crosses one or more other singular values and the

same singularity necessarily appears in S̃�U� �because S�U�
is smooth�. Of particular interest is the fact that S̃�U�, while
well behaved on the manifold of unitary U �where �U�=1�,
in general has a discontinuous gradient in directions normal
to this manifold.

The result of a nonunitary optimization for the CS gate
with two ancillas is shown in Fig. 2 �circles�. Plateaus are
clearly visible, corresponding to local maxima of the success
rate. Indeed, we have continued the optimization for a much
larger number of iterations with higher numerical accuracy
for data points characterized by S	0.04. In doing so, we
found that the success rate always converges either to the
Knill solution �S=2 /27�0.074� or to one of two local
maxima: S�0.047 and S=1 /16=0.0625. The Knill solution
has the largest basin of attraction, while the basin of attrac-

tion for S=1 /16 is the smallest. We note that the KLM
scheme �1� produces a success rate S=1 /16, though the ma-
trices obtained numerically have a structure different from
the KLM form. The pronounced plateau at 2/27 provides
strong numerical evidence that Knill’s solution �which makes
no use of vacuum modes� is globally optimal, even when
vacuum modes are allowed. It appears that the cusplike
structure of the success rate �5� strongly favors maxima ap-
pearing at unitary values of U �where all singular values
become degenerate at 1�, and indeed the global maximum
corresponds to one such unitary matrix: the Knill matrix.

Interestingly, analytical fidelity-preserving transforma-
tions, associated with multiplying U on the left or right by
diagonal matrices that act trivially on computational states,
can explain seven dimensions of the F=1 subspace, while
direct numerical tests reveal that this subspace is 11-
dimensional in the vicinity of the Knill solution. Thus, there
exist hidden symmetries, which, we believe, can be identified
only by more powerful mathematical methods from the rep-
ertoire of algebraic geometry.

Next, we investigate the effect that additional ancilla re-
sources may have on the optimization problem. Previously,
an upper bound for the success probability with unentangled
resources was shown to be 3/4 �5�. Repeating our optimiza-
tion procedure in larger matrix spaces associated with three
and four ancillas �Fig. 2�, we find, surprisingly, that the glo-
bal and local maxima are unchanged. This suggests that the
minimum resources needed to produce the CS gate with per-
fect fidelity �i.e., two unentangled ancillas with no vacuum
modes� also suffice to produce the best possible success rate.
In view of the fact that exactly the same behavior of success
probability has been found for the NS gate �3�, one may
expect that this may be a universal property of probabilistic
�photonic� gates: the maximal success probability is attained
with minimal required resources. We tested this conclusion
also for the Toffoli gate, which we discuss below in detail,
finding that adding one more ancilla to the required mini-
mum of three ancilla photons also does not affect any of two
local maxima, in full compliance with the suggested rule.

Now we consider the three-qubit Toffoli gate. After
a local Hadamard rotation, the standard Toffoli gate acts
as a “sign” transformation: �010101�→��010101� and
��in

comp�→−���in
comp� for 
010101 ��in

comp�=0. We first check
that a minimum of three ancillas is needed for perfect fidel-
ity. Thus N=Nc+Na=6+3=9.

To reduce the size of the parameter space and improve the
convergence of the success optimization, we consider the
following ansatz for U: Uij =Uji=
ij for i=2, 4, 6, i.e., U is
designed to act nontrivially only on the computational modes
1, 3, and 5.

The results of an optimization over 9�9 subunitary ma-
trices are shown in Fig. 3. The best solution obtained is
S�0.003 40; this is an improvement over combining a CNOT

gate, a CS gate, and a “passive quantum filter” to produce the
Toffoli gate �4�, which yields a total success rate
S= �2 /27�2�1 /2�0.002 74 using four unentangled ancilla
photons.

Of practical interest is our finding that optimization in the
full 9�9 matrix space is much more efficient than in
12�12 unitary space, even though the optimal Nv=3 solu-
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FIG. 2. The optimized success probability for the CS gate is
shown for two, three, and four ancillas and an arbitrary number of
vacuum modes. Each point indicates a complete run starting from a
randomly chosen starting matrix U. The success rates are arranged
in ascending order so that the horizontal axis may be viewed as a
cumulative frequency. The 2 /27�0.074 success rate found by Knill
�6� is indicated by a horizontal line.
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tion is an element of both. The space of unitary U contains
many local maxima of the success rate, preventing the global
maximum from being reached. Eliminating the unitarity con-
straint creates passageways connecting the local maxima to
the global one.

In this work, we have provided numerical evidence that
the previously obtained solution for the CS �CNOT� gate, with
a success probability S=2 /27, is optimal and cannot be im-
proved by adding ancillas or auxiliary vacuum modes. On
the other hand, for the Toffoli gate we show a new solution,
which surpasses what has been obtained analytically using
unentangled ancillas �our solution provides a higher success
probability using fewer resources�. This result is a proof of
principle of successful numerical optimization in linear-
optical quantum-information processing. Future directions
that naturally suggest themselves include optimal implemen-
tation of two-mode biphotonic qutrit �17� gates, operations
on multirail encoded qudits using angular-momentum pho-
tons �18�, design of gates that are robust to noise and photon
loss, and optimization in the context of error-correcting
codes �10�.
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