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Entanglement and level crossings in frustrated ferromagnetic rings

Masudul Haque,1 V. Ravi Chandra,' and J ayendra N. Bandyopadhyay"2
"Max-Planck Institute for the Physics of Complex Systems, Nothnitzer Str. 38, 01187 Dresden, Germany
2Department of Physics, National University of Singapore, Singapore 117542, Singapore
(Received 2 January 2009; published 13 April 2009)

We study the entanglement content of a class of mesoscopic tunable magnetic systems. The systems are
closed finite spin-1/2 chains with ferromagnetic nearest-neighbor interactions frustrated by antiferromagnetic
next-nearest-neighbor interactions. The finite chains display a series of level crossings reflecting the incom-
mensurate physics of the corresponding infinite-size chain. We present dramatic entanglement signatures char-
acterizing these unusual level crossings. We focus on multispin and global measures of entanglement rather
than only one-spin or two-spin entanglements. We compare and contrast the information obtained from these
measures to that obtained from traditional condensed-matter quantities such as correlation functions.
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I. INTRODUCTION

The study of entanglement in the eigenstates of
condensed-matter Hamiltonians is a rapidly growing field of
interdisciplinary research [1]. While a great many results
have been reported, the typical situation is that entanglement
studies of condensed-matter systems provide alternative sig-
natures of phenomena already known from more traditional
condensed-matter techniques. In this paper, we use quantities
from quantum information to characterize a spin system
which is poorly understood in the condensed-matter litera-
ture, namely, spin rings with ferromagnetic nearest-neighbor
interactions frustrated by antiferromagnetic next-nearest-
neighbor interactions. We show how the unusual properties
of this system are reflected in quantum information quanti-
ties.

The systems we present are closed rings of N~ O(10)
spins. The study of finite-size quantum systems has enjoyed
a huge resurgence in the past decade because of cold-atom
and nanoscience developments, which provide the context
for designing and studying finite-size Hamiltonians for their
own fundamental properties rather than as mere tools for
investigating the thermodynamic limit N — . We will focus
on a sequence of ground-state level crossings in such sys-
tems, which reflect lattice-incommensurate correlations. We
show that certain measures of entanglement display remark-
ably strong parameter dependences near these level cross-
ings. Our calculations of the concurrence show that the en-
tanglement structure of the states between successive level
crossings is ideal for tuning the distance between spins
which are mutually entangled. We also present some results
on entanglement dynamics, again focusing on the effect of
the level crossings.

It is natural to think of ground-state level crossings as
finite-size analogs of first-order phase transitions in the ther-
modynamic limit. As a corollary, one expects that ground-
state properties change suddenly at the crossing (“transi-
tion”) point and that away from the exact crossing point the
system possesses no knowledge of the proximity of the
crossing. In this regard, our quantum information quantities
reveal a peculiarity of the crossings in our spin rings, be-
cause they seem to evolve in response to the proximity of the
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level crossings, already at some distance away from the pa-
rameter value where the crossing occurs, i.e., the ground
state is “aware” of the nearby crossing. This counterintuitive
phenomenon is clearly seen in multispin (but bipartite) en-
tanglements as well as fidelities, but not in traditional
condensed-matter quantities such as correlation functions.
Note that, since the level crossings are not expected in the
thermodynamic limit, this issue is meaningful only in our
mesoscopic context.

To calculate a bipartite entanglement, one has to first de-
cide on a partition. For a condensed-matter model or even its
finite-size versions, there are a large number of ways in
which the system can be bipartitioned. A variety of different
partitionings, and correspondingly different entanglements,
have been used for entanglement studies in condensed-matter
models. Many studies have focused on the entanglement be-
tween two sites as measured by the concurrence or negativity
(e.g., [2-8]), or the entanglement between one spin or site
with the rest (e.g., [9-11]). Such measures generically are not
expected to provide information different from traditional
condensed-matter quantities such as two-point correlation
functions, since these quantities can be related easily to cor-
relation functions (e.g., [5-9]). In this sense, many-site mea-
sures are more innovative. Examples are block entanglement
in one dimension (1D) [12] and in two dimensions (2D) [13],
and more recently studied spatially disconnected partitions
such as sublattice entanglement [14] and entanglement be-
tween labeled itinerant particles [15]. Such entanglement
measures are not easily related to usual correlation functions,
and therefore hold the possibility of providing genuinely new
tools for probing collective phenomena in many-particle sys-
tems. For our finite-sized chains, we will present entangle-
ment results for various partitions, both two site and many
site.

The dynamics of entanglement quantifiers in many-
particle systems has attracted some attention recently [16],
but is still a relatively poorly understood topic, reflecting the
general difficulty of nonequilibrium physics in quantum con-
densed matter. Entanglement dynamics has also gained inter-
est from the quantum information perspective, e.g., in the
context of adiabatic quantum computing [17] and in the con-
text of quantum state transfer (“quantum communication”)
through spin chains [18]. Obviously, the number of different
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FIG. 1. (Color online) [(a)—(c)] Various partitions of closed
chain for calculating bipartite entanglement entropy. Spins belong-
ing to partition A (B) are represented by open (full) circles. (d)
Geometry for exploiting the sublattice entanglement S, e.g., in an
experimental realization. In this setup S,; is simply the entangle-
ment between inner and outer rings. Dashed and full lines represent
J1 and J, interactions, respectively.

conceivable nonequilibrium situations is large; we are forced
to restrict the types of dynamics considered. In this paper we
will describe the entanglement dynamics after a sharp change
(quench) in interaction parameter.

After describing in Sec. II the various entanglement mea-
sures and partitions to be used, in Sec. III we introduce the
Hamiltonian and its condensed-matter context. Section III
also describes the level crossings and compares to other ex-
amples of similar crossings known to us. The next sections
present entanglement results starting in Sec. IV with the
quantities containing the most traditional information,
namely, the concurrences which are readily related to corre-
lation functions. Sections V and VI present quantum-
information quantities which are more distinct from
condensed-matter measures. Section VII describes our re-
sults on entanglement dynamics.

II. PARTITIONS AND ENTANGLEMENTS

We will mostly measure entanglement using the entangle-
ment entropy. The entanglement entropy between partitions
A and B is defined using the reduced density matrix of one
part (e.g., py=trg p obtained by tracing over B degrees of
freedom) to calculate the von Neumann entropy, S,=
—tr{p4 In p4]. Since the purpose of using entanglement in
many-particle systems is to provide viewpoints not present in
usual condensed-matter measures, we want to consider more
“nonlocal” entanglements. The partitions we choose for this
purpose are shown in Fig. 1.

The most obvious choice is for A and B to be spatially
connected blocks, in particular for each partition to be a con-
nected half of the ring [Fig. 1(a)]. This partitioning is sug-
gested by many existing results on block entanglement en-
tropies in one dimension [12].

Another choice is to take all the odd sites as partition A
and the even sites as partition B—this is then the entangle-
ment between A and B sublattices, in usual quantum magne-
tism language [Fig. 1(b)]. The entanglement between sublat-
tices has been studied for a number of spin chains and
lattices and extrema of S, have been claimed to characterize
some quantum phase transitions [14]. Note also that since it
is natural to think of the J;-J, chain as a “zigzag ladder”
(e.g., [19-21]), the sublattice entanglement is simply the en-
tanglement between the two legs of such a ladder. In the
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mesoscopic (finite-size) context that we are interested in, a
J-J, ring is likely to be implemented as shown in Fig. 1(d);
the two “legs” are now two J, rings (either inner or outer
rings, or an upper and a lower layer), connected by zigzag J,
interactions. From an experimental quantum information
processing perspective, the sublattice entanglement is natural
as it is simply the entanglement between inner and outer (or
upper and lower) rings.

Since the antiferromagnetic interaction in our case is the
next-nearest-neighbor interaction, we extend the idea of the
sublattice partition (ABAB...) and also use the AABBAA...
partition shown in Fig. 1(c). We call the entanglement entro-
pies corresponding to the above three partitions, respectively,
S1/2> S and Syyq.

Another nonlocal quantity motivated by quantum infor-
mation theory is the fidelity, the overlap between ground-
state wave functions at slightly different system parameters
[22]. We describe fidelities in our spin rings in Sec. VI.

We also present results for more “local” measures of en-
tanglement, namely, (1) entanglement entropy for two-site
partitions and (2) the concurrence C, measuring the entangle-
ment between sites i and i+ in the environment provided by
the rest of the chain [23]. The concurrence is defined as

C,=max|0, (\'/)\_1 -V, - \)\_3 - \")\i)],

where \; are the eigenvalues in decreasing order of the ma-
trix ps(o,® 0,)p,(0,®0,), and p, is the reduced density
matrix of the two-site subsystem. Since we will consider
singlet states, two-site reduced density matrices are strongly
constrained, and the concurrence is a simple function of the
spin-spin correlation functions. Two spins are entangled
(C,>0) if the correlations between them are sufficiently an-
tiferromagnetic, (S38%,)<-15, and in that case C,=
—6<S6Sf>—% (derived in, e.g., [6,24]; see also Ref. [22] in
[21]). The behavior of concurrence in various spin models is
briefly reviewed from the literature in Sec. IV in order to
provide context for our concurrence results.

We note that the two entanglement quantifiers we use, the
entanglement entropy and the concurrence, are both special
cases of the entanglement of formation [25], the former for
pure states and the latter for mixed states [23]. Thus, much of
our results can be thought of as a study of the entanglement
of formation between various partitions of frustrated ferro-
magnetic rings.

III. FRUSTRATED FERROMAGNETIC RINGS

We are concerned with closed chains of N localized spin-
1/2 objects, i.e., a finite-size spin chain, interacting via the
Hamiltonian

H=le Si'Si+1+]22 S;- S, (1)

where J; <0, J,>0, and i is the site index obeying periodic
boundary conditions appropriate to a ring. We express dis-
tances in units of lattice spacings and set 2=1. We define

B=J,/|J| and B=B~". This spin chain is known for any even
N to have a singlet ground state for <4 and a (N+1)-fold
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degenerate ferromagnetic ground-state manifold for >4

[26]. At B=4 a singlet ground state is degenerate with the
ferromagnetic manifold; these degenerate states are known
exactly [19,26-29].

We will confine ourselves to the singlet region, B
€ (0,4). The numerical results are presented for ring sizes
divisible by 4, in order to avoid complications due to the
parity of N/2. The rings for other even sizes have very simi-
lar behavior.

Although far less studied compared to the J;>0 case
(Majumdar-Ghosh chain), the frustrated ferromagnet Hamil-
tonian has already been known for some time to possess
some peculiar properties [19,26,30-33]. More recently, this
model has attracted a fresh surge of theoretical attention
[20,34—41], partly due to the appearance of materials whose
spin physics is described by this model (see references in
[20,34]). Most studies concentrate on finite magnetic fields
or finite temperatures and on properties in the thermody-
namic limit [20,30-40], or very near the transition point at

B=4[29,36,41,42].

Proliferation of ground-state level crossings

An unusual feature of the singlet region B e (0,4) is the
number of ground-state level crossings, which proliferate as
we increase the number of spins [26]. For N
=8,12,16,20,... spins, there are, respectively one, two,
three, four,... level crossings in this region. A very likely
interpretation is that the natural correlations in the chain for

B € (0,4) are incommensurate with wave vector dependent
on B. This incommensurability is resolved in different ways
by the different ground states. For larger rings, there are a
greater number of possibilities to accommodate the incom-
mensurate correlations into the finite system, and hence the
larger number of level crossings. The ground-state lattice
momentum alternates between 0 and 7 in the regions be-
tween successive level crossings.

Very similar level crossings appear in other spin models
known or thought to have spiral correlations. The examples
known to us are (1) the Majumdar-Ghosh chain for J,
>0.5J, [43]; (2) the “sawtooth” chain of Ref. [44]; (3) the
frustrated ferrimagnetic chain of Ref. [45]. This phenomenon
of proliferating level crossings in finite-size rings as a result
of incommensurate correlations, however, is not widely
known or discussed in the condensed-matter literature.

IV. CORRELATION FUNCTIONS AND CONCURRENCES

In this section we present more local quantities, in par-
ticular traditional condensed-matter quantities such as spin-
spin correlation functions and structure factors, and closely
related entanglements such as concurrences.

For singlet states, the correlation function (Si-Sj) is three
times <Sf-S§->; we will discuss the latter as a function of r=|i

—j|. Between B=0 and the first crossing, the signs of this
quantity have the structure
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FIG. 2. (Color online) Correlation functions and related quanti-
ties for N=16. (a) Correlation function at B=2. (b) The structure
factor, S(g), at B=2. (c) Position of the maximum of S(g), as a
function of ,l_% (d) Concurrences between two spins at distance r
=2,3,8. (e) Entropy of entanglement between partition consisting
of sites (i, i+r) and the remaining N-2 sites. Shown also for r
=2, 3, 8. In (c)—(e), nonlinear horizontal scale highlights the region
near B=4.

+’_s_’+s+9_,_s+3+"'-

for r=1,2,3,4,...., indicating that the state in this region
has a “spin-density-wave”-like |11 ] | T7...) structure. An
example is shown in Fig. 2(a) for N=16. The oscillating
magnitude/sign pattern also suggests “nematic”-like correla-
tions [35,46,47]; detailed distinctions are inappropriate since
this is not a macroscopic phase.

The sign pattern of (S;S%) changes at each level crossing;
for N=16 the patterns in the four regions (separated by level
crossings) are

+ - - 4+ 4+ = = 4+,
+ - - - 4+ 4+ - -,
+ - - - = - 4 4+,
+ + + - - - = -

The structure factor S(g), which is the Fourier transform of
the real-space correlation function, has peaks at @
=(2m/N)m, with the integer m decreasing in unit steps at

each level crossing, from m=N/2 at B:O to m=1 near the
ferromagnetic transition point [26]. Similar behavior [Fig.
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2(c)] is also seen in the other examples known to us where
finite-size spin systems have level crossings due to spiral
correlations [43,44].

We now consider the concurrences C, between spins i and
i+r on the rings. For most simple spin models, the concur-
rence does not extend significantly beyond the next-nearest-
neighbor site, i.e., C,~,=0 for many spin models, such as the
XY model in transverse field [2], the Heisenberg model
ground states on 1D chains and various 2D lattices [6], and
even in the Majumdar-Ghosh (J; >0, J,>0) chain [48,49].
In the XYZ model in a magnetic field, the concurrence ex-
tends to several lattice sites, but still has finite range [50].
Long-range concurrences are rare; the known examples cor-
respond to specific phase transitions [51] or to carefully con-
structed models and geometries [52,53].

In this context, it is noteworthy that our highly frustrated
spin rings display nonzero concurrences at all length scales

depending on the interaction parameter B [Fig. 2(d)]. For any

particular value of 3, only a couple of concurrences are non-
zero, but not necessarily the ones with small r. The r values

at which C, are nonzero, increases as ,é changes from 0 to 4,
from r=2 to r=N/2. In the region near the ferromagnetic

transition B=4, there is nonzero concurrence between spins
at opposite ends of the ring (C,_y,,>0), reflecting the un-
usual long-range quantum correlations of the so-called uni-
formly distributed resonating valence bond state [19,26] near

B=4. The behavior we have found indicates that the interac-
tion here acts as a knob to tune the distance between spins
with nonzero entanglement. This tunable distance is quite
different from the “entanglement range” of Ref. [51]; our
concurrences are not decaying with distance but are nonzero
only at a certain distance.

Figure 2(e) shows the entanglement between a two-spin
partition (consisting of site i and site i+r) and the rest of the
ring. Loosely speaking, this entanglement entropy is large
(small) when the concurrence between the two spins is small
(large). This reflects the intuitive idea that objects highly
entangled with each other are generally weakly entangled
with their environment.

V. ENTANGLEMENTS AND THEIR DERIVATIVES

Figure 3 displays entanglements S,,, S, and S,/4 for the
partitions explained in Fig. 1, and also the derivatives with

respect to 3 for the first two cases. The block entanglement
entropy Sy, is large compared to, say, the singlet ground
state of the nearest-neighbor Heisenberg ground state, in
which case S, ~ 1.28(1.354) for N=16(20). This is not sur-
prising, as the longer-range interaction causes larger en-
tanglement. The Majumdar-Ghosh chain (positive J; and J,)
similarly has relatively large block entanglement [21].

The sublattice entanglement S, starts from zero at 8=0,
because the two sublattices are decoupled in the J, — o limit.
After the first level crossing, S, also reaches larger values.
Note that S, is quite large in the Heisenberg and Majumdar-
Ghosh chains; in comparison the ground-state singlets of our
system have somewhat lower sublattice entanglement.
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FIG. 3. (Color online) 16-spin and 20-spin rings. Top: half-
block and sublattice entanglements, S/, (upper dashed), S; (solid),
S,,4 (lower dashed, magnified), against 8 in the singlet region. For
the N=20 curves, smaller values of ,l_? are omitted to focus on the
level crossings. Middle and bottom: derivatives of S;,(8) and

S,1.(B), respectively.

The derivatives of S;,,(8) and S, (B) (Fig. 3 lower pan-
els) are similar and have some striking features. First, at each
level crossing except the leftmost, the derivatives have
shapes reminiscent of a resonance, although there is no real

divergence. In other words, the entanglement curves S(3)
become steep but not completely vertical near each crossing.

Second, the S’ () curves appear to respond (curve upward or
downward) already some distance away from the level cross-
ing. While phase transition language is not completely ap-
propriate for our mesoscopic arrangements, the crossings in
this sense are loosely speaking “‘second-order” like rather

than “first-order” like. Finally, the S'(B) curves at the left-
most crossing lacks the resonancelike feature, indicating that
the first level crossing is different in nature.

The S, entanglement entropy is peculiarly small (shown
fourfold magnified in Fig. 3), although the relevant reduced
density matrix has the same dimensions as the other two
partitions. This peculiarity remains unexplained at present.

VI. FIDELITIES

The ground-state fidelity is defined as the overlap between
ground-state wave functions at nearby parameter values:

FdB) =B 1e)l(B+1e)).

Recent studies indicate that the fidelity provides useful sig-
natures of quantum phase transitions [22]. Since we concen-
trate on mesoscopic spin structures, our purpose is not to
study phase transitions but to present fidelity signatures of
the level crossings.

Figure 4 presents fidelity data for e=107>. The derivatives

F'(B) again show striking resonancelike features. The spe-
cial nature of the leftmost crossing is manifested even more
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FIG. 4. (Color online) Fidelity F.(8) with e=1073, and its de-
rivative. Since F' is generally very close to unity, it is more conve-
nient to plot 1 —F on a logarithmic scale. Note that the discontinuity
at the leftmost level crossing is pronounced in the fidelity but al-
most invisible in its derivative.

dramatically here—the derivatives match almost perfectly
across this crossing, even though the fidelities themselves are
discontinuous.

VII. TIME EVOLUTION AFTER A QUENCH

We now turn to the dynamics of entanglement in the frus-
trated ferromagnetic chain. While each entanglement quanti-
fier has its own dynamics when the quantum state of the spin
ring evolves outside equilibrium, a full study of the dynam-
ics of all such quantities is outside the scope of the present
investigation, especially since such comprehensive entangle-
ment dynamics studies are yet to be completed for simpler
spin systems. We therefore restrict the presentation to the
dynamics of the sublattice entanglement entropy (S;;).

The fact that our system has true level crossings places
them in the complete opposite limit to what is necessary for
adiabatic quantum computing [17]. Tt is therefore perhaps
natural to study the opposite limit of adiabatic parameter

changes, namely, parameter quenches where B changes as a
step function. In an isolated finite spin ring, a quench of this
type leads to oscillatory behaviors of most quantities, includ-
ing entanglement entropies for various partitions; there is no
relaxation mechanism for the system to reach its ground
state. This is shown in Fig. 5 (center panel). Studying the
evolution after a parameter quench from §; to B involves
following the wave function

|4()) = expl - iH(B))]|y(0))

explicitly in time, where the initial state |¢(0)) is the ground
state of H(B;). We performed this calculation by expanding
the operator e #5)" to sufficiently high order for each time
step.

We also explore relaxation issues, specifically the effect
of the 0- 77-0- 7 crossings, by adding an artificial dissipation
to the temporal evolution (Fig. 5 rightmost panel). Instead of
evolving in time 7, we evolve in #(1—i7). This form of damp-
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FIG. 5. (Color online) Left panel shows sublattice entanglement
entropy for N=12. Center (rightmost) panel shows evolution of S
after a quench, without (with) dissipation. Time is expressed in
units |J;|~". Initial values are B;=0.5 (solid), B;=3.5 (dotted), and
B;=3.85 (dashed). Final value is ,[_%f=2.0 in each case. Damping
constant in rightmost panel is shown for y=0.5 for all three 3;. For
B;=0.5, the thick solid line has smaller damping, y=0.1. In the
presence of dissipation, S, relaxes to the ground-state value when
the initial state has same lattice momentum (k=17) but not when the
initial state has different lattice momentum (k=0).

ing (“cooling”) preserves the lattice momentum but not the
energy. We display entanglement evolutions for the large-
damping case of y=0.5, and also a single example with
smaller damping, y=0.1. With damping, the sublattice en-
tanglement S, (¢) relaxes to the ground state S, correspond-

ing to the final B only if the starting state has the same lattice
momentum k. For N=12, two level crossings divides the
parameter space into regions I and III with the same k=
and an intermediate region II with k=0. The entanglement

entropy after a quench to 8=2 (region I) relaxes to the “cor-
rect” value if the starting ground state is in region I or III, but
not if it is in region II. The structure of level crossings and
alternating ground-state momenta thus allow selective target-
ing of quantum ground states, and therefore could serve as
the basis of selective variations of the basic idea behind adia-
batic quantum computing.

VIII. CONCLUSIONS

We have identified a mesoscopic system with unusual en-
tanglement properties. Our system is the finite-size analog of
the intriguing ferromagnetic-antiferromagnetic chain. The
surprising long-distance concurrence we have found, with
tunable distance, makes this system ideal for various quan-
tum information processing tasks. For example, entangle-
ment transport is here simply a matter of tuning the interac-
tion parameter while remaining in the ground state. Our
calculations of multiqubit entanglement entropies and the fi-
delities have revealed unexpected aspects of the level cross-
ings present in these systems. We have also presented en-
tanglement dynamics results, again indicating possible
quantum information processing applications.

Our work opens up a number of questions. First, our focus
on the 0-m-0--level crossings raises the following ques-
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tion: which of the entanglement behaviors reported here also
carry over to the other systems where such level crossings
have been observed? To the best of our knowledge, no uni-
fied study of such crossings exists. Our entanglement results
call for a general investigation of finite-size level crossing
sequences occurring as a result of incommensurate correla-
tions.

Second, our study of entanglement dynamics treats only a
minute fraction of the possible kinds of dynamics and only a
single entanglement measure out of many. Since entangle-
ment estimators are sensitive to a variety of wave function
characteristics not necessarily present in traditional
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condensed-matter measures such as correlation functions, the
dynamics of these new measures present rich opportunities
for characterizing nonequilibrium phenomena. Again, com-
prehensive investigations are called for, but the study of the
evolution of various entanglements would be appropriately
first done in simpler (perhaps exactly solvable) many-body
systems.
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