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We characterize the conditions under which a translationally invariant matrix product state �MPS� is invari-
ant under local transformations. This allows us to relate the symmetry group of a given state to the symmetry
group of a simple tensor. We exploit this result in order to prove and extend a version of the Lieb-Schultz-
Mattis theorem, one of the basic results in many-body physics, in the context of MPS. We illustrate the results
with an exhaustive search of SU�2�-invariant two-body Hamiltonians which have such MPS as exact ground
states or excitations.
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I. INTRODUCTION

Matrix product states �MPSs� �1,2� encapsulate many of
the physical properties of quantum spin chains. Of particular
interest in various physical contexts is the subset of transla-
tionally invariant �TI� MPS, originally introduced as finitely
correlated states �1�. Their importance stems from the fact
that with a simple tensor, A, one can fully describe relevant
states of N spins, which, at least in principle, should require
one to deal with an exponential number of parameters when
written in a basis in the corresponding Hilbert space H�N.
Thus, all the physical properties of such states are contained
in A. It is therefore important to obtain methods to extract the
physical properties directly from such a tensor without hav-
ing to resort to H�N.

An important physical property of a TI state, �, is the
symmetry group under which it is invariant. That is, the
group G such that

ug
�N��� = ei�g��� , �1�

where g�G and ug is a unitary representation on H. In a
recent paper �3� we showed that for a certain kind of MPS
�those fulfilling the so-called injectivity condition �1,2��, this
symmetry group is uniquely determined by the symmetry
group of A �with a tensor product representation�. Roughly
speaking this means that by studying the symmetries of A we
can obtain those for the whole state �. This result allows us,
for example, to shed a different perspective into string order
�3�, a key concept in strongly correlated states in many-body
quantum systems.

Another relevant property of MPS is that they are all ex-
act ground states �GSs� of short-range interacting
�frustration-free� Hamiltonians �1,2�. In particular, for every
TIMPS we can always build a �so-called� “parent” Hamil-
tonian for which it is the ground state. Of particular interests
are TIMPS with two-body parent Hamiltonians, that is,
whose parent Hamiltonian consists of two-body interactions
only, and among those, the ones which have a large symme-
try group, such as SU�2�. The reason is that those are the
ones that naturally appear in condensed-matter problems.
Two prominent examples are the AKLT �4� and the
Majumdar-Ghosh �5� states, which have two-body parent

Hamiltonians with SU�2� symmetry. They have served as toy
models to understand certain physical behavior in real physi-
cal systems, such as the existence of a Haldane gap �6� in
spin chains with integer spin or the phenomenon of dimer-
ization �5�, respectively. Despite their key role in the under-
standing of spin chains, there are very few other examples
known of TIMPS with SU�2� symmetry and with a two-body
parent Hamiltonian �1,7,8�.

In this work we first generalize the results of Ref. �3� to
arbitrary TIMPS. This enables us to derive some generic
properties about those states, as well as to obtain a simple
proof for a version of the Lieb-Schultz-Mattis theorem
�9,10�. This celebrated theorem states that all Hamiltonians
with SU�2� symmetry are gapless for semi-integer spin
�dim�H�=n+1 /2, n=0,1 , . . .�. In our case, we can prove
that all TIMPS corresponding to systems with semi-integer
spins cannot be the unique ground state of a local frustration-
free Hamiltonian. Furthermore, we can extend the proof to
other groups, such as U�1� for spin 1/2 systems, and find
counterexamples for this last case when the spin is 5/2 or
larger.

In the second part of our work we concentrate on MPS
that are eigenstates �not necessarily grounds states� of a �so-
called “parent”� Hamiltonian which has SU�2� symmetry and
contains two-body interactions only. We find other families
of Hamiltonians beyond the well-known Affleck-Kennedy-
Lieb-Tasaki �AKLT� and Majumdar-Ghosh with those fea-
tures. Furthermore, we find the first examples of MPS that
correspond to excited states of SU�2�-invariant Hamilto-
nians. There is another example of state with spin 1, which is
never the ground state of any frustration-free SU�2�-invariant
two-body Hamiltonian. In order to make a systematic search
of all those MPS we develop a simple technique that allows
for a numerical systematic search.

This paper is organized as follows. In Sec. II we review
some of the basic properties of TIMPS and establish the
notation that will be needed in the following. In Sec. III we
establish the relation between the symmetry group of a
TIMPS and that of the tensor A defining the MPS. For con-
tinuous symmetries, such as SU�2�, we will see that the set of
symmetric TIMPS is intimately related to the set of Clebsch-
Gordan coefficients. Section IV then provides an MPS ver-
sion of the Lieb-Schultz-Mattis theorem, and in Sec. V we
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give a detailed investigation of the SU�2� symmetric TIMPS
which are eigenstates of two-body Hamiltonians.

II. MATRIX PRODUCT STATES

Let us consider a system with periodic boundary condi-
tions of N �large but finite� sites, each of them with an asso-
ciated d-dimensional Hilbert space. A translationally invari-
ant MPS on this system can be defined with a valence bond
construction in the following way. Let us consider another
couple of D-dimensional ancillary/virtual Hilbert spaces as-
sociated to each site and connected to the real/physical
d-dimensional space by a map A=�i��Ai,���i����� �Fig. 1�.
Then, by introducing maximally entangled states connecting
every pair of neighboring virtual Hilbert spaces �usually
called entangled bonds�, it is not difficult to prove that the
state can be written as

��� = �
i1,. . .,iN

tr�Ai1
¯ AiN

��i1 ¯ iN� ,

where we call the matrices K= 	Ai�MD , i=1, . . . ,d
 as
Kraus operators. A way to work simultaneously with all of
them is to define the map

V = �
i

Ai � �i� . �2�

For each MPS there exists a canonical form ��2�, theorem
III7 and lemma IV4� which assures that one may choose all
matrices Ai with a block-diagonal structure �12�, in such a
way that after gathering enough spins together, the Kraus
operators fulfil the following.

Property 1: span property—the set of products
P= 	Ai1

¯Ain

, with n as the collected spins, spans the vector

space of all matrices with the same block-diagonal structure.
It is an open conjecture stated in �2� and verified in many
particular cases that an upper bound for the number of sites
which have to be gathered to achieve property 1 depends
only on the dimension D of the Kraus operators. When there
is only one block in the above canonical decomposition the
MPS is usually called injective, since the linear operator
mapping boundary conditions to the resulting states is indeed
injective �1,2� when taking sufficiently many particles. The
definition reads as follows.

Property 2: injectivity—there exists n such that the map
�n�X�=�i1,. . .,in

tr�XAi1
¯Ain

��i1¯ in� is injective. For each

MPS ��� one can construct a Hamiltonian, called parent
Hamiltonian, for which ��� is an eigenstate with eigenvalue
0.

Definition 3: parent Hamiltonian—let 	�k� be the reduced
density matrix of ��� for k particles �k will be called the
interaction length of the parent Hamiltonian�. Let us suppose
that 	�vi�
i=1

r , with r
1, is an orthonormal basis for
ker�	�k��. Taking any linear combination of projectors
h�a��=�i=1

r ai�vi��vi�, we define H=�i�i�h� � 1rest, where �i is
the translation operator.

If ai
0, then the Hamiltonian is positive semidefinite and
��� is indeed a ground state. Moreover H is frustration free
since ��� minimizes the energy locally. Injectivity has now a
deep physical significance. If it is reached for n particles and
every ai�0, it ensures that the MPS is the only ground state
of its �n+1�-local parent Hamiltonian, that it is an exponen-
tially clustering state, and that there is a gap above the
ground-state energy �1,2�.

In this work we will focus on symmetries of states instead
of Hamiltonians. There is however a close connection be-
tween the two approaches. On one hand, it is clear that the
unique ground state of a symmetric Hamiltonian has to keep
the symmetry. On the other hand, we have the following
proposition.

Proposition 4—if an MPS ��� is invariant under a repre-
sentation of a group, one can choose its parent Hamiltonian
H invariant under the same representation. To see that it is
enough to notice that the symmetry in state �1� implies the
invariance of ker�	�k�� under the same symmetry. Symmetriz-
ing ker�	�k�� �i.e., averaging it� with respect to the considered
group will then yield a symmetric h which still constitutes a
parent Hamiltonian.

III. LOCALLY SYMMETRIC MPS

In this section we analyze the implications of a given
symmetry for a MPS. First, we show that the symmetry
transfers to the Kraus operators—generalizing the findings of
�1,3�. In a second step we show that the symmetry in the
Kraus operators imposes that they are essentially uniquely
defined in terms of the Clebsch-Gordan coefficients. Finally,
for the special case of SU�2� one can simplify even further
and analyze the qualitative differences between integer and
semi-integer spin.

A. Characterization of symmetries

It was demonstrated in �3� that the Kraus operators which
describe any injective state symmetric under a group G fulfil
the condition �iuij

g Ai=UgAjUg
†, where u and U are represen-

tations of G �Fig. 2�. We provide in this section a generali-
zation in which injectivity is not required. The N appearing
in the proof must be sufficiently large to obtain property 1
after collecting N /5 spins.

We start by proving the case of discrete symmetries, ex-
tending the demonstration to continuous groups below. Theo-
rem 5: discrete symmetries—let 	Ai
i=1

d be the Kraus opera-
tors which describe a locally invariant MPS ��� with respect
to a single unitary u, i.e., u�N���=ei����. Then, the symmetry

FIG. 1. This figure represents the MPS construction. A pair of
virtual spins which are connected to their neighbors via a maxi-
mally entangled state �
�=��=1

d ���� are mapped into the physical
spins �below�. All properties of the state originate from the mapping
between physical and virtual system.
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in the physical level can be replaced by a local transforma-
tion in the virtual level. This means that there exists a unitary
U—which can be taken as block diagonal with the same
block structure as the A’s in the MPS and composed with a
permutation matrix among blocks, i.e., U= P��bVb�—such
that

�
j

uijAj = WUAiU
†, �3�

with W= �bei�b1b.
Proof: we follow here a reasoning as in the proof of �2�

�lemma IV4�. We collect the spins in five different blocks,
each one of them with property 1. Applying u�N gives us the
same MPS �we incorporate the global phase in the new ma-
trices� with different matrices B’s but with the same block-
diagonal form and also �after gathering� with property 1. We
now require the following lemma, which is demonstrated
below.

Lemma 6: for each block in the A’s, for instance, the one
given by matrices Ai

1, there is a block in the B’s, given by
matrices Bi

1, which expands the same MPS. Since both are
now canonical forms of the same injective MPS, by ��2�,
theorem 311� �13�, they must be related by a unitary and a
phase, V1Ai

1V1
†=ei�1Bi

1, which finishes the proof of the theo-
rem.

Let us prove now the lemma. By using property 1 and
summing with appropriate coefficients, it is possible to show
that there exists a block-diagonal D�D matrix X�0 such
that

tr�Ai2
1
¯ Ai5

1 � = tr�XBi2
¯ Bi5

�, ∀ i2, . . . ,i5.

Since X�0, there exists one block, let us say X1, different
from 0. Then, summing with appropriate coefficients again
we get that there exists a matrix Y �0 such that

tr�YAi3
1 Ai4

1 Ai5
1 � = tr�X1Bi3

1 Bi4
1 Bi5

1 �, ∀ i3,i4,i5.

We can now argue as in �2� �lemma IV4� to conclude the
proof. �

If we have now a symmetry given by a compact con-
nected Lie group G, that is, Eq. �1� holds for any g�G and
a representation g�ug, we obtain the following. Theorem 7:
�continuous symmetries�—the map g� Pg is a representa-

tion of G and therefore the trivial one. The maps g�ei�g
b

and
g�Vg

b are also representations of G.
Proof: let us start with the map g� Pg. From Eq. �3� we

get

Wg2g1
Ug2g1

AhUg2g1

† = �
j

ujh
g2g1Aj = �

jk

ujk
g2ukh

g1Aj

= Wg2
Wg1,Pg2

Ug2
Ug1

AhUg1

† Ug2

† , �4�

where Wg1,Pg2
is the same unitary as Wg1

but with the blocks

permuted according to the permutation Pg2
. Since Pg�Wg

=Wg,Pg�
Pg� and Wg commutes with all other terms appearing

in Eq. �4�, we can multiply successively and use property 1
�with L as the required block size� to get, for all n
L and all
X block diagonal,

Wg2g1

n Ug2g1
XUg2g1

† = �Wg2
Wg1,Pg2

�nUg2
Ug1

XUg1

† Ug2

† . �5�

By taking X=1b for each block b, we get that Pg2
Pg1

must be
Pg2g1

. But since we are assuming the group G connected, this
in turn implies that Pg=1 for all g. With this we can split Eq.
�5� into blocks to get, for each b, each n
L and each matrix
X,

ein�g2g1

b
Vg2g1

b XVg2g1

b† = ein��g1

b +�g2

b �Vg2

b Vg1

b XVg1

b†Vg2

b†. �6�

Taking X=1 we obtain

ein��g2g1

b � = ein��g1

b +�g2

b �.

In particular, when n=L, we get that L��g2g1

b �
=L��g1

b +�g2

b �+2k0� and when n=L+1 we get that
�L+1���g2g1

b �= �L+1���g1

b +�g2

b �+2k1�. Gathering both re-
sults, the L can be removed and we obtain �g2g1

b

=�g1

b +�g2

b +2�k1−k0��. Finally, to show that g�Vg
b is a rep-

resentation, it is enough to notice that Eq. �6� implies that
Vg1

b†Vg2

b†Vg2g1

b commutes with every matrix. �

A trivial consequence of these theorems is the fact that
having an irreducible representation Ug in the virtual level
implies that the MPS has to be injective. We give an alter-
native proof of this fact in Appendixes A and B without
having to rely on the MPS canonical form. There we analyze
also when the reverse implication holds.

B. Uniqueness of the construction method

Once the theorem which provides the condition that the
Kraus operators fulfill in order to generate invariant MPS has
been established; the next step is to prove that they can al-
ways be constructed by means of Clebsch-Gordan coeffi-
cients. To do that, it is more convenient to work
with the map V defined in Eq. �2�. From the definition
it is clear that the condition �iuij

g Ai=UgAjUg
† reads then

Ug � ugV=VUg. Notice that we have removed the depen-
dence on the phase. By theorem 7 this can be done for
groups with a complex enough structure, as SU�2�, for which
there is no nontrivial one-dimensional �1D� representation.

Given a compact group G, the tensor product of two
irreps—we are choosing a single representative for each
class of equivalent irreps—can always be decomposed as a
direct sum of irreps,

ug � vgC = C�
i

cg
i ,

where C is a unitary whose elements are called Clebsch-
Gordan coefficients. In what follows we will denote by

ug

Ug Ug

FIG. 2. The unitary ug applied on the physical level is reflected
in the virtual level as a pair of unitaries Ug.
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�i :Cdi→Cd � Cd� the matrix associated to the restriction of C
to the di-dimensional invariant subspace Hi associated to the
irrep cg

i , with d and d� being the dimensions of the represen-
tations ug and vg, respectively.

We are interested in possible solutions of

ug � vg
 = 
wg ∀ g , �7�

where ug, vg, and wg are irreps of a given compact group G.
It is clear that taking


 = �
i

�i�i �8�

does the job if we sum over i’s corresponding to equivalent
representations cg

i =wg. The next lemma guarantees that this
is all.

Lemma 8: all possible solutions of Eq. �7� are given by
Eq. �8�. Proof: any 
 verifying Eq. �7� gives


†
 = wg
†
wg
†,

which means by Schur’s lemma that 
†
=�I and we may
assume that if there is a nonzero solution, it can be taken as
an isometry. Moreover, introducing V=C†
, which verifies
V†V= I, one has

Vwg = �� icg
i �V . �9�

From there one gets that P=VV† is a rank d projector �d is
the dimension of the representation wg� that commutes with
�� icg

i � for all g. By Schur’s lemma, it is supported on � iHi
with i’s such that cg

i =wg, and in this subspace it is of the
form

� ��1�21d �̄1�21d ¯

�1�̄21d ��2�21d ¯

¯ ¯ ¯

� = ������ � 1d.

This implies that V= ��� � W for a given d�d unitary W. But
if we substitute this in Eq. �9�, since we are assuming a
unique fixed representative for each class of equivalent rep-
resentations, we get W=1d and 
=�i�i�i. �

From this we can now conclude. Theorem 9: let us con-
sider a group G and two representations ug �irrep� and
Ug= � iUg

Di. Then, the structure of all possible maps V fulfill-
ing Ug � ugV=VUg is

V =�
�11VD1

D1 �12VD1

D2
¯ �1nVD1

Dn

�21VD2

D1 �22VD2

D2
¯ �2nVD2

Dn

] ] � ]

�n1VDn

D1 �n2VDn

D2
¯ �nnVDn

Dn
� , �10�

where VDi

Dj is a solution, according to lemma 8, to
Ug

Di � ugVDi

Dj =VDi

DjUg
Di.

C. The case of SU(2)

Let us apply the results of Sec. III B to the case in which
G=SU�2�. Our construction is a natural generalization of the
one used in �1,14�.

We consider from now on irreducible representations ug
of the symmetry on the physical spin. Nevertheless, a sub-
stantial part of the results can be straightforwardly extended
to the reducible case. Hence, we are interested in analyzing
the restrictions that SU�2� impose in the general solution
given by theorem 9 to the equation

�U � J�V = VU , �11�

where, with some abuse of notation, J is the SU�2� irrep
corresponding to spin J and U= �i1 � ¯ � in � s1 � ¯ � sm�
is the virtual representation composed of n integer irreps and
m semi-integer irreps. Note that in the Clebsch-Gordan de-
composition of SU�2� all representations appear with multi-
plicity one. Therefore there is only one term in the sum in
Eq. �8�. At this point one should distinguish the cases of J
integer or semi-integer. If J is integer, zero is the only solu-
tion to �ij � J�
=
sk and �sk � J�
=
ij for all j and k, and
we get in Eq. �10� a block-diagonal structure,

V =�
�1

1Vi1

i1
¯ �1

nVi1

in 0 ¯ 0

] � ] ] � ]

�n
1Vin

i1
¯ �n

nVin

in 0 ¯ 0

0 ¯ 0 �n+1
n+1Vs1

s1
¯ �n+1

n+mVs1

sm

] � ] ] � ]

0 ¯ 0 �n+m
n+1 Vsm

s1
¯ �n+m

n+mVsm

sm

� .

The paradigmatic example in this case is the AKLT state
�4�, which corresponds to the case of J=1 and U=1 /2 in Eq.
�11�. In �1�, the authors generalized the AKLT model to ar-
bitrary integers J and irreducible U. We will call the resulting
MPS as FNW states. It is shown in �1� how for U= J

2 FNW
states are unique ground states of frustration-free nearest-
neighbor interactions. An alternative construction focused on
the restrictions imposed by the SU�2� symmetry on the den-
sity matrix instead of the Kraus operators can be found in
�15�.

If J is semi-integer, 0 is the only solution to �sj � J�

=
sk and �ik � J�
=
ij for all j and k, and we get in Eq.
�10� an off-diagonal structure

V =�
0 ¯ 0 �1

n+1Vi1

s1
¯ �1

n+mVi1

sm

] � ] ] � ]

0 ¯ 0 �n
n+1Vin

s1
¯ �n

n+mVin

sm

�n+1
1 Vs1

i1
¯ �n+1

n Vs1

in 0 ¯ 0

] � ] ] � ]

�n+m
1 Vsm

i1
¯ �n+m

n Vsm

in 0 ¯ 0

� .

It is clear that the virtual representations must be reduc-
ible now, which is very much related to the Lieb-Schultz-
Mattis theorem, as we will show in Sec. V. The paradigmatic
example in this case is the Majumdar-Ghosh model �5�,
which corresponds to J= 1

2 and U= 1
2 � 0. A generalization of

this model for the case of arbitrary J and U=F � 0 was re-
cently proposed in �8�. In general, it is possible to find a set
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of representations which fits into any model with SU�2� sym-
metry, for instance �7,16–19,22�.

IV. LIEB-SCHULTZ-MATTIS THEOREM

The Lieb-Schultz-Mattis theorem states that for semi-
integer spin, a SU�2�-invariant 1D Hamiltonian cannot have
a uniform �independent of the size of the system� energy gap
above a unique ground state. That is, symmetry imposes
strong restrictions on the possible behaviors of a system. In
this section we want to go a step further and analyze which
implications one can obtain from having a single symmetric
state in a semi-integer spin chain. By restricting our attention
to the class of MPS we will show the following.

Theorem 10—any MPS with an SU�2� symmetry in the
sense of Eq. �1� with ug irrep and even physical dimension d
cannot be injective. By theorem 11 of �2� this implies that it
cannot be the unique ground state of any frustration-free
Hamiltonian.

Proof: let us assume that the MPS is injective and prove
the theorem by contradiction. Theorems 5 and 7 guarantee
that

�
j

ujk
g Aj = UgAkUg

†. �12�

We consider u=eiJz with �Jz� j,k=� j,k�k− �d+1� /2�,
k=1, . . . ,d. Then, Eq. �12� gives

ei�kAk = UAkU
† �13�

for a unitary U and �k half integer. We finish by proving that
if N is odd, tr�Ak1

¯AkN
�=0 and hence the MPS cannot be

injective. From Eq. �13� we get tr�Ak1
¯AkN

�=0 unless
�i=1

N �ki
=N�d+1� /2. The latter is, however, impossible for

odd N as the left-hand side �lhs� is an integer whereas the
right-hand side �rhs� is a half integer. �

From the proof one may get the impression that only the
U�1� symmetry is required, and this is indeed the case if the
generator of such symmetry has eigenvalues −m /2, . . . ,m /2
as above. The next example shows that this is, however, not
true for any U�1� symmetry, which in turn shows that a larger
symmetry such as SU�2� is required for the Lieb-Schultz-
Mattis theorem.

Example 11: let us consider a local symmetry generated
by G=ei�H for a Hermitian matrix H. Let us choose the
physical dimension d=D2−D, which is always even, and the
set of Kraus operators K= 	A�i,j�= �i��j� , i� j
. We select
�1 , . . . ,�D�R such that �i−� j�0 if i� j and H is the di-
agonal matrix H=�i�j��i−� j���i , j����i , j�� �which has in ad-
dition only nonzero eigenvalues�. With U�=ei�
 where

=diag��1 . . .�D� it is clear that

ei���i−�j�A�i,j� = U�A�i,j�U�
† ,

so the MPS generated by means of the Kraus operators K has
the local symmetry G. Moreover, the MPS is trivially injec-
tive when D
3. We can prove this by choosing arbitrary k
and k�. Since D
3, we can always find an l such that
k�� l�k and then �k��k��= �k��l � l��k��=A�k,l�A�l,k��.

Let us remark that this counterexample is applicable to
spin 


5
2 . Indeed, one can prove theorem 2 for U�1� and spin

1
2 , which is the content of the following proposition. The case
of spin 3/2 remains an open question.

Proposition 12: if ��� is an MPS with physical dimension
d=2 and invariant under U�1�, then ��� cannot be injective.
Proof: we will show it by contradiction. By choosing a basis
where the physical unitary u is diagonal, the condition on the
Kraus operators becomes

ei�n�An = eiH�Ane−iH�,

where H is the Hermitian generator of the symmetry. Let us
expand the expression for infinitesimal angles

�H,An� = �nAn,

which is the equation of eigenvalues for the operator
L�•�= �H , •�. This can be transformed into an ordinary eigen-

value equation for the matrix operator L=H � 1−1 � H̄. The
diagonalization can be easily performed by taking the spec-
tral decomposition of H=�i�iPi, where Pi are orthogonal
projectors. It straightforwardly follows that the eigenvalues
of L are �ij =�i−� j and the corresponding eigenoperators
fulfil Aij = PiAijPj.

Let us focus now on the case where d=2. Then, we
have A1= P1A1P� and A2= P�A2P� for some � ,� ,�. If
�=1 P1X=X for all X�span	Ai1

¯Ain

 and the MPS

cannot be injective. The same happens if �=�. So let us
assume that ��1 and ���. Now if �=1, we have
A1= P1A1P1, A2= �1− P1�A2�1− P1�, and the MPS is block di-
agonal and hence noninjective. The same happens if �=�.
So ��1 and ��� and this gives A1

2=0=A2
2 which implies

that span	Ai1
¯Ain


=span	A1A2A1A2¯A2A1A2A1¯
 has di-
mension �2. �

V. GENERAL CONSTRUCTION OF SU(2) TWO-BODY
HAMILTONIANS WITH MPS EIGENSTATES

We have seen in definition �3� a way, called the parent
Hamiltonian method, to construct local SU�2�-symmetric
Hamiltonians with MPS as eigenstates. In this section we
first prove that this method is the most general one to find
Hamiltonians having a given MPS as local eigenstate, that is,
being an eigenstate of each local term in the Hamiltonian.
Then, we show examples �including the AKLT and
Majumdar-Ghosh states� of MPS that are excited eigenstates
of local two-body translationally invariant SU�2�-symmetric
Hamiltonians. More examples are then provided in Appendix
B.

A. Completeness of the parent Hamiltonian method

Theorem 13: given an MPS ���, any translational invari-
ant Hamiltonian having it as a local eigenstate is of the form
a1+H where H is a parent Hamiltonian for ��� in the sense
of definition 3. Proof: let us call h the local Hamiltonian. By
hypothesis of local eigenstate,

h	 = �	 �14�

for certain ��R. This implies �	 ,h�=0, and hence one can
find a set of projectors P= 	Pi , i=1, . . . ,r ��iPi=1
 such that
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we can decompose both 	 and h by means of them, i.e.,
h=�iaiPi and 	=� j�CbjPj, where C represents the set of
projectors which describe the support of 	. Using Eq. �14�
with this decomposition gives that ai=� for all i�C, and
hence

h = �
i�C�

aiPi + ��
i�C

Pi = �
i�C�

�ai − ��Pi + �1 .

Then, the translational invariance Hamiltonian is
H=� j�

j�h� � 1rest, where � is the translation operator. The
theorem follows from replacing the result for the local
Hamiltonian and comparing this with definition 3 of the par-
ent Hamiltonian. �

This theorem shows that given an MPS ���, looking for
all possible parent Hamiltonians of interaction length k is
equivalent to looking for all possible solutions to the equa-
tion

h	�k� = �	�k�, �15�

with �=tr�h	�k��. The next lemma gives yet another equiva-
lent formulation, which is the one that we will use in the
sequel.

Lemma 14: given a Hermitian matrix h and a density
matrix 	, h	=�	 if and only if

tr�h2	� − tr�h	�2 = 0. �16�

Proof: one implication is clear. For the other, let us write �h�
for tr�h	�1. By assumption

tr��h − �h��2	� = tr�h2	� − tr�h	�2 = 0.

So 	1/2�h− �h��2	1/2=0, since it is a positive operator with
trace 0. This implies that �h− �h��	=0 and hence h	=�	. �

With this at hand we can systematically search for MPS
that are excited local eigenstates of SU�2�-invariant Hamil-
tonians with two-body interactions. We will proceed as fol-
lows. We start with a given SU�2�-symmetric MPS ��� and
fix the interaction length n. Then we look for possible solu-
tions to Eq. �16� of the form

h = �
i�j�n

�
�=1

2J

aij
����S� i � S� j�� + a01 �17�

to ensure SU�2� symmetry and two-body interactions in the
Hamiltonian. Finally, to guarantee that the MPS ��� is an
excited state, we will find another SU�2�-symmetric MPS
with less energy that will act as a witness. In Sec. V B we
will illustrate this procedure starting with ��� the AKLT, the
Majumdar-Ghosh state, and generalizations. Throughout we
work in the thermodynamical limit N→�.

B. Examples of SU(2) two-body Hamiltonians

1. Spin 1

Let us consider the AKLT state as a first example. Its
Kraus operators are A−1=−
2�−, A0=�z, and A1=
2�+.

In the case where n=2 the only solution to Eq. �16� is the
AKLT Hamiltonian. In the case where n=3, the solutions are
given by

h = �− 3v1 + v2 + 3v3��S�1 � S�2� + v3�S�1 � S�2�2

+
1

2
�− 3v1 + v2��S�1 � S�3� −

1

2
�− 3v1 + v2��S�1 � S�3�2

+ v2�S�2 � S�3� + v1�S�2 � S�3�2,

where the eigenvalue corresponding to the AKLT state is
7v1−3v2−2v3. The total translational invariant Hamiltonian
is then

H = �
i

�− 3v1 + 2v2 + 3v3��S� i � S� i+1� + �v1 + v3��S� i � S� i+1�2

+
1

2
�− 3v1 + v2��S� i � S� i+2� −

1

2
�− 3v1 + v2��S� i � S� i+2�2,

which contains the usual AKLT model. It is not difficult to
check that there is a region in the parameter space where the
AKLT state is still the ground state of this Hamiltonian. To
find regions where it is an excited eigenstate we will use as a
witness the SU�2�-symmetric MPS associated to the virtual
representation 3

2 �
1
2 �see Sec. III�. The result is plotted in

Fig. 3, where one sees the existence of points in this family
of spin 1 Hamiltonians for which the AKLT state is an ex-
cited state.

Note that it is possible to perform a change of variables in
the total Hamiltonian, for instance a→ 1

2 �−3v1+v2� and
b→v1+v3, such that it depends only on two parameters.
However, the number of parameters that the local Hamil-
tonian h depends on cannot be reduced, which means that
there are nonphysical parameters in it. In Fig. 4 we have
represented the problem above �n=3 and AKLT state� in
terms of the physical parameters. The positive axis b corre-
sponds there to the usual AKLT Hamiltonian.

Concerning FNW states, that is, integer spin J and virtual
irrep j, we have performed an exhaustive search and Table I
gathers the main results. The study has been carried out by

-10

0

10

-10

0

10

-10
0

10
v2

v1

FIG. 3. �Color online� Space of parameters of the local Hamil-
tonian h for the AKLT state and n=3. The orange �small� volume
represents the points where the state is the local �and hence the
global� ground state. The green �large� volume represents points
corresponding to excited states detected with the witness 3

2 �
1
2 .
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increasing n and studying the number of parameters which
the family of Hamiltonians depends on �notice that the case
of interaction length n contains the case of interaction length
n−1�. We have increased n until the number of parameters
stops growing. In all the cases considered in the table, a
saturation occurs when n�3, i.e., considering that more than
three particles apparently does not add new Hamiltonians.

Let us also introduce a new state of spin 1 with virtual
spin 1, given by the Kraus operators

A1 =
1

2�0 1 0

0 0 1

0 0 0
�, A0 =

1

2�1 0 0

0 0 0

0 0 − 1
� ,

A−1 =
1

2� 0 0 0

− 1 0 0

0 − 1 0
� .

The total translational invariant Hamiltonian which has this
state as eigenstate is

H = �
i

�S� i � S� i+1�2 − �S� i � S� i+2� − �S� i � S� i+2�2.

This state is injective and a local excited state. The fact that
this state is an excited state of the global Hamiltonian can be
checked as above by means of the witness 1 � 0.

2. Spin 1
2

Let us consider now the Majumdar-Ghosh state as an ex-
ample with semi-integer spin. The Kraus operators are now

A−1/2 =�0
1

2

0

0 0 − 1

0 0 0
�, A1/2 =�

0 0 0

1 0 0

0
1

2

0� .

As in the previous case, we do not find any solution for
n=2 and only the Majumdar-Ghosh Hamiltonian for the
cases n=3 and n=4. For n=5 the solutions to Eq. �16� are
given by

h = �v1 − v2 + v4��S�1 � S�2� + �v1 − v2 + v4��S�1 � S�3�

+ v3�S�1 � S�4� + v3�S�1 � S�5� + v4�S�2 � S�3�

+ �− v1 + v2 + v3��S�2 � S�4� + v3�S�2 � S�5� + v2�S�3 � S�4�

+ v1�S�3 � S�5� + v1�S�4 � S�5� �18�

and the energy associated to the state is − 3
4 �v1+v4�. The total

Hamiltonian H=�i�i�h� is given by

H = �
i

2�v1 + v4��S� i � S� i+1� + �v1 + v3 + v4��S� i � S� i+2�

+ 2v3�S� i � S� i+3� + v3�S� i � S� i+4� . �19�

As in the AKLT case, by means of a change of variables
a→v3 and b→v1+v4, the number of physical parameters in
the total Hamiltonian is 2, compared with the four param-
eters the local Hamiltonian depends on. The Majumdar-
Ghosh state is an excited local eigenstate for a region in the
space of parameters, which in this case is detected by the
witness 1

2 � 1 � 0, as shown in Fig. 5. The usual Majumdar-
Ghosh Hamiltonian �20� corresponds to the positive axis b.

3. Spin 3
2

Let us consider as final example the SU�2�-symmetric
MPS corresponding to spin 3

2 and virtual representation 3
2

� 0. For n=3, the solutions to Eq. �16� are given by

h = v3�S�1 � S�2� + v2�S�1 � S�2�2 + v1�S�1 � S�2�3

+ �2v1 − v2 + v3��S�1 � S�3� + �4v1 − v2��S�1 � S�3�2

+ v1�S�1 � S�3�3 + v3�S�2 � S�3� + v2�S�2 � S�3�2 + v1�S�2 � S�3�3

�20�

and the energy associated to the MPS is in this case
− 15

64�165v1−60v2+16v3�. The global Hamiltonian now reads

TABLE I. Table of results for FNW states with physical spin J
and virtual spin j. The numbers in the table are the number of
parameters which the obtained families of Hamiltonians depend on.
The � represent the cases for which no solution was found.

J

�j�

1
2 1 3

2 2 5
2 3 7

2

1 2 1 � � � � �

2 5 3 � � � �

3 4 2 2 1 �

b

a

10

0
-10

10

0

-10

FIG. 4. �Color online� Space of physical parameters of the glo-
bal Hamiltonian H corresponding to n=3 and the AKLT state. The
points �orange� represent where the state is the local �and hence the
global� GS. The surface �green� represents points corresponding to
excited states detected by means of the witness 3

2 �
1
2 .
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H = �
i

2v3�S� i � S� i+1� + 2v2�S� i � S� i+1�2 + 2v1�S� i � S� i+1�3

+ �2v1 − v2 + v3��S� i � S� i+2� + �4v1 − v2��S� i � S� i+2�2

+ v1�S� i � S� i+2�3. �21�

It is remarkable that in this case there are no spurious param-
eters in the local Hamiltonian h. Considering the family of
states whose virtual representation is 3

2 � 1 � 0 as a witness,
it is possible to demonstrate that there is a region in the space
of parameters of the Hamiltonian for which the MPS is an
excited eigenstate, as shown in Fig. 6.

VI. CONCLUSIONS

Despite the fact that all our results are restricted to the
family of TIMPS, their relevance is manifested by the fact
that those states approximate all ground states of one-
dimensional Hamiltonians with short-range interactions �11�.
Thus, one would expect that the properties derived for MPS
would be relevant in a more general context. Moreover, due
to their simplicity, MPS can be then thought as a “labora-
tory” for which some generic mathematical and physical
properties of states that are relevant in one-dimensional spin
chains can be searched. Later on, one may use more power-
ful mathematical methods to try to extrapolate those proper-
ties to general spin chains. Furthermore, many of the tech-
niques used in the present work are amenable of an extension
to higher spatial dimensions, where projected entangled pair
state �PEPS� play the role of MPS. In Ref. �3� some first
results in this direction were derived, which will be general-
ized in a further publication.
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APPENDIX A: RELATIONS BETWEEN IRREDUCIBILITY
AND INJECTIVITY

In this appendix we give a direct proof of the fact that an
irreducible representation in the virtual level of a symmetric
MPS implies that the MPS is injective. We also see that the
reverse inclusion is not true in general but it holds under
some conditions on the Kraus operators.

We have to recall that given a set of Kraus operators
defining an MPS K= 	A1 , . . . ,Ad
, we can define an associ-
ated completely positive map E�X�=�i=1

d AiXAi
†. The symme-

try in the MPS transfers then to the covariance of the chan-
nel, that is, E�UgXUg

†�=UgE�X�Ug
† for all X. It is shown in

�1,2� that if E is trace preserving and has 1 as its unique fixed
point, then the MPS is injective. Moreover, it is trivial to see
that if E is the ideal channel �E�X�=X for all X�, then the
MPS is a product state. Therefore, the desired result that
irrep implies injectivity is a consequence of the following
theorem.

Theorem 15: let us take a completely positive map
E :MD→MD that is covariant for an irrep of a compact
connected Lie group G. Then, either E is the ideal channel or
it is trace preserving and the identity is its only fixed point.

Proof: let us consider a fixed point � of E. Then Ug�Ug
† is

also a fixed point because of the covariance. Therefore, inte-

b

a

10

0

-10

-10 0 10

FIG. 5. �Color online� Space of physical parameters of the total
Hamiltonian for n=5 associated to the Majumdar-Ghosh state. The
points �orange� represent where the state is the local �and hence the
global� ground state. The surface �green� represents points corre-
sponding to excited states detected by means of the witness 1

2 � 1
� 0.

v2

-10
-10

0
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v1

0
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-10

0
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v1

v3v

FIG. 6. �Color online� Space of parameters of the spin 3
2 model.

The points �orange� are obtained numerically and they represent
values of the parameters where the MPS state is the GS. The vol-
ume �green� represents points corresponding to excited states de-
tected with the witness 3

2 � 1 � 0.
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grating under the Haar measure and using Schur’s lemma, 1
is also a fixed point. A similar argument shows that E is also
trace preserving.

Now we can apply Lüders’ theorem �21�, which ensures
that the set of fixed points P of E coincides with the com-
mutant K� of the set of Kraus operators of E. This is trivially
a C� subalgebra of MD. Moreover, we know by the classi-
fication of the C� subalgebras in MD that there exists a uni-
tary V�MD such that VPV†= � i�Mni

� 1ni�
�=A.

The equivalent representation Vg=VUgV† is also an irrep
and fulfils VgAVg

†=A. This means that the block structure of
A remains invariant under the action of Vg by conjugation.
Now we use

VgAVg
† � A ⇔ �J,A� � A for all generators J .

�A1�

This implies that J has the same block structure as A. If there
is more than one block, the representation is reducible. If
A=Mn � 1n�, then we use again Eq. �A1�.

The Schmidt decomposition allows us to take
J=�iAi � Bi where the Bi’s form a basis of Mn�, with B1=1.
Then, Eq. �A1� gives �i�Ai ,Mn� � Bi=C � 1, which
implies that Ai is proportional to 1 for all i
2. This gives
J=1 � X+Y � 1 and hence Vg=V1

g
� V2

g, which is reducible
unless A=1 or A=MN �which implies that E is the ideal
channel�. �

Although the implication in the opposite direction could
also seem true, it is not, as shown by the following example.
Example 16: let us consider the family of SU�2�-symmetric
MPS of spin 1 with a reducible virtual representation 1

2 �
3
2

given by the following maps �see Sec. III�:

Ṽ = �ei�11 cos �1V1/2
1/2 ei�12 sin �2V1/2

3/2

ei�21 sin �1V3/2
1/2 ei�22 cos �2V3/2

3/2 � .

It is not difficult to check that the MPS is injective except in
particular directions in space, such as those for which the
isometry breaks into blocks, i.e., �i=n �

2 .
Although the equivalence is not true in general, we can

still give a sufficient condition which applies, for instance, to
the AKLT and other FNW states. Let us recall from �3� or
theorems 5 and 7 that an injective symmetric MPS verifies

�
i

uij
g Ai = ei�gUgAjUg

†, �A2�

where in addition one may ask for �iAi
†Ai=1 �2�.

Proposition 17: if ug is irreducible and 	Ai
†Aj
i,j spans the

whole space of matrices, then the virtual representation Ug of
Eq. �A2� is also irreducible.

Proof: from Eq. �A2� one gets

�
i1,i2

ūi1j1
g ui2j2

g Ai1
† Ai2

= UgAj1
† Aj2

Ug
†.

Integrating now with respect to the Haar measure, the lhs is
simplified by the irreducibility of ug and the orthogonality

relations. The result is � j1j2
�iAi

†Ai=� j1j2
1. This means that

�GUgXUg
†�1, ∀X�MD, since we can span the complete

space of matrices. But this implies that Ug is an irrep by
means of the inverse of Schur’s lemma. �

APPENDIX B: LIST OF PARENT HAMILTONIANS

The following lists SU�2�-invariant two-body Hamilto-
nians for which the MPS with physical spin J �irrep� and
virtual spin j is an exact eigenstate with energy �.

1. Spin J= 1
2

For j= 1
2 � 0 and �=− 3

4 �v1+v4�,

H = �
i

2�v1 + v4��S� i � S� i+1� + �v1 + v3 + v4��S� i � S� i+2�

+ 2v3�S� i � S� i+3� + v3�S� i � S� i+4� .

There are no solutions found �with n�6� for j= 1
2 � 1, 3

2
� 1, 3

2 � 2, and 5
2 � 2.

2. Spin J=1

For j= 1
2 and �=7v1−3v2−2v3,

H = �
i

�− 3v1 + 2v2 + 3v3��S� i � S� i+1� + �v1 + v3��S� i � S� i+1�2

+
1

2
�− 3v1 + v2��S� i � S� i+2� −

1

2
�− 3v1 + v2��S� i � S� i+2�2.

For j=1 and �=1,

H = �
i

�S� i � S� i+1�2 − �S� i � S� i+2� − �S� i � S� i+2�2.

There are no solutions found �with n�4� for j= 3
2 , 2, 5

2 ,
and 3.

3. Spin J= 3
2

For j= 3
2 � 0 and �=− 15

64�165v1−60v2+16v3�,

H = �
i

2v3�S� i � S� i+1� + 2v2�S� i � S� i+1�2 + 2v1�S� i � S� i+1�3

+ �2v1 − v2 + v3��S� i � S� i+2� + �4v1 − v2��S� i � S� i+2�2

+ v1�S� i � S� i+2�3.

For j= 1
2 � 1 and �=− 495

64 ,

H = �
i

243

16
�S� i � S� i+1� +

29

4
�S� i � S� i+1�2 + �S� i � S� i+1�3.

There are no solutions found �with n�4� for j= 3
2 � 1, 5

2
� 1, 1

2 � 2, and 3
2 � 2.
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4. Spin J=2

For j=1 and �= �−6986v1+778v2−62v3+1260v4−90v5�,

H = �
i

�2400v1 − 63v2 + 24v3 − 792v4 + 63v5��S� i � S� i+1�

+ �133v1 − 14v2 + 2v3 − 133v4 + 14v5��S� i � S� i+1�2

+ �v2 + v5��S� i � S� i+1�3 + �v1 + v4��S� i � S� i+1�4

+ �1729

2
v1 − 91v2 +

13

2
v3��S� i � S� i+2�

+ �5719

36
v1 −

301

18
v2 +

43

36
v3��S� i � S� i+2�2

+ �−
665

18
v1 +

35

9
v2 −

5

16
v3��S� i � S� i+2�3

+ �−
133

12
v1 +

7

6
v2 −

1

12
v3��S� i � S� i+2�4.

For j= 3
2 and �=0,

H = �
i

�580v1� − 80v2 + 10v3 − 330v4 + 30v5�S� i � S� i+1�

+ �91v1 − 11v22v3 − 91v411v5��S� i � S� i+1�2

+ �v2 + v5��S� i � S� i+1�3 + �v1 + v4��S� i � S� i+1�4

+
1

6
�2275v1 − 275v2 + 25v3��S� i � S� i+2�

+
1

36
�455v1 − 55v2 + 5v3��S� i � S� i+2�2

+
1

18
�− 455v1 + 55v2 − 5v3��S� i � S� i+2�3

+
1

36
�− 91v1 + 11v2 − v3��S� i � S� i+2�4.

There are no solutions found �with n�4� for j=2 and 5
2 .

5. Spin J=3

Solutions �mostly cumbersome ones� were found for
j=1�n=3�, j=2�n=2�, and j=5 /2�n=2�.
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