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In this paper the effect of Dzyaloshinskii-Moriya interaction and anisotropy on the entanglement of Heisen-
berg chain has been studied. While the anisotropy suppresses the entanglement due to favoring of the align-
ment of spins, the DM interaction restores the spoiled entanglement via creation of the quantum fluctuations.
Thermodynamic limit of the model and emerging of nonanalytic behavior of the entanglement have also been
probed. The singularities of the entanglement correspond to the critical boundary separating different phases of
the model. The singularity of the entanglement derivative approaches the critical point from the gapped phase
and will be symmetric if both phases on the boundary are gapped.
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I. INTRODUCTION

In recent years, the notion of entanglement has received
much attention in quantum information theory due to its im-
portant features in developing the idea of quantum comput-
ers and other quantum information devices. Entanglement is
a purely quantum correlation without classical counterpart
�1� and has been realized as a crucial resource to process and
send information in different ways such as quantum telepor-
tation, supercoding, and algorithms for quantum computa-
tions �2�. Concerning the correlation content of the entangle-
ment, the states of systems in condensed-matter physics may
deserve the investigation of entanglement as a unique mea-
sure of quantum correlations. Interest will be intensified
when we consider the relation between entanglement and
quantum phase transition where a drastic change in the
ground state of the system occurs �3�. This change will occur
at zero temperature where all thermal fluctuations get frozen
and only surviving quantum fluctuations drive the phase
transition. In the past few years the subject of many activities
was to investigate the role of entanglement in the vicinity of
quantum critical point for different spin models �4–13�.

Spin models provide not only a test ground for the men-
tioned issues but also a playground for implementation of
many quantum information protocols �14,15�. Among them
are Ising model in transverse field �ITF� and anisotropic
Heisenberg �XXZ� models. Despite their simple Hamiltonian,
low-energy behavior of many systems can be captured
through them. Ising model in transverse field has the benefit
of exact solvability by mapping to free fermions �3�. Such
solvability provides the possibility to test the behavior of
entanglement and its scaling close to the quantum critical
point of the system and performs a finite-size scaling as has
been done in the seminal work of Osterloh et al. �4�. The
scenario is different in the XXZ model where the entangle-
ment between the two nearest-neighbor sites develops a
maximum at the isotropic point ��=1� without any singular-
ity in its first derivative �16� which vanishes at the critical
point �=1. However, the block-block entanglement �17� of
the spin-1/2 XX model with three-spin and uniform long-

range interactions shows a logarithmic and algebraic depen-
dence on the size of block for different phases. Logarithmic
divergences of the entanglement entropy is a general feature
of all one-dimensional critical systems where the coefficient
of the logarithm is just the central charge of the underlying
critical theory �18�.

The scaling of entanglement close to the phase transition
and its connection to the universality class of the model can
be further investigated through employing the renormaliza-
tion group �RG�. This method, as we will see in Secs. II and
IV, provides a rather analytic framework for treating the
phases of the model even for those that are beyond the exact
solution. In this stream the scaling of the entanglement gov-
erns the critical exponents of the model �19,20�. However,
the renormalization of quantum states has also been intro-
duced in terms of matrix product states �21�.

Both ITF and XXZ models can be supplemented with a
magnetic term, the so-called Dzyaloshinskii-Moriya �DM�
interaction, arising from the spin-orbit coupling. Based on
the symmetry aspects �22�, it can be derived microscopically
as a linear correction to the standard superexchange mecha-

nism �23�. The interaction has the form ��ij�D� ij · �Si
��Sj

��
where the sum is over the pairs of spins. Some quantum
antiferromagnetic �AF� systems are expected to be described
by the DM interaction with the underlying helical magnetic
structures. Ising model with DM interaction was extensively
studied �24�. The DM interaction drives the quantum fluctua-
tions resulting in a phase transition in the model. Quantum
critical point separates the antiferromagnetic and chiral
phases. The derivative of the entanglement diverges at the
quantum critical point with the critical exponent of the
model.

In this paper we address the behavior of the entanglement
in the XXZ model with DM interaction. Including the DM
interaction makes the phase diagram rich with a critical line
instead of a single point �25�. First, we employ the quantum
renormalization group to have a tractable problem. After-
ward, the entanglement between degrees of freedom is
treated through the renormalization of concurrence. We will
see that the derivative of entanglement becomes singular at
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the phase boundary and its scaling correspond to the gapless
and gapped phases of the model. The organization of the
paper is as follows. In Sec. II we briefly introduce the
renormalization-group approach. In Sec. III we exemplify
the effect of anisotropy and DM interaction. Then, in Sec. IV
we turn on to discuss the scaling of the entanglement, and
finally Sec. V is devoted to conclusions.

II. QUANTUM RENORMALIZATION GROUP

The quantum renormalization group presents a tractable
version of treating quantum systems at zero temperature.
Implementing the renormalization the original model Hamil-
tonian is replaced by an effective one in the cost of renor-
malizing coupling constants. In this way the original Hilbert
space is truncated to a reduced Hilbert space including the
effective degrees of freedom. Getting rid of less important
degrees of freedom gives rise to the flow of the coupling
constants in the parameter space of the model. The version
we employ to kill the degrees of freedom is Kadanoff’s block
approach since it is well suited to perform analytical calcu-
lations in the lattice models and they are conceptually easy to
be extended to higher dimensions �26–29�. In Kadanoff’s
method, the lattice is divided into blocks in which the Hamil-
tonian is exactly diagonalized. By selecting a number of low-
lying eigenstates of the blocks the full Hamiltonian is pro-
jected onto these eigenstates giving the effective
�renormalized� Hamiltonian.

The Hamiltonian of the XXZ model with DM interaction
in the z direction on a periodic chain of N sites is

H�J,�� =
J

4�
i

N

��i
x�i+1

x + �i
y�i+1

y + ��i
z�i+1

z

+ D��i
x�i+1

y − �i
y�i+1

x ��, D,J,� � 0. �1�

We divide the chain into blocks each containing three sites.
The block Hamiltonian �HB=�hI

B� of the three sites and its
eigenstates and eigenvalues are given in Appendix A of Ref.
�25�. However, we give only the degenerate ground states
since we need them for the evaluation of entanglement and
subsequent discussions as follows:

��0� =
1

	2q�q + ���1 + D2�

2�D2 + 1��↓↓↑�

− �1 − iD��� + q��↓↑↓� − 2�2iD + �D2 − 1���↑↓↓�� ,

�2�

��0�� =
1

	2q�q + ���1 + D2�

2�D2 + 1��↓↑↑�

− �1 − iD��� + q��↑↓↑� − 2�2iD + �D2 − 1���↑↑↓�� ,

�3�

where �↑ � and �↓ � are eigenstates of the �z Pauli operator
and q=	�2+8�1+D2�. The projection operator of the
ground-state subspace is defined by �P0= �⇑ ���0�+ �⇓ ���0���,
where ��0� and ��0�� are the doubly-degenerate ground states
and �⇑ � and �⇓ � are the renamed base kets in the effective

Hilbert space. We have kept two states ���0� and ��0��� for
each block to define the effective �new� site. Thus, the effec-
tive site can be considered as a spin 1

2 . The effective Hamil-
tonian is similar to the initial one, i.e.,

Heff =
J�

4 �
i

N

��i
x�i+1

x + �i
y�i+1

y + ���i
z�i+1

z

+ D���i
x�i+1

y − �i
y�i+1

x �� , �4�

where J� and D� are the renormalized coupling constants.
The renormalized coupling constants are functions of the
original ones which are given by the following equations.

J� = J�2

q

2

�1 + D2�, �� =
�

1 + D2�� + q

4

2

, D� = D .

�5�

The above RG equations show that there is a phase boundary
�c=	1+D2 that separates the spin-fluid phase, ��	1+D2,
from the Néel phase, ��	1+D2 �25�.

III. ENTANGLEMENT ANALYSIS

Many measures of entanglement have been introduced
and analyzed �30–33�, but the most relevant to this work is
the “entanglement of formation.” For a reduced density ma-
trix �ij of two qubits that arises after integrating out other
degrees of freedom, the entanglement between two qubits is
evaluated as E=h� 1

2 + 1
2
	1−C2�, where h is a binary entropy

function h�x�=−x log2 x− �1−x�log2�1−x� and C denotes the
concurrence �31� defined as

C = Max
�1 − �2 − �3 − �4,0� , �6�

where �k �k=1,2 ,3 ,4� are the square roots of the eigenval-
ues in descending order of the operator Rij,

Rij = �ij�̃ij, �̃ij = ��1
y

� �2
y��ij

� ��1
y

� �2
y� .

In this section we consider only a three-site block and study
the effect of the DM interaction and anisotropy parameter,
i.e., D and �, respectively, on the entanglement between two
spins located on the sides of the block. To this end, let ��0�
be the ground state of the block. By tracing the density ma-
trix �= ��0���0� on the middle site of the block, the obtained
reduced density matrix and Eq. �6� give an expression for the
concurrence in terms of couplings D and �.

For different values of DM interaction and anisotropy pa-
rameters, the plots of concurrence between the first and third
sites of block C13 have been depicted in Fig. 1. Consider first
the case of D=0. In this case the model becomes the known
XXZ model. Large value of � implies the Néel state. Natu-
rally this state is a product state without any entanglement
between its constituents. As the anisotropy parameter re-
duces the quantum fluctuations arising from the transverse
interactions have dominant effect and destroy the Néel state.
Indeed, the in-planar interactions drive the quantum correla-
tions, i.e., the qubits in the presence of quantum fluctuations
are quantum correlated. The main message of Fig. 1 is that
the suppression of the entanglement can be compensated by
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tuning the DM interaction. In the absence of the anisotropy,
the entanglement is insensitive to the DM value since both
transverse interaction and the DM term stimulate the quan-
tum fluctuations of the same kind. It is clearly seen that for a
nonzero value of anisotropy, turning on the DM interaction
restores the spoiled entanglement. The emerging of the Néel
state at a large value of anisotropy and dominant quantum
fluctuations at small value tempts to conclude that in the
thermodynamic limit of the model, there may occur quantum
phase transition with the critical boundary based on the com-
petition between the parameters in the Hamiltonian. We will
address this issue in Sec. IV.

IV. THERMODYNAMIC LIMIT AND NONANALYTIC
BEHAVIOR OF ENTANGLEMENT

In this section we would like to see how the quantum
phase transition in the model, which can be signaled as an
unstable fixed point of RG equations, can be realized by
examining the behavior of the entanglement. Indeed, the
nonanalytic behavior in some physical quantities is a feature
of second-order quantum phase transition. It is also accom-
panied by a scaling behavior since the correlation length di-
verges and there is no characteristic length scale in the sys-
tem at the critical point. As we already pointed out the
renormalization group allows us to capture the thermody-
namic properties of the model by considering a block of a
few sites that is analytically tractable. In fact, the global
properties of the model enter a few sites through the renor-
malizing of coupling constants. We exploit this advantage to
study the scaling of the entanglement in the model. Notice
that in the nth iteration of RG a system with size nB

n+1 �nB is
the number of sites in each block� describes effectively a
model consisting of only nB sites with the renormalized cou-
pling constants. The case of the XXZ model has been exten-
sively studied �20�, where the critical point �=1 separates
spin-fluid and Néel phases. However, for the present model
the contribution of the planar DM interaction tunes the criti-

cal point of the model due to involving the quantum fluctua-
tions. Since the DM interaction does not flow, as is clear
from the RG equations in Eq. �5�, it can be treated as a fixed
parameter. Now we put the next step forward to see the evo-
lution of the entanglement as the size of the system becomes
large through the RG iterations.

Zero iteration RG �or 0th step RG� represents a three-site
model which has been studied in Sec. III. However, the first
iteration RG stands for a nine-site model which effectively
describes a three-site model in the cost of renormalized cou-
pling constants. In that case the entanglement measures the
correlation between effective degrees of freedom. In each
RG iteration we can see the variation in the entanglement in
terms of an anisotropy parameter with a fixed value of the
DM interaction. All these data have been shown in Fig. 2. In
this figure we have set �=	2. It reveals that as the thermo-
dynamic limit is touched via the increasing of RG iterations,
the entanglement develops two rather different features. In-
deed, there is a value for D=1 which separates the different
features. This value is exactly the critical point of the model
which is consistent with �c=	1+D2 if we set �=	2. Differ-
ent features of the entanglement correspond to the emerging
phases on both sides of the quantum critical point. For an
anisotropy parameter larger than the values at the critical
point the Néel ordering dominates the phase of the model,
while for an anisotropy parameter less than the critical value
the increasing of the planar quantum fluctuations spoil any
magnetic ordering. This feature is not a specific character of
the model arising at �=	2. In fact, for any value of aniso-
tropy larger than 1 ���1� such behavior emerges with the
only difference that the critical point is tuned into a new one.

Further insight on the nonanalytic behavior can be probed
by the divergence of the first derivative of entanglement at
the critical point as long as the thermodynamic limit is ap-
proached. Plots related to the derivative of the entanglement
at different RG iterations have been shown in Fig. 3. Each
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FIG. 1. Concurrence between the first and third sites of a three-
site model in terms of anisotropy for different values of DM
interactions.
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FIG. 2. �Color online� Representation of the evolution of en-
tanglement entropy in terms of RG iterations at a fixed value of
anisotropy �=	2. Two different behaviors of the entanglement at
the large iterations of RG correspond to the emerging phases of the
model through the phase transition.
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plot reveals a minimum which becomes singular as the criti-
cal point is touched. At the limit of large sizes of the model
the singular behavior of the entanglement becomes more
pronounced. One may wonder how such emerging singular-
ity connects to the critical exponents or universality class of
the model. To this purpose, we shall see how the position of
the minimum Dmin and the minimum value itself � dC

d� �Dmin
scale by increasing the size �N� of the system. Such a com-
putation determines the scaling law of entanglement in one-
dimensional spin systems and explicitly uncovers an accurate
correspondence with the critical properties of the model. The
position of the minimum �Dm� of dC

d� tends toward the critical
point as Dm=Dc−N−0.46 which has been plotted in Fig. 4.
Moreover, we have derived the scaling behavior of y
�� dC

d� �Dm
versus N. This has been plotted in Fig. 5 which

shows a linear behavior of ln�y� versus ln�N�. The exponent
for this behavior is � dC

d� �Dm
�N0.46. It should be emphasized

that this exponent is directly related to the correlation length

exponent, 	, close to the critical point. It has been shown in
Ref. �19� that � dC

d� �Dc
�N1/	 and Dm=Dc−N−1/	.

The singular behavior of dC
d� corresponds to the phase tran-

sition for any value of the DM interaction. It exhibits a sin-
gular behavior at the transition points. The latter can be char-
acterized by analyzing the derivative of entanglement for all
values of the DM interaction. As an example, in Fig. 6 the
derivative of entanglement in a three-dimensional view has
been shown versus the D-� plane. Noticeably, the divergen-
cies in the derivative are in perfect correspondence with the
parameter value at which the phase transition occurs. The
crack in the figure is just the critical line separating antifer-
romagnetic from the spin-fluid phases.

All the above scaling functions hold for any value of the
anisotropy parameter as long as ��1, which is a direct re-
sult of the fact that the parameter D does not flow. This
means that the emerging DM interaction term in the model
does not change the universality class of the model. Thus far,
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FIG. 3. �Color online� First derivative of entanglement entropy
and its manifestation toward divergence as the number of RG itera-
tions increases �Fig. 2�.
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taking the derivative of entanglement with respect to the an-
isotropy parameter, the singularity appears at the critical
point. To get more insight on the role of the DM interaction
in the singularity of the entanglement, it is convenient to plot
dC
dD versus the DM interaction which is presented in Fig. 7.
Even at high RG iterations no singularity is detected. Note
that the pair �D=1,�=	2� stands for a point of singularity of
the derivative of entanglement with respect to � as in Fig. 3.
However, there is no signature of the divergence in the latter
quantity at this point when the derivative is taken with re-
spect to D. This, again, verifies that the DM interaction does
not change the universality class of the model.

Indeed, for ��	1+D2 the long-range behavior of the
model falls into the universality class of the Ising model that
underlines the appearance of the antiferromagnetic long-
range order �25�. We emphasize that here, the critical line is
�c=	1+D2 from the Ising phase, i.e., Dm→Dc

−. This directly
comes from the fact that the Ising phase is a gapped phase.
Approaching the critical point, the gap is closed as Eg��D
−Dc�	z, where z is the dynamical exponent. Since in the limit
of large sizes of the system the critical point is touched as
Dc−Dm�N−1/	, we are left with the result that the gap of the
Ising phase in the proximity of the critical point scales as
Eg�N−z.

Whenever ��	1+D2, the model is gapless. This can be
realized through a simple canonical transformation to the

well-known XXZ model �34,35� with the anisotropy �̃

= �
	1+D2 . This implies that the model falls into a gapless spin-

fluid phase when �̃�1.
Through this paper we have only considered the entangle-

ment between two sites living on the sides of a three-site
block, i.e., the middle site has been traced out through the
reduced density matrix. We would like to emphasize that we
have also considered the entanglement between the first two
sites of the block. The entanglement between the first and
second sites of the block is shown in Fig. 8. At the zero step
of RG it represents a three-site model where increasing the
DM interaction reduces the entanglement between sites. This

is in agreement with the behavior in Fig. 2 where the en-
tanglement between the first and third sites is increased by
increasing the DM interaction. The reason is when two par-
ties get more entangled, they restrict their entanglement with
a third party and vice versa, that is, a reminiscence of the
monogamy property �36� of entangled objects. In Fig. 8 for
D�1 which corresponds to the Ising phase, the entangle-
ment between two sites is shaved out. The anisotropy scales
to infinity under the RG transformation, dictating the spins to
align. On the contrary, for D�1 which corresponds to the
gapless phase, all plots behave independently under RG
transformations. Note that for D�1 neither first and second
sites �C12� nor first and third ones �C13� in the large RG steps
are entangled. This might not be surprising since in this limit
the model is characterized by a polarized state. The situation
is different for the gapless phase where the quantum fluctua-
tions dominate the system, suppressing the alignment of
spins.

If we were to take the derivative of plots, again the sin-
gularity reveals itself at the critical point. Although C13 and
C12 present different behavior, they share in exhibiting the
critical behavior of the model.

V. SUMMARY AND CONCLUSIONS

Condensed-matter systems have received impetus from
the concepts developed in quantum information theory. Its
central issue is that the entanglement is a unique measure of
the quantum correlations. In this stream we studied the en-
tanglement of a one-dimensional magnetic system in which
many physical properties of realistic complex materials can
be understood through it. This model is the well-known XXZ
model supplemented by a magnetic term arising from the
spin-orbit coupling. The phase diagram of the model is de-
termined by the anisotropy and DM parameters. In a simple
model consisting of only three qubits, the increasing of the
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FIG. 7. �Color online� The derivative of entanglement dC
dD versus

DM interaction for a fixed value of anisotropy �=	2. Even in the
limit of high iterations of RG no singularity is observed.
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FIG. 8. �Color online� The entanglement between the first and
second sites of the block in terms of the DM interaction at different
RG iterations. As before the anisotropy parameter has been fixed at
�=	2.
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anisotropy parameter favors the alignment of spins, antifer-
romagnetically yielding a product ground state without en-
tanglement. However, tuning the DM interaction tends to
build an entangled state and restores the spoiled entangle-
ment. This reviving of entanglement can be understood via
the fact that the DM interaction contributes the strong planar
quantum fluctuations which pose the alignment ordering.

The thermodynamic limit of the model is realized by
implementing the RG approach. This method not only allows
us to derive the critical points as well as the phase diagram of
the model but also allows us to keep track the variation in the
entanglement as the size of the system becomes large. RG
equations imply that the DM interaction tunes the critical
point, i.e., there is a quantum critical line instead of a single
critical point. However, the universality class of the model is
not affected in the presence of the DM interaction, which can
be clearly seen from both the RG equations and the scaling
we obtained for the entanglement. The role of the DM inter-
action can be well understood by analyzing and comparing
the derivative of entanglement with respect to the DM inter-
action and anisotropy parameter. In the former case, even for
large RG steps, no singularity is observed. This can also be
justified by mapping the model into the well-known XXZ
model using a canonical transformation. In this way, if we
change the coordinates of the phase diagram from �� ,D� to

�� , �
	1+D2 �, any critical lines defined by �c=	1+D2 will fall

on a single-quantum critical point. The derivative of en-
tanglement diverges at all points on the quantum critical line.
The singularity line corresponds to the phase boundary sepa-
rating the antiferromagnetic from the spin-fluid phases. The
singularity is accompanied by some scaling functions with
an emerging exponent that is related to the correlation length
exponent close to the quantum phase transition. We have also
verified that the gapped or gapless nature of a phase is rel-
evant to the crossing behavior close to quantum phase tran-
sition. Via enlarging the size of system, the singularity be-
comes more pronounced and touches the critical line from
the gapped phase �antiferromagnetic�. In other words, the
singularity touches the quantum critical point symmetrically
if both phases on the phase boundary are gapped, otherwise
it approaches the quantum critical point from the gapped
phase asymmetrically. This phenomenon gives the scaling of
the Ising phase with the size of the system which is governed
by the dynamical exponent.
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