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The link between a quantum spin 1/2 and its associated su�2� algebra of Pauli spin matrices with Clifford
algebra and quaternions is well known. A pair of spins or qubits, which are important throughout the field of
quantum information for describing logic gates and entangled states, has similarly an su�4� algebra. We
develop connections between this algebra and its subalgebras with the projective plane of seven elements �also
related to octonions� and other entities in projective geometry and design theory.
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I. INTRODUCTION

This paper establishes links between two entirely different
areas of mathematics and physics. One is the manipulation of
two spin 1/2 or four-level systems in quantum physics, which
are of wide interest in quantum optics and in the field of
quantum information �1�. Apart from a unit 4�4 matrix, 15
linearly independent operators or matrices of the group
SU�4�, or algebra su�4�, describe such systems. In the case of
a single spin, or two-level, system, the similar set of three
2�2 Pauli matrices or operators of su�2� is very well studied
and completely familiar to all physicists; many are also
aware of their correspondence to quaternions �2�, which are
generalized numbers beyond real and complex numbers.
However, connection of su�4� to further generalized entities
in mathematics such as octonions �3� is little known. Octo-
nions also have a connection to projective geometry, wherein
points and lines obey a perfect duality, and to a whole branch
of mathematics, “design theory” �4�, which has a fascinating
history �5�.

We establish here connections between the operators of
su�4� and these subjects. Specifically, each subalgebra of
su�4� corresponds to a projective geometry and we give spe-
cific mappings of the operators of the subalgebra onto the
projective diagram. These subalgebras of su�4� occur in
quantum logic gates and in quantum optics and molecular
systems. Therefore, geometrical pictures for those su�4� op-
erators involved may be useful while also suggestive gener-
ally for manipulations of a pair of entangled spin 1/2 �qu-
bits�, a key resource in quantum cryptography, quantum
teleportation, and quantum computing �1�.

The arrangement of this paper is as follows. Section II
gives a summary of quaternions and octonions, the latter
naturally connecting to the projective plane of seven points
and lines called the “Fano plane” �3,4�. Section III links the
algebra of su�4� and its various subalgebras to diagrams in
projective geometry. Thus the subalgebras su�2��su�2�
�u�1� and so�5�, both important in quantum optics and
quantum information, map onto projective geometries of
seven and ten elements, respectively, while the full su�4�
maps onto a 15-element projective diagram. The section ends
by casting a very familiar problem of quantum physics, the
hydrogen atom, in the same language.

II. QUATERNIONS AND OCTONIONS

There are only four consistent arithmetics, more properly,
“real normed division algebras” �2�: reals, complex numbers,
quaternions �2�, and octonions �3�. Associativity and commu-
tativity of multiplication hold for reals and complex num-
bers, commutativity given up for quaternions, and even as-
sociativity lost for octonions although “limited associativity”
still holds, referred to as “alternative” �3�.

The first three of these have realizations in physics and
are, indeed, ubiquitous. The elements of reality in classical
physics, such as positions and momenta, are themselves ob-
servables, the results of measurement by our apparatus and
our senses, and are perforce real. In quantum physics, the
elements of reality are wave functions, which are complex
numbers, not themselves accessible to measurement. Bilinear
combinations of them and their squared modulus give the
observables, whether mean/expectation values or transition
probabilities.

Extending to quantum spin, Pauli matrices � or Dirac
spinors describe them. The algebra of Pauli matrices, �i� j
=�ij + i�ijk�k, is in direct correspondence to that of quater-
nions. These three square roots of −1, denoted �i , j ,k�, with
ij=k=−ji and cyclic, map into −i�� . Attempts to formulate
quantum mechanics with quaternions �6� have not proven to
have distinct advantages over the conventional formulation
with complex numbers and Hermitian matrices. Already in
classical physics, following Hamilton’s invention of quater-
nions �7�, Maxwell himself was inclined to use them for
electromagnetism but vector calculus prevailed �8�. Contin-
ued attempts to do classical mechanics with quaternionic
concepts, termed “geometrical mechanics” �9�, have not had
widespread adoption, although quaternions have many ad-
vantages since they constitute an algebra which vectors do
not �division having meaning only among parallel vectors�,
making them particularly suited for describing rotations �10�.
In this regard, Gibbs has prevailed over Hamilton in physics
�3,8�.

Octonions �also called octaves or Cayley numbers �3��, on
the other hand, have remained esoteric with very limited at-
tempts to apply them in physics �11�; Baez puts it in colorful
terms: “quaternions are the eccentric cousin who is shunned
at important family gatherings, octonions are the crazy old
uncle nobody lets out of the attic” �3�. They are defined by
seven square roots of minus one, �e1 ,e2 , . . . ,e7�, with a mul-
tiplication table as shown in Table I �2,3�.*arau@phys.lsu.edu
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Alternative arrangements exist in the literature but the
above is fairly standard, has three minus and three plus signs
in each row and column �not counting the diagonal�, and if
eiej =ek, this implies ei+1ej+1=ek+1 and e2ie2j =e2k. A more
insightful geometrical rendering is given by Fig. 1. Each of
the triads on the seven lines �note the inscribed circle� obeys
the rule that the product of two gives the third with a �
depending on whether it is in the direction of the arrow or
opposed to it �3,12�.

This diagram of the multiplication among quaternions is
also a central object of projective geometry and is named
after one of that subject’s pioneers as “the Fano plane” �3�. It
has come to play an important role in coding theory and
design theory �4�. Each of the seven points lies on three and
only three lines, and each line contains three and only three
points. The occurrence of points and lines on an equal foot-
ing is an aspect of projective geometry. Unlike ordinary Eu-
clidean geometry, it is characterized by such a “duality” be-
tween points and lines, any valid theorem remaining true
upon interchanging “point” and “line.” The Fano plane is the
smallest possible projective plane and is called a symmetric
design or Steiner system in design theory �4�. Alternative
notations denote it as the projective geometry PG�2,2� or the
Steiner triple or balanced incomplete block �BIB� design
with v=b=7, k=3, and �=1 written as 2-�7, 3, 1� �4�.

As already noted, historical attempts to reformulate quan-
tum physics with quaternions and octonions have not pre-

vailed over the conventional formulation in terms of com-
plex entities. It is not our intention in this paper to argue for
any special virtue of these hypercomplex numbers in quan-
tum physics. However, the 1:1 correspondence of various
projective geometries with problems involving the operators
of two quantum spins that we establish in Sec. III may well
prove useful. At a minimum, our casting of sets of operators
in the Clifford algebra of two qubits in the form of diagrams
such as Fig. 1 is useful for expressing products and commu-
tators of these operators and for keeping track of the results
of successive operations on qubits in quantum information
applications. These diagrams can, therefore, be seen as gen-
eralizations for two spins of the circle of �i , j ,k� that is fa-
miliar for Pauli spinors and quaternions.

III. TWO SPIN 1/2 (QUBITS): THE ALGEBRA
AND SUBALGEBRAS OF su(4)

A single quantum spin or qubit has the algebra of su�2�
which is characterized by three parameters. The Pauli matri-
ces �� provide a representation, and, as noted in Sec. II, −i��
maps 1:1 to quaternions. Today, in the field of quantum in-
formation �which embraces computation, cryptography, con-
trol, and teleportation�, a central object of interest is a pair of
qubits �1�. Logic gates for quantum computing and any en-
tangled state of two subsystems have such a pair as their
basic element. It is “the resource” of the field. The group
SU�4� and its algebra su�4� describing such a pair of qubits
have 15 generators or parameters. A convenient representa-
tion in terms of Pauli spinors ��� ,��� and the unit matrix for
each qubit is given by ��� �I�2� ,I�1���� ,�� ����. For explicit
rendering in alternative forms and specific matrix represen-
tations, see �13–16�. Two prominent ones are as a direct
product of two Pauli spinors �13,14� or as the Gell-Mann
basis for the su�4� algebra �15,16�.

Unlike the 1:1 correspondence between quaternions and ��
of su�2�, no similar rendering can be expected for the 7 oc-
tonions and the 15 su�4� matrices. Both the mismatch in the
numbers and the lack of associative multiplication in the
former while matrix multiplication is, of course, associative
preclude any exact correspondence. However, we will see
close analogies between the various subalgebras of su�4� and
the projective elements introduced in Sec. II as well as a
looser connection between one subalgebra of seven operators
and the octonion diagram of Fig. 1.

The algebra and subalgebras of su�4� have been thor-
oughly studied, with many applications in various areas of
physics �15,17�. A complete account of all the subalgebras is
available in �18�. In the context of the current intense inves-
tigations of quantum information, there are also many appli-
cations as in �13,14,19�. For controllability of spin systems,
successive Cartan decomposition and parametrization of
higher su�2n� have also been studied �20,21�. However, the
connections we present here between these algebras and their
operators with projective geometries do not seem to have
been recognized except for recent, parallel, independent
work by another group that came to our attention after our
work was done �22,23�. Interestingly, this group arrived at
the connections from the other direction in terms of geom-

TABLE I. Multiplication table for octonions �6�.

e1 e2 e3 e4 e5 e6 e7

e1 −1 e4 e7 −e2 e6 −e5 −e3

e2 −e4 −1 e5 e1 −e3 e7 −e6

e3 −e7 −e5 −1 e6 e2 −e4 e1

e4 e2 −e1 −e6 −1 e7 e3 −e5

e5 −e6 e3 −e2 −e7 −1 e1 e4

e6 e5 −e7 e4 −e3 −e1 −1 e2

e7 e3 e6 −e1 e5 −e4 −e2 −1

FIG. 1. �Color online� The multiplication diagram for the seven
octonions, also the Fano plane of projective geometry with seven
points and seven lines. The product of any two on a line equals the
third with a + or − depending on the direction of �along or against�
the arrow �2,3�.
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etry and graph theory and not from the Lie algebras of mul-
tiple spins as we did. An illustration of the gains in overall
understanding to be made by complementary approaches like
this will be provided at the end of Sec. III C.

A. Subalgebra su(2)Ãsu(2)Ãu(1) and Fano plane

Among the subalgebras, an important one for applications
in quantum information is su�2��su�2��u�1�, the last term
being a single element for a total of seven in this subalgebra.
It describes �13� the quantum controlled-NOT logic gate that
has been constructed with two Josephson junctions �24�. The
seven generators close under multiplication. That their com-
mutators also close is exploited in solving for the time evo-
lution of the system �13�. There are several such distinct
subsets of seven generators of su�4�, one for each of the 15
generators �13�.

A specific example, with �y�y as the commuting u�1� el-
ement placed at the center, is shown in Fig. 2, the diagram
arranged as an obvious analog of the Fano plane in Fig. 1.
That it is an analog, not an exact correspondence as already
stated above, makes for some differences that we stress.
Whereas the square of the six outer elements is −1, that of
the central one is +1. Also, arrows occur only on four of the
lines, the three internal bisectors of the triangle having no
directionality. Lines with arrows have the anticommutativity
aspect, that is, the product of two gives the third with an
attached � if in the direction of the arrow or against it. For
the lines with no arrows, the three elements commute and the
product of two gives the third, regardless of order. In physi-
cists’ language, one can say that there are four “fermionic”
and three “bosonic” elements in the set of seven lines. The
arrowed lines have the commutation relations of su�2�
whereas the commutators of any two elements on the nonar-
rowed internal bisectors vanish.

A similar set of seven operators as in Fig. 2, except for
interchanging x and y, also constitutes a su�2��su�2�
�u�1� subalgebra and describes the Hamiltonian used in the
experimental construction of the controlled-NOT gate with
two Josephson junctions �24�. We have analyzed this earlier
in �13� to provide density matrix elements as functions of the
various parameters of the junctions. The multiplication table
in that paper which was used extensively for the commuta-

tors of the seven operators involved in constructing the evo-
lution operator can now be replaced by the more convenient
Fig. 2.

B. Subalgebra so(5) and Desargues’s theorem

Another subalgebra of su�4� is so�5�, the algebra of five-
dimensional rotations, with ten generators. This too occurs in
several physical situations in quantum optics and coherent
population transfer in atomic and molecular systems involv-
ing four levels �25�. We analyzed such systems earlier in
terms of an so�5� of ten operators which we now lay out in
Fig. 3 as the “Desargues” ten point/line figure of projective
geometry, a striking, even marvelous, construct already as a
figure �3�.

For any two triangles as in Fig. 3, arbitrarily oriented in
space, with corresponding vertices connected by “rays” from
a point, the three points of intersection of corresponding
sides lie on a common straight line. The two triangles bear a
dual relationship to the point and to that lower line and are
said to be “in perspective” from them �3�. The connection to
perspective in drawing and art is immediate and suggestive.
�A variant, when the two �similar� triangles have parallel
sides, will have those sides intersect at infinity, the points and
line being at infinity �26�, projective geometry making no
distinction between parallel or intersecting lines.� Note that
all the lines are arrowed. While not satisfying all the require-
ments of a projective plane as in Fig. 1, the Desargues con-
struct is called a partial Steiner system in design theory.

As in Sec. III A, the merit of placing the operators of the
Lie algebra in this projective geometrical figure lies in the
patterns this suggests. Thus, consider the remark in the pre-
vious paragraph that moving the lowest line to become the
line at infinity does not change its projective aspects. Inter-
preting this for the algebra so�5�, this means removing de-
pendence of the Hamiltonian on the three operators on the
bottom line. Ten operators are still required for closing the
so�5� algebra but the Hamiltonian depends only on seven
parameters. Specifically, in our previous application to such
so�5� systems in �13�, this means setting the coefficients Fij
equal to zero. How this affects the Hamiltonian and its asso-
ciated time evolution and whether such systems may have

FIG. 2. �Color online� One of sets of seven operators of two spin
1/2 that close under multiplication or commutators, arranged as in
Fig. 1. They form the subalgebra su�2��su�2��u�1� of su�4� �13�.

σxτx

σzτx

σy σzτy σxτy
σzτz

σxτz

τxτyτz

FIG. 3. Ten operators of a two-spin system, forming the subal-
gebra so�5� of su�4�, arranged as the Desargues diagram of projec-
tive geometry. The arrow notation is as in Fig. 1.
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value in quantum information are the kinds of inquiries that
the projective geometrical aspects point to. We hope to return
to this elsewhere but it shows the possible usefulness of
translating the projective geometry patterns into their corre-
sponding realization in Lie algebra applications.

C. Full su(4) algebra and its 15 point/line diagram

Finally, and remarkably, all 15 generators of su�4� can be
laid out using 15 straight lines as shown in Fig. 4. Only one
of the lines has no directionality, corresponding to the three
operators commuting among themselves. Again, while not a
projective plane �27�, this is a partial Steiner system of 15
elements. Just as in the variant of Fig. 3 with parallel tri-
angles so that the three lowest points and the line they lie on
recede to infinity, a more symmetrical variant of Fig. 4 can
be drawn with seven pairs of parallel lines through 12 points.
In that case, the top three points and the �unarrowed� line
they lie on are at infinity.

An alternative rendering of Fig. 4 with a much more sym-
metrical look called the “doily” is given in �22,23,28�. As
stated above, these authors have arrived at similar conclu-
sions to ours but from a different starting point. Using graph-
theoretical and geometrical studies of projective lines over
the ring of 2�2 matrices and products of Galois fields
GF�2�, they have associated the 15 operators of su�4� with
very symmetrical geometrical arrangements that are the
counterpart of Fig. 4, called a Veldkamp space defined on a
generalized quadrangle of order 2. They have also extended
such geometrical studies to higher qudits. They consider a
symplectic polar space V�d ,q� which is a d-dimensional vec-
tor space over a finite field Fq with a bilinear alternating
form. Denoted by Wd−1�q�, such a space exists only for d
=2N, N being called its rank. W2N−1�q� is the space of totally
isotropic spaces of the projective geometry PG�2N−1,q�
with respect to a symplectic form. These authors identify the
Pauli operators of N qubits with the points of W2N−1�2�.

As an illustration of different insights and simplifications
possible with alternative points of approach, we consider one

result in �23�, namely, the number of points v contained in
PG�2N−1,q� or W2N−1�2� which is v=22N−1=4N−1. With
the concept that two distinct points of W2N−1�2� are “perpen-
dicular” if they are joined by a line, 22N−1 is the number of
points that are not perpendicular to a given point. In terms of
the Pauli operators of N qubits, the property of “commuting”
translates to this concept of perpendicular. Together with a
related number D=v−1−22N−1, this being the “degree” of a
graph with v vertices, they provide a table of such numbers
for various N and remark that after posting their preprint, a
physicist and a mathematician independently provided
proofs of these results.

However, from the perspective of the algebra of su�2N�,
these numbers are immediate and obvious. For N=1, any
operator, say �z, does not commute with the other two Pauli
matrices so that v=3 and D=0. For N=2, the case of two
qubits and su�4�, �z commutes with all three �� of the other
spin and with the three bilinear ones �z�� for a total of six so
that v=15, D=6. This is the result noted and exploited in
�13� for the su�2��su�2��u�1� subalgebra, that in tables of
commutators such as in �13,14�, there are six zeroes in each
row besides the diagonal entry. For N=3 or three qubits,
clearly the same enumeration extends: �z

1 commutes with all
three �� 2, all three �� 3, the nine bilinear products of them
�� 2�� 3, the six �z

1�� 2 and �z
1�� 3, and the nine �z

1�� 2�� 3 for a total
D=30. This simple enumeration extends readily to give D
=126 for N=4 and the result for general N, D=v−1−22N−1.

Thus, counting from the algebraic commutation angle
provides easily the number for the perpendiculars of projec-
tive geometry or the degree of a graph. This complements
the last paragraphs in Secs. III A and III B where it was the
projective geometrical picture which suggested simplifica-
tions in the counterpart Lie algebraic analysis. There are
likely to be many such results which are more readily seen in
one or the other approach of Lie algebras or projective ge-
ometries.

D. Hydrogen atom’s SO(4) symmetry cast as the Fano plane

Another subalgebra of su�4� is su�2��su�2� with six pa-
rameters or generators. Again, there are many such subsets of
the 15 su�4� operators, the most obvious being, of course,
��� �I�2� ,I�1�����. In an entirely different context than two
spins, the well-known SO�4� symmetry of the hydrogen

atom, with its six generators, the angular momentum L� and

the Laplace-Runge-Lenz vector A� , which close under com-

mutation, L� �L� = iL� , L� �A� = iA� , and A� �A� = iL� , also affords

another example �29�. The linear combinations, �L� �A� � /2,

behave as two uncoupled angular momenta because L� ·A� =0
and provide a description of SO�4� as the product of two
SO�3�. These six operators, together with the unit operator,
can therefore be arranged in Fig. 5 analogous to Fig. 2 and
the Fano plane in Fig. 1. Once again, the triad on the internal
bisectors mutually commutes and those lines carry no ar-
rows.

This rendering is of interest primarily as a curious analog,
for the history and central importance of the problem. and for
a historical “connection” of human interest. The existence of

τy

σz

τx

τz

σzτx

σyτz

σxτy

σyσx

σyτy

σxτx
σzτz

σyτx

σxτz

σzτy

FIG. 4. The full set of 15 operators of su�4� on a 15 point, 15
line diagram as in Figs. 2 and 3. One set of three mutually commute
so that the top line carries no arrow sense.
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another vector besides angular momentum in the Coulomb-
Kepler problem goes back to Newton and Laplace, already in
classical physics. Its quantum manifestation, and especially

Pauli’s initial solution of the hydrogen atom through the two
commuting SO�3�, is central to our understanding of the
quantum-mechanical hydrogen atom. The su�2��su�2�
�u�1� construction in Fig. 2 is a close analog, except that it
has a nontrivial commuting element at its center instead of
the unit operator in Fig. 5. And, finally the Fano plane of
these diagrams is named for the famous geometer G. Fano of
the early 20th century, whose son, U. Fano, became later in
that century an eminent atomic physicist and who empha-
sized in his work and teaching symmetry principles includ-
ing those in the SO�4� symmetry of the hydrogen atom �30�.
Figure 5 now embeds that work in the diagram named for his
father.
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