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We establish theoretical bounds on qubit detuning for some of the previously proposed controlled-NOT

�CNOT� logic gate implementations with weakly coupled Josephson phase qubits. It is found that in the two-
step, �iSWAP-based case the value of the detuning during the entangling operations must not exceed 2g, where
g is the characteristic coupling constant. In the single-step case we consider two practical, physically distinct
implementations, in which one of the qubits is driven by a concurrent rf pulse of fixed frequency. We find that
when the local drive is applied to the “reference” qubit �with which it is in resonance�, the detuning should not
exceed g. If the drive is applied to the “detuned” qubit, generation of the perfect CNOT gate is possible at any
value of detuning provided that the amplitude of the pulse can be made arbitrarily large.
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I. INTRODUCTION

The majority of the entangling gate designs proposed for
solid-state quantum computing architectures assume that dur-
ing the entangling pulses the qubits are maintained on strict
resonance �1–8� �see Refs. �9,10� for notable exceptions�.
This is hardly surprising since in the rotating wave approxi-
mation �RWA� typically used to analyze weakly coupled su-
perconducting qubits such resonant condition leads to rela-
tively simple and easily solvable Hamiltonians containing no
local �k

z terms. This prescription works well when the system
consists of only two qubits. However, if thousands of such
qubits are assembled into an integrated circuit, maintaining
them on resonance may become a difficult task. In that case,
architecture’s ability to reliably generate universal gates at
finite detuning would be of great practical importance.

Such detuning flexibility may also become an asset if it is
found that for some applications the use of qubits with in-
trinsically different level splittings is advantageous or out-
right necessary. Another issue that may arise when designing
a quantum computer is the possibility of making uncontrol-
lable errors during the fabrication process, which would pre-
vent the qubits from being tuned to resonance exactly. It
would be useful to have an architecture that is sufficiently
robust and capable of executing perfect entangling opera-
tions in the presence of such defects.

At present, in actual experiments, detuning is routinely
used to “decouple” the qubits in order to perform local �that
is, nonentangling� operations �1,11–13�. It would be conve-
nient if, after such decoupling is performed, the qubits did
not have to be brought back to resonance when doing subse-
quent, entangling operations. Also, from the purely theoreti-
cal standpoint, decoupling provides a useful limit against
which to check our calculations. If at larger detuning the
interaction is expected to lose its entangling properties, we
have to be able to predict a crossover into the regime when
the gate fidelity �of the controlled-NOT �CNOT�, in our case�
begins to deteriorate. Thus, the primary goal of this paper
will be to investigate the possibility of generating controlled-

NOT logic gates at finite detuning and to establish the exact
conditions under which the crossover occurs in some of the
previously proposed implementations.

To develop a good intuition when analyzing the crossover,
we will make extensive use of the following analytical tools.

To compare the Makhlin invariants G1,2�� , t� �14� of vari-
ous entangling gates U�� , t� with those of controlled-NOT,

G1�CNOT� = 0, G2�CNOT� = 1, �1�

we define the distance from the CNOT class by

d��,t� ª ��G1��,t��2 + �G2��,t� − 1�2, �2�

where � stands for various available controls �such as, for
example, Rabi frequencies and detuning� and t is the time to
do the entangling operation. Here we used the fact that quite
generally, G1�C, G2�R �cf. Eq. �6��. The distance function
introduced in Eq. �2� is not a measure of the gate fidelity.
Infinitely many gates, all differing from each other by arbi-
trary local rotations, may have the same value of d. Once the
entangling part of the gate is found to have d=0, it can then
be made into the canonical CNOT gate by additional local
rotations,

U��,t� → ei�RpostU��,t�Rpre = CNOT ��
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
	 ,

�3�

where an extra phase � accounts for det�CNOT�=−1.
Actual experiments motivate this choice of the distance

function. It is generally believed that doing local rotations is
easy, but performing entanglement is difficult. Thus, if by
using experimentally available interaction and the local con-
trols we can somehow steer the system into the “right”
equivalence class, then making the actual target gate would
be relatively straightforward.

Mathematically, the utility of the distance function comes
from the fact that exact CNOTs correspond precisely to its
singular points, as can be seen by taking the gradient,*ag@physast.uga.edu
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��,td =
Re�G1���,t Re�G1� + Im�G1���,t Im�G1� + �G2 − 1���,tG2

��G1�2 + �G2 − 1�2
. �4�

In situations when analytical solution cannot be found, such
singularities can be easily identified on the graph of d�� , t�.
The approximate values of local controls needed to generate
a CNOT gate can then be read off the graph and used as a seed
for a search, such as, for instance, Nelder-Mead simplex di-
rect search with bound constraints.

To visualize how various elements of the CNOT class are
actually reached in the course of the unitary evolution we
simulate the Weyl chamber steering trajectories c��t�
= (c1�t� ,c2�t� ,c3�t�) for the appropriate values of control pa-
rameters. The goal here is to establish a correspondence �15�,

U��,t� ↔ Uc���,t� = e−��/2��c1��,t�XX+c2��,t�YY+c3��,t�ZZ�, �5�

between the physical gate U�� , t� and the unphysical matrix
exponential Uc���,t� that formally resides in the same local
equivalence class as U�� , t�. The time-dependent vector c��t�
then represents the dynamically generated local class at ev-
ery moment of system’s evolution. In general, the class vec-
tors and the Makhlin invariants are related by

G1 = cos2��c1/2�cos2��c2/2�cos2��c3/2�

− sin2��c1/2�sin2��c2/2�sin2��c3/2�

+ �i/4�sin��c1�sin��c2�sin��c3� ,

G2 = 4 cos2��c1/2�cos2��c2/2�cos2��c3/2�

− 4 sin2��c1/2�sin2��c2/2�sin2��c3/2�

− cos��c1�cos��c2�cos��c3� . �6�

For the CNOT class, the standard choice is

c��CNOT� = �1,0,0� . �7�

Other class vectors representing the CNOT class can be made
from this one by any combination of �a� shifts by 2 units
along any of the c axes, e.g., �c1 ,c2 ,c3�→ �c1+2 ,c2 ,c3�,
�b� reverses of any two components, e.g., �c1 ,c2 ,c3�
→ �−c1 ,−c2 ,c3�, and �c� swaps of any two components, e.g.,
�c1 ,c2 ,c3�→ �c2 ,c1 ,c3�.

Finally, we define the intrinsic fidelity of the entangling
gate with respect to the target CNOT by

F ª 1 − tr
�Uc� − U�1,0,0��†�Uc� − U�1,0,0���

= − 7 + 2 cos���/4��c1 + c2 + c3 − 1��

+ 2 cos���/4��c1 − c2 + c3 − 1��

+ 2 cos���/4��c1 + c2 − c3 − 1��

+ 2 cos���/4��c1 − c2 − c3 − 1�� , �8�

where the second equality was established by direct calcula-
tion.

Our general strategy for generating controlled-NOT logic
at finite detuning will thus involve two major steps: �a� find-

ing the optimized entangling gate Uopt�U��opt , topt� that
minimizes the distance function d�� , t� and �b� finding the
corresponding class vector c�opt that gives the intrinsic fidelity
of Uopt.

Since there is an infinite number of possible local drives
and rotating frames to choose from, it will be necessary to
limit our discussion to situations that are simple and yet
powerful enough to provide some interesting physical in-
sights. Our specific choices for Rabi pulses and rotating
frames will be made in Eqs. �11�, �12�, �14�, �35�, �36�, �41�,
�42�, �52�, and �53�.

The paper is organized as follows.
In Sec. III we generalize to finite detuning the familiar

two-step CNOT sequence involving a local � pulse sand-
wiched between two �iSWAP entangling operations. The ex-
act bound on detuning that guarantees generation of the per-
fect �in the RWA� controlled-NOT logic gate will then be
given in Eq. �26�.

In Sec. IV generalization to finite detuning is performed
with the help of two physically different single-step CNOT

implementations. In Sec. IV B 1 we consider the case in
which, during the entangling operation, a concurrent rf drive
resonant with the reference qubit is applied. We will see that
in that case the restriction on detuning for perfect CNOT gen-
eration is somewhat stronger than in the two-step case �Eq.
�46��.

In Sec. IV B 2 we apply the same rf drive to the “de-
tuned” qubit and find that in this case perfect CNOT genera-
tion is possible at any value of detuning provided that the
amplitude of the pulse can be chosen to be sufficiently large.
We conclude in Sec. V with a brief summary of our results.

II. NOTATION

In what follows, we will use the notation that is conve-
nient for Lie algebraic manipulations:

Xk =
i

2
�k

x, Yk =
i

2
�k

y, Zk =
i

2
�k

z, �k = 1,2� ,

XX =
i

2
�2

x�1
x, YY =

i

2
�2

y�1
y, ZZ =

i

2
�2

z�1
z ,

XY =
i

2
�2

x�1
y, YX =

i

2
�2

y�1
x . �9�

Notice that �XX ,YY�= �XY ,YX�=0, and ZZ commutes with
each of the XX, YY, XY, and YX operators.

Why is this notation convenient? Consider the following
transformation �called “going to a rotated frame”� on the Lie
algebra su�4� of the two-qubit system:
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XX → e−�Z1XXe�Z1 = XX cos � + XY sin � . �10�

This transformation can be nicely interpreted as a rotation of
vector XX by an angle � in the real vector space spanned by
the generators of the group SU�4�. This is how the continu-
ous group acts on its Lie algebra. Mathematicians call it the
adjoint representation. The algebra plays the role of the rep-
resentation space for its own group. Since we do work at the
level of algebra, and not at the level of the Hilbert space
when discussing equivalence classes of gates, this is a very
convenient notation. It simplifies things. Also notice how
naturally the periodicity of 2� appears at this level of de-
scription.

Now, if we were to write the same transformation in terms
of the Pauli matrices, we would have to remember to put in
the imaginary unit i and the factors of 1/2 in the exponents
on the left-hand side of Eq. �10�,

e−i��z
1/2��2

x�1
x�ei��z

1/2 = ��2
x�1

x�cos � + ��2
x�1

y�sin � ,

breaking its beautiful symmetry.

III. TWO-STEP CNOT

A. Hamiltonian

When restricted to the computational subspace, the
Hamiltonian for two coupled Josephson phase qubits �no rf
drives yet� is given by

iH�t� = − ��Z1 + Z2� − �Z2 + 2�gxxXX + gyyYY + �g̃/2�ZZ

+ . . . � , �11�

where gxx ,gyy , g̃	� are the coupling constants, � is the level
splitting of the first �reference� qubit, and ���	� is the de-
tuning. Here, the dots ... may represent additional terms
�such as, e.g., XZ, ZX, etc.� that vanish in the rotating wave
approximation. For realistic systems, ��10 GHz, gxx ,gyy
�10 MHz. For capacitive coupling, gxx , g̃=0; for inductive
coupling, gyy=0, g̃
0.1gxx.

In the doubly rotating frame �frame 1� defined by
eiH0t�. . .�e−iH0t, with iH0�−��Z1+Z2�, after averaging over
fast oscillations and redefining the coupling constants, the
system Hamiltonian is time independent,

iHRWA = − �Z2 + iH + g̃ZZ , �12�

with

iH = g�XX + YY� = ig�
0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0
	 . �13�

Alternatively, to perform a useful consistency check, we
consider another rotating frame �frame 2� defined by

eiĤ0t�. . .�e−iĤ0t, with iĤ0=−��Z1+Z2�−�Z2. In this frame, the
RWA Hamiltonian is

iĤRWA�t� = iĤ�t� + g̃ZZ , �14�

where now we have a slowly varying interaction term given
by

iĤ�t� = g��XX + YY�cos��t� + �YX − XY�sin��t��

= ig�
0 0 0 0

0 0 e−i�t 0

0 e+i�t 0 0

0 0 0 0
	 . �15�

The central block of this matrix has the form of a rotating
drive for a spin-1/2 system whose analytical solution is well
known �16�. This observation will prove helpful for calcula-
tions in Sec. III B. We will now show how these two RWA
Hamiltonians lead to locally equivalent CNOT implementa-
tions.

B. Two-step control sequence

The well-known two-step CNOT control sequence for reso-
nant ��=0� qubits is given by �15,17�

CNOT�2� = ei��/4�Rpost�U�t�2�/2�e−�X1U�t�2�/2��Rpre, �16�

where

U�t�2�/2� = e−�t�2�/2��g�XX+YY�+g̃ZZ�

= e−�t�2�/2�g̃ZZ�
1 0 0 0

0 1/�2 − i/�2 0

0 − i/�2 1/�2 0

0 0 0 1
�

��iSWAP

,

�17�

with

t�2� = �/2g , �18�

and Rpost,pre are some local rotations. For future convenience
we will choose

Rpost = e−��/2�Y2, Rpre = e−��/2�Z2e+��/2��X2+X1�. �19�

Of particular importance to us is the entangling part
U�t�e−�X1U�t� that determines the local equivalence class of
the full gate. In our case the local class is controlled-NOT. We
ask the following question:

If ����0 �detuned qubits�, can we still use Eq. �16� to
generate the CNOT gate, possibly with different gate time and
different pre- and postrotations? The answer to this question
turns out to be “yes,” provided � is restricted in a certain
way.

The time evolution operator is readily found to be

U�t� = e−tg̃ZZ�
ei�t/2 0 0 0

0 u − iv 0

0 − iv u� 0

0 0 0 e−i�t/2
	 �20�

in frame 1, and
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Û�t� = e−tg̃ZZ�
1 0 0 0

0 ue−i�t/2 − ive−i�t/2 0

0 − ivei�t/2 u�ei�t/2 0

0 0 0 1
	 �21�

in frame 2, where

u = cos��2 + 4g2

2
t� +

i�
��2 + 4g2

sin��2 + 4g2

2
t� ,

v =
2g

��2 + 4g2
sin��2 + 4g2

2
t� . �22�

In both frames the Makhlin invariants �14� of
U�t /2�e−�X1U�t /2� are independent of the ZZ coupling and
are related to each other by

G1 = �G2 − 1�/2

= 
�2 + 8g2 cos2��t/4���2 + 4g2� − 4g2�2/��2 + 4g2�2,

�23�

as shown in Fig. 1. Thus, for any t, the resulting gates are
represented by the same point on the XX axis of the Weyl
chamber �see �15,18� for discussion�. Since CNOT class cor-
responds to G1=0, G2=1, we get

t�2�
� = 2��1 + 2n� � arccos��2/4g2�

��2 + 4g2 �, n = 0,1,2,3, . . . ,

�24�

where n labels various branches of t�2� vs �, and � takes care
of the double valuedness of each branch �see Fig. 1�. The

standard limit t�2�
− →� /2g at n=0 is trivially recovered for

vanishing detuning. In general, to fourth order in �→0,

t�2�
− = �1 + 4n��1/2g − �2/16g3 + 3�4/256g5��

+ �2/4g3 − �4/32g5,

t�2�
+ = �3 + 4n��1/2g − �2/16g3 + 3�4/256g5��

− �2/4g3 + �4/32g5. �25�

Notice that the two-step control sequence works perfectly
only when

���  2g 	 � , �26�

TABLE I. Two-step implementation of controlled-NOT logic us-
ing capacitively coupled Josephson phase qubits at finite detuning.
Ideal CNOT generation is possible if detuning is restricted to ���
2g. At ����2g, the parameters are shown for gates closest to
ideal CNOT in the sense of Eq. �2�. Only minimal-time CNOTs are
listed.

��� /g t�2� / �� /2g� G1 G2 c1 c2 F

0.00 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000
0.10 1.0003 0.0000 1.0000 1.0000 0.0000 1.0000
0.20 1.0014 0.0000 1.0000 1.0000 0.0000 1.0000
0.30 1.0031 0.0000 1.0000 1.0000 0.0000 1.0000
0.40 1.0056 0.0000 1.0000 1.0000 0.0000 1.0000
0.50 1.0088 0.0000 1.0000 1.0000 0.0000 1.0000
0.60 1.0128 0.0000 1.0000 1.0000 0.0000 1.0000
0.70 1.0177 0.0000 1.0000 1.0000 0.0000 1.0000
0.80 1.0235 0.0000 1.0000 1.0000 0.0000 1.0000
0.90 1.0303 0.0000 1.0000 1.0000 0.0000 1.0000
1.00 1.0383 0.0000 1.0000 1.0000 0.0000 1.0000
1.10 1.0476 0.0000 1.0000 1.0000 0.0000 1.0000
1.20 1.0585 0.0000 1.0000 1.0000 0.0000 1.0000
1.30 1.0713 0.0000 1.0000 1.0000 0.0000 1.0000
1.40 1.0863 0.0000 1.0000 1.0000 0.0000 1.0000
1.50 1.1043 0.0000 1.0000 1.0000 0.0000 1.0000
1.60 1.1261 0.0000 1.0000 1.0000 0.0000 1.0000
1.70 1.1536 0.0000 1.0000 1.0000 0.0000 1.0000
1.80 1.1901 0.0000 1.0000 1.0000 0.0000 1.0000
1.90 1.2445 0.0000 1.0000 1.0000 0.0000 1.0000
2.00 1.4142 0.0000 1.0000 1.0000 0.0000 1.0000
2.10 1.3793 0.0024 1.0048 0.9690 0.0000 0.9976
2.20 1.3453 0.0090 1.0181 0.9394 0.0000 0.9909
2.30 1.3124 0.0193 1.0386 0.9113 0.0000 0.9806
2.40 1.2804 0.0325 1.0650 0.8846 0.0000 0.9671
2.50 1.2494 0.0482 1.0964 0.8591 0.0000 0.9511
2.60 1.2194 0.0658 1.1316 0.8349 0.0000 0.9328
2.70 1.1905 0.0849 1.1698 0.8118 0.0000 0.9127
2.80 1.1625 0.1052 1.2104 0.7897 0.0000 0.8912
2.90 1.1355 0.1263 1.2526 0.7687 0.0000 0.8684
3.00 1.1094 0.1479 1.2959 0.7487 0.0000 0.8446

FIG. 1. �Color online� Makhlin invariants −G1�� , t�
=−�G2�� , t�−1� /2 as functions of qubit detuning � and the gate
time t for the two-step control sequence of Sec. III. CNOT class
corresponds to G1�� , t�=0, G2�� , t�=1. Notice that in order to
implement perfect controlled-NOT logic, qubit detuning must be re-
stricted to ���2g, in accordance with Eqs. �24� and �26�.
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as illustrated in Fig. 1. When detuning exceeds this bound,
the parameters for the gate closest to CNOT can be found in
closed analytical form:

t�2� = 2��1 + 2n�/��2 + 4g2,

c� = ��2/��arccos��G1�,0,0� ,

F = − 7 + 8 cos���/4��c1 − 1�� . �27�

For n=0, these are shown in Table I.
We note in passing that the local pre- and postrotations

�cf. Eq. �19�� generalize to

Rpost = e−��/2�Y2e−��/2���2Z2+�1Z1�,

Rpre = e−��/2���1+�2�Z2+�1Z1�e+��/2��X2+X1�, �28�

in frame 1, where in the experimentally important case of
minimal-time CNOT with n=0, to fourth order in �→0

�1
− = �8���/g� + �4 − ����/g�3�/�32�� ,

�2
− = �24�4 + ����/g� + �16 − 3����/g�3�/�96�� . �29�

Also,

Rpost = e−��/2�Y2e−��/2��̃Z2, Rpre = e−��/2��1+��Z2e+��/2��X2+X1�,

�30�

in frame 2.
To give an example, for capacitively coupled qubits at

�=1.00g, the gate time is t�2�=1.0383�� /2g�. The corre-
sponding CNOT is given by Eq. �16�, where now

U�t�2�/2� =�
0.9180 + 0.3965i 0 0 0

0 0.6124 + 0.3536i − 0.7071i 0

0 − 0.7071i 0.6124 − 0.3536i 0

0 0 0 0.9180 − 0.3965i
	 , �31�

and �2=0.5929, �1=0.2596, in frame 1, and

Û�t�2�/2� =�
1 0 0 0

0 0.7024 + 0.0817i − 0.2804 − 0.6491i 0

0 0.2804 − 0.6491i 0.7024 − 0.0817i 0

0 0 0 1
	 , �32�

and �̃=−0.1858, �=0.3333, in frame 2. Here, the local pre- and postangles required to generate the perfect CNOT gate have
been found numerically.

On the other hand, at maximally allowed detuning �=2.00g, we have t�2�=1.4142�� /2g�, and

U�t�2�/2� =�
0.4440 + 0.8960i 0 0 0

0 0.7071i − 0.7071i 0

0 − 0.7071i − 0.7071i 0

0 0 0 0.4440 − 0.8960i
	 , �33�

�2=1.7071, �1=0.7071, in frame 1, and

Û�t�2�/2� =�
1 0 0 0

0 0.6336 + 0.3140i − 0.6336 − 0.3140i 0

0 0.6336 − 0.3140i 0.6336 − 0.3140i 0

0 0 0 1
	 ,

�34�

�̃=−0.4142, �=1.0000, in frame 2. The corresponding steer-

ing trajectory generating the CNOT gate in this case is shown
in Fig. 2.

IV. SINGLE-STEP CNOT

In what follows, we will limit our discussion to Hamilto-
nians with g̃=0 �capacitive coupling only�. In that case
a single Rabi pulse suffices to implement single-step
controlled-NOT logic �18�. When g̃�0, local drives �one of
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which is much stronger than the other� must be applied to
both qubits.

A. Resonant case

The Hamiltonian for two capacitively coupled resonant
Josephson phase qubits, one of which is driven by a resonant
rf pulse, is given by

iH�t� = − ��Z1 + Z2� + 2� cos��t�X1 + 2gYY , �35�

where � is the corresponding Rabi frequency. Here we as-
sume that g��, which differs from the condition g	�
	� adopted in Ref. �9�. The RWA Hamiltonian �in frame 1�
is then

iHRWA = �X1 + g�XX + YY� , �36�

with the corresponding CNOT sequence being �18�

CNOT�1� = ei�5�/4�RpostU�t�1��Rpre, �37�

where

U�t�1�� = e−t�1���X1+g�XX+YY�� =
�− 1�n

�2 �
1 0 0 − i

0 1 − i 0

0 − i 1 0

− i 0 0 1
	 ,

�38�

with

t�1� = �/2g, � = g��4n�2 − 1, n = 1,2,3, . . . , �39�

and

Rpost = e−��/2�Y2, Rpre = e−��/2�Z2e+��/2��X2−X1�. �40�

Provided the RWA is still applicable, there is an infinite
number of possible local drives, � /g=�15�3.8730,

�63�7.9372, and �143�11.9583, that generate perfect
CNOT gates of the same minimal duration t�1� / �� /2g�=1.

The corresponding graphs of −d1/4�� , t� at �=0 are
shown in Figs. 3�a� and 6�a�. �The extra minus sign and the
exponent 1/4 are chosen to make the peaks representing
CNOTs more pronounced.�

B. Nonresonant case

In the following sections we will generalize Eq. �37� to
finite detuning, ��0. Two physically distinct generalizations
will be considered here depending on which of the two
qubits is undergoing a local Rabi drive. Section IV B 1
deals with the case in which a resonant drive is applied
to the reference qubit no. 1. Section IV B 2 considers the
case in which a nonresonant drive is applied to the detuned
qubit no. 2.

1. Driving the reference qubit

Here the Hamiltonian is given by

iH�t� = − ��Z1 + Z2� − �Z2 + 2� cos��t�X1

reference qubit drive

+ 2gYY ,

�41�

or,

iHRWA = − �Z2 + �X1 + g�XX + YY� . �42�

The Makhlin invariants of the entangling part U�t�
=exp�−iHRWAt� can be found in closed form, and are

G1 = �1/4��N1 + N2 + N3 + N4 + N5�2/�ABK�4,

G2 = �M1 + M2 + M3 + M4 + M5 + M6 + M7�/�ABK2�2,

�43�

where
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FIG. 2. Two-step CNOT implementation of entangling duration t�2�=�2�� /2g� for capacitively coupled Josephson phase qubits at
maximally allowed detuning, �=2g. Panel �a�: time dependence of the steering parameters c1�t� and c2�t�. In the middle of the sequence, a
fast � pulse is applied to one of the qubits. Dashed curves represent the resonant case, �=0. Panel �b�: the corresponding steering trajectory
on the Weyl chamber. Here, c3=0 at all times.
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K = ��2��2 + g2� + g4,

A = ��2 + �2 + 2�g2 + K�, B = ��2 + �2 + 2�g2 − K� ,

�44�

and

N1 = 2�2
�6 − �4�2�2 + g2� − �2�g4 − �2��2 + 3g2��

+ g4�2g2 + �2�� ,

N2 = g2��4��2 + g2� + �2�2��2 − g2 − 2K�

+ 2�2g2�g2 + K��cos�At� ,

N3 = g2��4��2 + g2� + �2�2��2 − g2 + 2K�

+ 2�2g2�g2 − K��cos�Bt� ,

N4 = 2�2g2A2B2 cos�At/2�cos�Bt/2� ,

N5 = 2�2g2��2 − �2�AB sin�At/2�sin�Bt/2� ,

M1 = �2g8�3�2 + 4g2� + �8�3�4 + 2g2��2 + g2��

− 2�2�6�3�4 + 2g2�2�2 + g2��

+ �4�3�8 + 10�6g2 − 2�4g4 + 4�2g6 + g8�

+ 2�2�2g4�3�4 + g2�7�2 − g2�� ,

M2 = 2�2g2��2g2 + g4 + �2�2���4 + 2g2�g2 + K�

+ �2��2 − g2 − 2K��cos�At� ,

M3 = 2�2g2��2g2 + g4 + �2�2���4 + 2g2�g2 − K�

+ �2��2 − g2 + 2K��cos�Bt� ,

M4 = 4�2g2��2�2 + g4���4 − 2�2�2

+ �2��2 + 4g2��cos�At/2�cos�Bt/2� ,

M5 = 4�2g2
�4�2 − �2��4 + g2�2�2 + g2��

− �2g4�AB sin�At/2�sin�Bt/2� ,

M6 = �4g4��4 + 2�2g2 + 2g2�2�2 + g2� + �4�cos�At�cos�Bt� ,

M7 = �4g4��2 + 2g2 + �2�AB sin�At�sin�Bt� . �45�

The corresponding distance function is plotted in Fig. 3. Nu-
merical analysis then shows that CNOT logic can only be
generated exactly if detuning is restricted by

���  g 	 � . �46�

The pre- and postrotations generalize to

Rpost = e−��/2�Y2e−��/2���2Z2+�1Z1�,

Rpre = e−��/2���1+�2�Z2+�1Z1�e+��/2��X2−�1+�1�X1�. �47�

FIG. 3. �Color online� Graph of �−d1/4�� , t�� as a function of entangling time t and Rabi frequency � at different values of detuning �
for the single-step implementation of Sec. IV B 1 in which a resonant local drive �X1 is applied to the reference qubit no. 1. Singularities
at �−d1/4�=0 correspond to various CNOT gates. Panels �a�–�c�: as ��� /g→1−, the two sets of CNOTs having 1� t / �� /2g��3 gradually
approach each other while maintaining separation even at ���=g. Panel �d�: at larger values of detuning the graph flattens out and the distance
function tends to its maximal constant value dmax=�5. In this regime �����g� perfect CNOT generation is no longer possible.

CONTROLLED-NOT LOGIC WITH NONRESONANT… PHYSICAL REVIEW A 79, 042316 �2009�

042316-7



For example, at maximally allowed �=1.00g, we get t�1�=1.2753�� /2g� and �=3.7781g. The resulting sequence is given
in Eq. �37�, where now the entangling part is

U�t�1�� = e−t�1��−�Z2+�X1+g�XX+YY�� =�
− 0.2552 − 0.4300i 0.4823 − 0.1323i − 0.4823 + 0.1323i 0.5i

0.4823 − 0.1323i − 0.5i 0.5i 0.4823 + 0.1323i

− 0.4823 + 0.1323i 0.5i 0.5i 0.4823 + 0.1323i

0.5i 0.4823 + 0.1323i 0.4823 + 0.1323i − 0.2552 + 0.4300i
	 ,

�48�

and the local angles are �2=0.8294, �1=−0.1705, and
�1=−0.9998. Figure 4 shows the Weyl chamber steering tra-
jectory generating the CNOT class in this single-step example
with �=1.00g.

For other values of qubit detuning, the gate parameters
required to implement single-step CNOT logic are listed in
Table II. Notice that when detuning exceeds the limits set in
Eq. �46�, our implementation begins to deviate from its per-
fect controlled-NOT form. Figure 5 shows the single-step
steering trajectory simulated at �=1.50g that has t�1�
=1.0961�� /2g� and �=3.7152g. Direct search for local
pulses �not shown� results in the optimized gate,

Uopt =�
0.9866 − 0.1122i 0.0258i 0.1158

− 0.1122i 0.9866 − 0.1158 − 0.0258i

− 0.1186 0.0009i 0.1122i 0.9866

− 0.0009i 0.1186 0.9866 0.1122i
	 ,

�49�

whose intrinsic fidelity with respect to the canonical CNOT

gate is F=0.8927.
To find the gate parameters in the experimentally impor-

tant limit �→0, t�1�→� /2g, �→�15g, we write

t�1� = �/2g + t1��/g� + t2��/g�2+ . . . ,

� = �15g + �1��/g� + �2��/g�2+ . . . . �50�

Expanding G1=0, G2=1 to second order in � and solving for
t1, t2, �1, �2, gives

t�1� = �/�2g��1 + �394 – 105����/g�2/�225��� ,

� = �15g�1 + �3345� – 10816���/g�2/�6750��� . �51�

2. Driving the detuned qubit

In this case the Hamiltonian is given by

iH�t� = − ��Z1 + Z2� − �Z2 + 2� cos��t�X2

detuned qubit drive

+ 2gYY ,

�52�

or,

iHRWA = − �Z2 + �X2 + g�XX + YY� . �53�

Here, the rf pulse is not resonant with the corresponding
qubit. The Makhlin invariants of U�t�=exp�−iHRWAt� are

G1 = �N1 + N2 + N3 + N4 + N5�2/�A2B2�g2 + �2��2,
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FIG. 4. Single-step CNOT implementation of entangling duration t�1�=1.2753�� /2g� and Rabi frequency �=3.7781g at maximally
allowed detuning �=g for implementation of Sec. IV B 1 in which the local drive �X1 is applied to the reference qubit no. 1. Panel �a�: time
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G2 = �M1 + M2 + M3 + M4 + M5 + M6 + M7�2/�AB�g2

+ �2��2, �54�

where

A = ��2 + 2g2 + �2 + 2g�g2 + �2,

B = ��2 + 2g2 + �2 − 2g�g2 + �2, �55�

and

N1 = − g2��4 − �4� ,

N2 = �2�AB�2 cos�At/2�cos�Bt/2� ,

N3 = �2��2 + �2�AB sin�At/2�sin�Bt/2� ,

N4 = g2��4 + �2�A2 − �2��cos2�At/2� ,

TABLE II. Single-step implementation of Sec. IV B 1 with the local drive �X1 applied to the reference
qubit no. 1. Ideal CNOT generation is possible if detuning is restricted to ���g. Only minimal-time CNOTs are
listed.

��� /g t�1� / �� /2g� � /g G1 G2 c1 c2 F

0.00 1.0000 3.8730 0.0000 1.0000 1.0000 0.0000 1.0000
0.10 1.0009 3.8724 0.0000 1.0000 1.0000 0.0000 1.0000
0.20 1.0037 3.8707 0.0000 1.0000 1.0000 0.0000 1.0000
0.30 1.0085 3.8679 0.0000 1.0000 1.0000 0.0000 1.0000
0.40 1.0155 3.8638 0.0000 1.0000 1.0000 0.0000 1.0000
0.50 1.0253 3.8583 0.0000 1.0000 1.0000 0.0000 1.0000
0.60 1.0386 3.8513 0.0000 1.0000 1.0000 0.0000 1.0000
0.70 1.0568 3.8422 0.0000 1.0000 1.0000 0.0000 1.0000
0.80 1.0827 3.8303 0.0000 1.0000 1.0000 0.0000 1.0000
0.90 1.1245 3.8132 0.0000 1.0000 1.0000 0.0000 1.0000
1.00 1.2753 3.7781 0.0000 1.0000 1.0000 0.0000 1.0000
1.10 1.2330 3.7470 0.0030 0.9994 0.9653 0.0365 0.9937
1.20 1.1945 3.7323 0.0106 0.9978 0.9339 0.0695 0.9773
1.30 1.1590 3.7250 0.0214 0.9955 0.9054 0.0994 0.9536
1.40 1.1262 3.7203 0.0340 0.9927 0.8795 0.1267 0.9248
1.50 1.0961 3.7152 0.0476 0.9898 0.8559 0.1514 0.8927
1.60 1.0686 3.7074 0.0614 0.9867 0.8344 0.1740 0.8585
1.70 1.0438 3.6952 0.0749 0.9837 0.8147 0.1946 0.8232
1.80 1.0216 3.6772 0.0879 0.9808 0.7966 0.2134 0.7875
1.90 1.0019 3.6519 0.1003 0.9780 0.7801 0.2307 0.7519
2.00 0.9849 3.6179 0.1118 0.9754 0.7648 0.2466 0.7168
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FIG. 5. Single-step implementation generating the gate closest to CNOT in terms of Eq. �2� at �=1.5g for implementation of Sec. IV B 1
in which the local drive �X1 is applied to the reference qubit no. 1. Panel �a�: time dependence of the steering parameters c1�t� and c2�t�.
Closest class is reached at t�1�=1.0961�� /2g� and has �=3.7152g. Panel �b�: the corresponding steering trajectory on the Weyl chamber.
Here, c3=0 at all times. Dashed curves represent the resonant case, �=0.
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N5 = g2��4 + �2�B2 − �2��cos2�Bt/2� ,

M1 = 2�8 + 4�6�2 + �4�2�4 + 8�2g2 + g4�

+ 2�2�2g2��2 + g2� + 3�4g4 + 4�2g6,

M2 = 2�2g2��4 + g�2�3g + 2�g2 + �2�

+ 2g3�g + �g2 + �2��cos�At� ,

M3 = 2�2g2��4 + g�2�3g − 2�g2 + �2�

+ 2g3�g − �g2 + �2�cos�Bt� ,

FIG. 6. �Color online� Graph of �−d1/4�� , t�� as a function of entangling time t and Rabi frequency � at different values of detuning �
for the single-step implementation of Sec. IV B 2, in which a nonresonant local drive �X2 is applied to the detuned qubit no. 2. The peaks
at �−d1/4�=0 correspond to various controls that generate the CNOT equivalence class. Panels �a�–�c�: notice how a pair of CNOTs having
� /g��15 and 1� t / �� /2g��2 gradually disappears as detuning increases. �This process repeats itself for other pairs of CNOTs at larger
detuning.� Panel �d�: minimal-time CNOTs �t�� /2g� can be generated at any � provided � is chosen to be sufficiently large.
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TABLE III. Single-step implementation of Sec. IV B 2 with the local drive �X2 applied to the detuned
qubit no. 2.

��� /g t�1� / �� /2g� � /g G1 G2 c1 c2 F

0.00 1.0000 3.8730 0.0000 1.0000 1.0000 0.0000 1.0000
0.10 1.0004 3.8698 0.0000 1.0000 1.0000 0.0000 1.0000
0.20 1.0016 3.8600 0.0000 1.0000 1.0000 0.0000 1.0000
0.30 1.0036 3.8437 0.0000 1.0000 1.0000 0.0000 1.0000
0.40 1.0064 3.8205 0.0000 1.0000 1.0000 0.0000 1.0000
0.50 1.0102 3.7902 0.0000 1.0000 1.0000 0.0000 1.0000
0.60 1.0149 3.7523 0.0000 1.0000 1.0000 0.0000 1.0000
0.70 1.0208 3.7061 0.0000 1.0000 1.0000 0.0000 1.0000
0.80 1.0280 3.6509 0.0000 1.0000 1.0000 0.0000 1.0000
0.90 1.0368 3.5853 0.0000 1.0000 1.0000 0.0000 1.0000
1.00 1.0474 3.5077 0.0000 1.0000 1.0000 0.0000 1.0000
1.10 1.0605 3.4155 0.0000 1.0000 1.0000 0.0000 1.0000
1.20 1.0768 3.3047 0.0000 1.0000 1.0000 0.0000 1.0000
1.30 1.0982 3.1678 0.0000 1.0000 1.0000 0.0000 1.0000
1.40 1.1281 2.9888 0.0000 1.0000 1.0000 0.0000 1.0000
1.50 1.1794 2.7131 0.0000 1.0000 1.0000 0.0000 1.0000
1.54 1.2259 2.4928 0.0000 1.0000 1.0000 0.0000 1.0000
1.60 1.2536 2.3693 0.0003 0.9999 0.9891 0.0115 0.9994
1.70 1.2332 2.4501 0.0024 0.9995 0.9688 0.0328 0.9949
1.80 1.2132 2.5343 0.0062 0.9986 0.9498 0.0529 0.9869
1.90 1.1936 2.6220 0.0112 0.9975 0.9321 0.0716 0.9760
2.00 1.1745 2.7132 0.0172 0.9961 0.9155 0.0891 0.9628
2.10 1.1559 2.8083 0.0238 0.9945 0.9000 0.1055 0.9480
2.20 1.1378 2.9074 0.0308 0.9929 0.8856 0.1207 0.9319
2.30 1.1203 3.0112 0.0380 0.9911 0.8722 0.1349 0.9151
2.40 1.1032 3.1206 0.0451 0.9892 0.8599 0.1480 0.8980
2.50 1.0865 3.2368 0.0521 0.9873 0.8485 0.1601 0.8808
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M4 = �4��4 + 2�2��2 + g2�

+ ��4 + 4�2g2 + 2g4��cos�At�cos�Bt� ,

M5 = �4��2 + ��2 + 2g2��AB sin�At�sin�Bt� ,

M6 = 4�2g2��4 + 2�2�2 + �2��2 + 4g2��cos�At/2�cos�Bt/2� ,

M7 = − 4�2g2��2 − �2�AB sin�At/2�sin�Bt/2� . �56�

In the limit �→0, t�1�→� /2g, �→�15g, to the second or-
der in �,

t�1� = ��/2g��1 + �15� + 8���/g�2/�450��� ,

� = �15g�1 – 16�15� + 8���/g�2/�3375��� . �57�

The corresponding distance function is plotted in Fig. 6. In
this case, the pre- and postrotations have the form

Rpost = e−��/2��1+�2�Y2e−��/2���Z2+Z1�,

Rpre = e−��/2���1+��Z2+�Z1�e+��/2���1+�2�X2−X1�. �58�

Figure 7 shows the trajectory generated at subcritical
value of detuning �=1.50g. The exact CNOT is reached at
t�1�=1.1794�� /2g�, provided the Rabi frequency is set to
�=2.7131g, and the local angles are chosen to be
�=−0.1156, �2=−0.3260. In this case,

U�t�1�� = e−t�1��−�Z2+�X2+g�XX+YY�� =�
− 0.6610 + 0.2512i − 0.0626 − 0.3408i 0 0.6164i

− 0.0626 − 0.3408i − 0.7071 0.6164i 0

0 0.6164i − 0.7071 − 0.0626 + 0.3408i

0.6164i 0 − 0.0626 + 0.3408i − 0.6610 − 0.2512i
	 .

�59�

Figure 8 shows how the gate closest to CNOT is reached at
�=2.50g, which is greater than the maximally allowed de-
tuning ���1.54g� for this range of Rabi frequencies
����15g�. For other values of local controls, see Table III.

The most important feature of this implementation is that
it allows generation of exact CNOT logic at any value of qubit
detuning, as long as the amplitude of nonresonant pulse can
be chosen to be sufficiently large. For instance, at the above-
mentioned �=2.50g it is still possible to make a perfect
CNOT gate of short duration t�1�=1.0650�� /2g� by setting
�=6.9836g �as depicted in Fig. 6�d��.

V. CONCLUSION

In summary, we have demonstrated that various CNOT

control sequences previously proposed for resonant Joseph-

son phase qubits may still be used at finite detuning. To
achieve high fidelity of the resulting gate the value of the
detuning during the entangling operations should not be
greater than 2g in the two-step implementation and g in the
single-step implementation with the locally driven reference
qubit. When a specially chosen local nonresonant drive is
applied to the detuned qubit, perfect CNOT generation is pos-
sible at any � provided that the pulse strength can be made
arbitrarily large.
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