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The scheme of quantum teleportation, where Bob has multiple �N� output ports and obtains the teleported
state by simply selecting one of the N ports, is thoroughly studied. We consider both the deterministic version
and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover,
we consider two cases for each version: �i� the state employed for the teleportation is fixed to a maximally
entangled state and �ii� the state is also optimized as well as Alice’s measurement. We analytically determine
the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success
probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→�. The
entanglement properties of the teleportation scheme are also discussed.
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I. INTRODUCTION

Quantum teleportation �1–4� is a fundamental and impor-
tant protocol for quantum information science and technol-
ogy, by which an unknown quantum state is transferred from
a sender �Alice� to a receiver �Bob� exploiting their prior
shared entangled state �and with the assistance of classical
communication�. In the original �or standard� teleportation
scheme for transferring a state of a qubit �quantum bit� �1�,
Alice first performs the Bell-state measurement on the state
��in� to be teleported and her half of a maximally entangled
state ��−�AB= ��01�− �10�� /�2. She then tells the outcome k to
Bob via a classical communication channel. To complete the
teleportation, Bob applies a unitary transformation �k to his
half of ��−�AB, where �0�1 and ��1 ,�2 ,�3� are the Pauli
matrices. Note that continuous-variable teleportation
schemes have also been proposed and intensively studied
�4,5�, where an entangled state on an infinite-dimensional
Hilbert space is employed. In this paper, however, we exclu-
sively consider the schemes with discrete �spin� variables in
a finite-dimensional Hilbert space �though we also consider
the limit of infinite dimension�.

The quantum teleportation offers a more powerful func-
tion than simply transferring an unknown state �6,7�. Con-
sider that the state ���= �1 � ����−�AB, instead of ��−�AB, is
employed for the standard teleportation scheme, where � is
an arbitrary quantum operation. Bob then obtains
�k���k��in�� as an output of the teleportation procedure, and
thus, obtains ����in�� when the outcome of the Bell-state
measurement is k=0. This implies that the operations
of the Bell-state measurement and the postselection of the
event with k=0 �these operations are denoted by G as a
whole� can perform the processing of ��in�→����in�� such
that G���in� � ����=����in�� � ����. The point is that G de-
pends on neither � nor ��in�, but the fixed G can perform the
manipulation by � if an appropriate ��� is provided. The de-
vice to manipulate a state in such a way is called a program-
mable quantum processor �in short, processor� �6–16� be-
cause the function of the processor is programmed via ���.

Moreover, if a processor can be programmed to perform an
arbitrary �, it is called a universal processor. The standard
teleportation scheme thus offers the function as a universal
processor �6� because ��� is defined for an arbitrary � as
���= �1 � ����−�AB. Note that since the form of ��� is known
for given �, we can generate it by various methods, and
therefore an arbitrary state manipulation can be replaced with
a state preparation as in Refs. �7,17�. Note further that even if
��� is generated by applying � to ��−�AB, we can receive a
considerable benefit such that we can perform � before get-
ting an input state ��in�, i.e., the time ordering of these two
events can be exchanged �18–20�.

Unfortunately, however, the universal processor based on
the standard teleportation scheme only works in a probabi-
listical way. This is because Bob’s unitary transformation �k
with k�0 generally does not commute with �, and hence
�k���k��in�������in�� in general for k�0. As a result, the
success probability of the universal processor is 1/4.

On the other hand, in the teleportation scheme proposed
by Knill, Laflamme, and Milburn �KLM� �17,21–24�, Bob
has multiple �N� output ports and obtains the teleported state
by selecting one of the N ports according to the outcome of
Alice’s measurement. To complete the teleportation, Bob fur-
ther needs to apply a unitary transformation �phase shift� to
the state of the selected port, as well as the standard telepor-
tation scheme. As shown in Ref. �25�, however, the telepor-
tation scheme such that Bob simply selects one of the N ports
�without any additional unitary transformation� is also pos-
sible �Fig. 1�. In fact, the faithful and deterministic telepor-
tation is asymptotically achieved in the limit of N→� �25�.
Let ��� be an entangled state employed for this teleportation
scheme �see Fig. 1�, and ��N denote the operation of apply-
ing � to every output port. Since the operation of simply
selecting a port always commutes with ��N, if the state
���= �1 � ��N���� is employed for the teleportation, Bob ob-
tains ����in�� as an output of the teleportation procedure, re-
gardless of which port is selected. In this way, this telepor-
tation scheme can provide a faithful and deterministic
universal processor in the asymptotic limit of N→� �25�.
Note, however, that such a teleportation scheme must be an
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approximate and/or probabilistic one if N is finite, which is a
consequence of the no-go theorem of a faithful and determin-
istic universal processor with finite system size �6�.

In this paper, the scheme of quantum teleportation, where
Bob simply selects one of the N ports, is thoroughly studied.
We consider both the deterministic version and probabilistic
version of the teleportation scheme and analytically deter-
mine the optimal protocols. The corresponding optimal fidel-
ity or optimal success probability is shown as a function of
N. This paper is organized as follows. The deterministic �and
hence approximate� version of our teleportation scheme is
formulated in Sec. II. The operator � defined there �Eq. �6��
plays an important role for determining the optimal proto-
cols, and hence the characteristics of � is investigated and
summarized in Sec. III. In Sec. IV, we determine the optimal
protocols of the deterministic version, where we consider
two cases: �i� the state ��� employed for the teleportation is
fixed to a maximally entangled state and �ii� the state ��� is
also optimized as well as Alice’s measurement. The probabi-
listic version is then formulated in Sec. V, and the optimal
protocols are determined in Sec. VI, where we again con-
sider two cases �i� and �ii� as in Sec. IV. The simplest ex-
ample of the probabilistic scheme with N=2 is explicitly
shown in Sec. VII. Moreover, the entanglement properties
are discussed in Sec. VIII. In particular, we focus on the
amount of entanglement consumed during the teleportation
procedure. Finally, a summary is given in Sec. IX.

II. DETERMINISTIC VERSION

In the deterministic version of our teleportation scheme,
Bob always accepts the state of one of the N ports as the
teleported state, i.e., the teleportation is regarded to succeed
with unit probability. As mentioned in Sec. I, the determin-
istic teleportation scheme is necessarily an approximate one
if N is finite. The optimal protocol is then such that it maxi-
mizes the teleportation fidelity f averaged over all uniformly
distributed input pure states. Since the average fidelity is
given by f = �2F+1� /3 �26�, the optimal protocol also maxi-
mizes the entanglement fidelity F.

Consider that Bob has N qubits, B1 ,B2 , . . . ,BN, where
each corresponds to the output port of the teleportation. Alice
also has N qubits, A1 ,A2 , . . . ,AN, which are denoted by A as
a whole. The state ��� on these 2N qubits is employed for

teleporting an unknown state of the C qubit �see Fig. 1�. Note
that the entanglement fidelity F is maximized when the state
employed for the teleportation is a pure state because of the
convexity of F. Without loss of generality, ��� can be written
as

��� = �OA � 1B1¯BN
���−�A1B1

��−�A2B2
¯ ��−�ANBN

,

where ��−�= ��01�− �10�� /�2 is a maximally entangled state
�spin-singlet state� and O is an arbitrary operator that satis-
fies tr O†O=2N so that ��� is normalized.

Alice then performs a joint measurement with N possible
outcomes �1,2 , . . . ,N� on the A and C qubits. The measure-
ment is described by a positive operator valued measure
�POVM� whose elements are 	�i
 such that �i=1

N �i=1AC.
Suppose that she obtains the outcome i. She then tells the
outcome to Bob via a classical communication channel, and
he discards the �N−1� qubits of B1B2¯Bi−1Bi+1¯BN, which

are briefly denoted by B̄i. The state of the remaining Bi qubit,
which is regarded as the B qubit, is the teleported state.

The corresponding teleportation channel, which maps the
density matrices acting on the Hilbert space HC to those on
HB, is thus

���in� = �
i=1

N

�trAB̄iC
��i������� � �C

in���i
†�Bi→B

= �
i=1

N

trAC �i	��O � 1��AB
�i� �O†

� 1�� � �C
in
 , �1�

with

�AB
�i� = �trB̄i

�PA1B1

−
� PA2B2

−
� ¯ � PANBN

− ��Bi→B

=
1

2N−1 PAiB
−

� 1Āi
, �2�

where P−= ��−���−� and Āi is a shorthand notation for
A1A2¯Ai−1Ai+1¯AN. The entanglement fidelity F for the
above channel � is then given by

F = tr PBD
− ��� � 1�PCD

− �

= tr�
i=1

N

PBD
− �iAC	��O � 1��AB

�i� �O†
� 1�� � PCD

− 


=
1

22�
i=1

N

tr �iAB��O � 1��AB
�i� �O†

� 1��

=
1

22�
i=1

N

tr �̃iAB�AB
�i� . �3�

Note that �i is changed into an operator acting on
HA � HB in the third equality of Eq. �3� because we used the
relationship that �V � 1���−�= �1 � �2VT�2���−� for any opera-
tor V, where �2 is the y component of the Pauli matrices.

Moreover, we introduced �̃i= �O† � 1��i�O � 1� in the last
equality of Eq. �3�, which must satisfy

Alice

POVM

select

outcome i

BobB1

B2

B3

BN

A1

A2

A3

AN
|ψ 〉

⎬

⎫

⎭

⎪
⎪

⎪
⎪

Bi

C B

FIG. 1. The setting of the teleportation scheme considered in
this paper. Bob has multiple output ports and obtains the teleported
state by simply selecting one of the N ports according to the out-
come �i� of Alice’s measurement. To complete the teleportation, no
unitary transformation to each output port is necessary because the
state of one of the N ports becomes the teleported state as it is.
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�̃iAB 	 0 and �
i=1

N

�̃iAB = XA � 1B, �4�

where X=O†O, and thus

X 	 0 and tr X = 2N. �5�

Hereafter, the subscript of AB in both �̃i and ��i� is omitted
for simplicity.

The optimal protocol is then obtained by maximizing the

F given by Eq. �3� with respect to 	�̃i
 and X under the
constraints of Eqs. �4� and �5�. Note that it is possible to
consider a more general setting where Alice has NA qubits
�NA	N�. This corresponds to consider a 2NA 
2N matrix of
O and 2NA+1
2NA+1 matrices of �i. Even in this case, how-

ever, the X and �̃i to be optimized are a 2N
2N and
2N+1
2N+1 matrix, respectively, and hence the optimal X and

�̃i �and thus the optimal F also� are not changed even for
NA�N. Therefore, the strategy of employing NA�N qubits
is not helpful for the purpose of increasing the average
fidelity.

For obtaining the optimal protocol of the deterministic
version and of the probabilistic version also, the operator �
defined as

� = �
i=1

N

��i� �6�

plays an important role. Therefore, before discussing the op-
timal protocols, we investigate and summarize the character-
istics of � in Sec. III.

III. CHARACTERISTICS OF �

Based on the correspondence between qubits and 1/2
spins, �0�1��↔ � 1

2 ,− 1
2 � 1

2 ��, let us regard each qubit as a 1/2
spin, i.e., SU�2� basis. The eigenvalues of � defined in Eq.
�6� are given by

� j
− =

1

2NN

2
− j� and � j

+ =
1

2NN

2
+ j + 1� . �7�

The corresponding eigenstates are

��� j
�;m�� = ���N�� j,m + 1

2 ,���A�0�B


� j,m + 1
2 , 1

2 ,− 1
2 �j �

1
2 ,m�

+ ���N�� j,m − 1
2 ,���A�1�B


� j,m − 1
2 , 1

2 , + 1
2 �j �

1
2 ,m� , �8�

where ���N��j ,m ,���= �j ,m ,�� denotes the orthogonal basis
of N-spin systems, i.e., the basis of irreducible representation
of SU�2��N. Therefore, j in Eq. �7� represents the spin angu-
lar momentum of the N-spin system �A qubits�, and hence j
runs from jmin to N /2 where jmin=0 �1/2� when N is even
�odd�. Note that ��� j

� ;m�� are also the eigenstates of the
total spin angular momentum �s� of the �N+1�-spin system
�A and B qubits�, and hence � is block diagonal with respect
to s. The total spin is given by s= j�1 /2 for ��� j

� ;m��, and

m in ��� j
� ;m�� runs from −s to s. Note further that

��� j
� ;m�� has the implicit additional degree of freedom

with respect to � of �j ,m ,��, which takes
�=1,2 , . . . ,g�N��j�, where

g�N��j� =
�2j + 1�N!

�N/2 − j� ! �N/2 + 1 + j�!
. �9�

The nonvanishing Clebsch-Gordan �CG� coefficients in Eq.
�8� are given by

� j1, �
1
2 , 1

2 , �
1
2 �j1 + 1

2 , � 1� = �� j1 + 3
2�/�2j1 + 1� , �10�

� j1, �
1
2 , 1

2 , �
1
2 �j1 − 1

2 , � 1� = � �� j1 − 1
2�/�2j1 + 1� ,

�11�

� j1, �
1
2 , 1

2 , �
1
2 �j1 + 1

2 ,0� = � � j1, �
1
2 , 1

2 , �
1
2 �j1 − 1

2 ,0�
= �� j1 + 1

2�/�2j1 + 1� . �12�

The proof of the eigenvalue equation

���� j
�;m�� = � j

���� j
�;m�� �13�

is presented in Appendix A.
The N-spin eigenbasis ���N�� are obtained recursively,

���N−1�����1��→ ���N��, where ���N−1�� are �N−1�-spin eigen-

basis of the first �N−1� spins �ĀN qubits� and ���1�� are the
1/2-spin state of the AN qubit. Hence, ���N��j , . . .�� is
classified into two; one is the linear combination of
���N−1��j+ 1

2 , . . .���i�AN
and the other, ���N−1��j− 1

2 , . . .���i�AN
.

We call the former �latter� to be of the type I �II�. Those are
given by

��I
�N��j,m�� = ���N−1�� j + 1

2 ,m + 1
2���0�AN


� j + 1
2 ,m + 1

2 , 1
2 ,− 1

2 �j,m�
+ ���N−1�� j + 1

2 ,m − 1
2���1�AN


� j + 1
2 ,m − 1

2 , 1
2 , + 1

2 �j,m�

and

��II
�N��j,m�� = ���N−1�� j − 1

2 ,m + 1
2���0�AN


� j − 1
2 ,m + 1

2 , 1
2 ,− 1

2 �j,m�
+ ���N−1�� j − 1

2 ,m − 1
2���1�AN


� j − 1
2 ,m − 1

2 , 1
2 , + 1

2 �j,m� .

According to the different types of ���N��, eigenstates
��� j

� ;m�� are also classified into two types as follows:
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�I�� j
�;m�� = ���N−1�� j + 1

2 ,m + 1,���ĀN
�0�AN

�0�B� j,m + 1
2 , 1

2 ,− 1
2 �j �

1
2 ,m�� j + 1

2 ,m + 1, 1
2 ,− 1

2 �j,m + 1
2�

+ ���N−1�� j + 1
2 ,m,���ĀN

�1�AN
�0�B� j,m + 1

2 , 1
2 ,− 1

2 �j �
1
2 ,m�� j + 1

2 ,m, 1
2 , 1

2 �j,m + 1
2�

+ ���N−1�� j + 1
2 ,m,���ĀN

�0�AN
�1�B� j,m − 1

2 , 1
2 , 1

2 �j �
1
2 ,m�� j + 1

2 ,m, 1
2 ,− 1

2 �j,m − 1
2�

+ ���N−1�� j + 1
2 ,m − 1,���ĀN

�1�AN
�1�B� j,m − 1

2 , 1
2 , 1

2 �j �
1
2 ,m�� j + 1

2 ,m − 1, 1
2 , 1

2 �j,m − 1
2� �14�

and

�II�� j
�;m�� = ���N−1�� j − 1

2 ,m + 1,���ĀN
�0�AN

�0�B� j,m + 1
2 , 1

2 ,− 1
2 �j �

1
2 ,m�� j − 1

2 ,m + 1, 1
2 ,− 1

2 �j,m + 1
2�

+ ���N−1�� j − 1
2 ,m,���ĀN

�1�AN
�0�B� j,m + 1

2 , 1
2 ,− 1

2 �j �
1
2 ,m�� j − 1

2 ,m, 1
2 , 1

2 �j,m + 1
2�

+ ���N−1�� j − 1
2 ,m,���ĀN

�0�AN
�1�B� j,m − 1

2 , 1
2 , 1

2 �j �
1
2 ,m�� j − 1

2 ,m, 1
2 ,− 1

2 �j,m − 1
2�

+ ���N−1�� j − 1
2 ,m − 1,���ĀN

�1�AN
�1�B� j,m − 1

2 , 1
2 , 1

2 �j �
1
2 ,m�� j − 1

2 ,m − 1, 1
2 , 1

2 �j,m − 1
2� . �15�

Here, the additional degree of freedom of the �N−1�-spin
eigenbasis ���N−1�� was specified by �, which takes
�=1,2 , . . . ,g�N−1��j+ 1

2 � for �I�� j
� ;m�� and

�=1,2 , . . . ,g�N−1��j− 1
2 � for �II�� j

� ;m��. Here, g�N−1��j� is
given by Eq. �9� with N→ �N−1�. Note that it is also pos-
sible to construct �I�� j

� ;m�� and �II�� j
� ;m�� by using the

�N−1�-spin eigenbasis for the Āi qubits �instead of the ĀN
qubits� and the states of the AiB qubits. Let us denote the
resultant �N−1�-spin eigenbasis by ���N − 1���j ,m ,����, which
are unitarily equivalent to ���N−1��j ,m ,���. The unitary
transformation depends only on � and �� for each j �27�.
Namely,

���N − 1���j,m,���� = �
�

�U�j��������N−1��j,m,��� �16�

holds with U�j� being a unitary matrix.
As mentioned above, � is block diagonal with respect to

the total spin angular momentum s, and let us denote the
block matrices by ��s�. Since j=s�1 /2 for � j

�, ��s� is writ-
ten as ��s�=�−�s� � �+�s� with

���s� = �s�1/2
� �

m=−s

s

�
�

���s�1/2
� ;m�����s�1/2

� ;m��

�17�

or equivalently,

���s� = �s�1/2
� �

m=−s

s

��
�

�I��s�1/2
� ;m���I��s�1/2

� ;m��

+ �
�

�II��s�1/2
� ;m���II��s�1/2

� ;m��� .

The degeneracy of �s−1/2
− = �N /2+1 /2−s� /2N is

�2s + 1�	g�N−1��s� + g�N−1��s − 1�
 = �2s + 1�g�N��s − 1
2� ,

�18�

where the first and the second term on the left-hand side
originates from �I��s−1/2

− ;m�� and �II��s−1/2
− ;m��, respec-

tively. From Eqs. �14�–�16� and using the explicit form of the
CG coefficients �Eqs. �10�–�12��, it is found that

��AiB
− �I��s−1/2

− ;m�� =
�s − m� + �s + m�
�2�2s�2s + 1�

���N − 1���s,m,����Āi

=� s

2s + 1�
�

�U�s�����


���N−1��s,m,���Āi
�19�

and

��AiB
− �II��s−1/2

− ;m�� = 0. �20�

Likewise, the degeneracy of �s+1/2
+ = �N /2+3 /2+s� /2N is

�2s + 1�	g�N−1��s + 1� + g�N−1��s�
 = �2s + 1�g�N��s + 1
2� ,

�21�

where the first and the second term on the left-hand side
originates from �I��s+1/2

+ ;m�� and �II��s+1/2
+ ;m��, respec-

tively. Moreover, we have

��AiB
− �I��s+1/2

+ ;m�� = 0 �22�

and

��AiB
− �II��s+1/2

+ ;m��

= −
�s + m + 1� + �s − m + 1�

�2�2�s + 1��2s + 1�
���N − 1���s,m,����Āi

= −� s + 1

2s + 1�
�

�U�s��������N−1��s,m,���Āi
. �23�

Let us now introduce the states of
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���i��s,m,��� = ��−�AiB
���N−1��s,m,���Āi

. �24�

Using these states, ��i� of Eq. �2� is written as

��i� = �
s=smin

�N−1�/2

��i��s� ,

with

��i��s� =
1

2N−1 �
m=−s

s

�
�

���i��s,m,������i��s,m,��� ,

where smin=0 �1/2� when N−1 is even �odd�. From Eqs.
�19�, �20�, �22�, and �23�, and noting the orthogonality of
���U�s�����U�s�����

� =��,��, we have

���i��s,m,�����s��−1/y���i��s�,m�,����

= �s,s��s�,s��m,m���,��c�s,y� , �25�

where y is arbitrary real and

c�s,y� =
s

2s + 1
��s−1/2

− �−1/y +
s + 1

2s + 1
��s+1/2

+ �−1/y . �26�

Note that c�s ,y� depends only on s �for a fixed y and N�. As
a result, it is found that both � and ��i� are simultaneously
block diagonal with respect to s, and hence the block matri-
ces ��s� and ��i��s�� are orthogonal to each other for s�s�.

IV. OPTIMAL FIDELITY

A. Maximally entangled ��‹

Let us first consider the case where the state ��� employed
for the deterministic teleportation is fixed to a maximally
entangled state, i.e., ���= ��−��N. This corresponds to the
case where X is fixed to X=O†O=1, and only the measure-
ment performed by Alice is optimized to maximize the aver-
age fidelity f . As shown in Ref. �25�, the optimal measure-
ment is the square-root measurement �SRM� �also known as
a pretty good measurement or least-squares measurement�
�28–33�. The optimal POVM elements are thus

�i = �−1/2��i��−1/2, �27�

where �−1 is defined on the support of �, and we implicitly
assume that the excess term

� =
1

N
1 − �

i=1

N

�−1/2��i��−1/2� �28�

is added to every �i so that the POVM elements sum to
identity. Note that tr ��i��=0. From Eqs. �25� and �26�, the
optimal entanglement fidelity is calculated as

F =
1

22tr �
s=smin

�N−1�/2

�
i=1

N

��s�−1/2��i��s���s�−1/2��i��s�

=
N

22N �
s=smin

�N−1�/2

�2s + 1�g�N−1��s�c�s,2�2

=
1

2N+3�
k=0

N N − 2k − 1
�k + 1

+
N − 2k + 1
�N − k + 1

�2N

k � . �29�

The corresponding average fidelity f as a function of N is
plotted by closed circles in Fig. 2. For N	3, the fidelity
exceeds the classical limit fcl=2 /3, which is the best fidelity
via a classical channel only �26�. For N→�, we find that
F→1−3 / �4N�, and hence

f → 1 − 1/�2N� for N → � . �30�

The above protocol of employing maximally entangled
��� and SRM can be easily extended to the case of teleport-
ing an unknown state of a qudit �d-dimensional system�,
where ���= ��+��N with ��+�= �1 /�d��k=0

d−1�kk�, and the
POVM elements are given by Eq. �27� with
��i�= �1 /dN−1�PAiB

+
� 1Āi

, where P+= ��+���+�. As mentioned
in Ref. �25�, the average fidelity is lower bounded as

f 	 1 − d�d − 1�/N . �31�

The proof is presented in Appendix B.
To investigate the property of the teleportation channel �

�Eq. �1� extended to the qudit case�, let us consider the state
isomorphic to the channel �BD= �� � 1�PCD

+ . Using �U
� 1���+�= �1 � UT���+�, we have for O=1

�UB � UD
� ��BD�UB

†
� UD

T �

= �
i=1

N

trAC�UAi

�
� UC��iAC�UAi

T
� UC

† ���AB
�i�

� PCD
+ �

= �
i=1

N

trAC�UA
�

� UC��iAC�UA
T

� UC
† ���AB

�i�
� PCD

+ � ,

where UA denotes UA1
� UA2

� ¯ � UAN
and �AB

�i�

=U
Āi

T
�AB

�i� U
Āi

�
was used in the second equality. Since �AC

�i� �and

thus �AC� is invariant under the �UA
�

� UC� twirling, 	�iAC
 of
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FIG. 2. The average fidelity �f� in the deterministic scheme as a
function of the number of output ports �N�. The asymptotic behav-
ior �1−1 / �2N�� in the case of the maximally entangled ��� is also
plotted by a dashed-dotted line.
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SRM �and �AC� is also invariant under the twirling. As a
result, �BD is invariant under the �UB � UD

� � twirling. This
implies that �BD is an isotropic state, and therefore the tele-
portation channel is a depolarizing channel.

B. Optimal ��‹

Let us next consider the case where both ��� and Alice’s
measurement are optimized. The optimal POVM elements
are

�̃i = �
s=smin

�N−1�/2

z�s���s�−1/y�s���i��s���s�−1/y�s�, �32�

where y�s� is defined through

�s−1/2
−

�s+1/2
+ �1/y�s�s + 1

s
= sin

2��s + 1�
N + 2

/sin
2�s

N + 2
� D�s� ,

�33�

and z�s� is given by

z�s� =
2N+1��s−1/2

− �2/y�s�−1

�N + 2�sg�N��s − 1/2�
sin2 2�s

N + 2
.

Note that the form of the optimal �̃i resembles the form of
SRM, but y�s� is not generally equal to 2; it is a function of
s �and N�. In this way, the optimal measurement becomes,
say, the generalized SRM if both ��� and Alice’s measure-
ment are optimized. Note further that we implicitly assume

that the excess term �̃ is added to every �̃i, as in the case of
SRM, so that the POVM elements sum to X � 1 �see Eq. �4��.
The optimal state ��� is specified through X given by

X = �
j=jmin

N/2

��j�1�j�A, �34�

where 1�j�A is the identity on the subspace spanned by
���N��j ,¯��A and

��j� =
2N+2

�N + 2��2j + 1�g�N��j�
sin2��2j + 1�

N + 2
. �35�

For the above choice of 	�̃i
,

�
i=1

N

�̃i = �
s=smin

�N−1�/2

z�s���s�1−2/y�s�

= z�smin���smin−1/2
− �1−2/y�smin�1−�smin�

+ �
s=smin+1

�N−1�/2

	z�s���s−1/2
− �1−2/y�s�1−�s�

+ z�s − 1���s−1/2
+ �1−2/y�s−1�1+�s − 1�


+ zN − 1

2
���N/2

+ �1−2/y�N−1/2�1+N − 1

2
� ,

where

1��s� = �
m=−s

s

�
�

���s�1/2
� ;m�����s�1/2

� ;m�� �36�

is the identity on the support of ���s� �see Eq. �17��. Using

z�s���s−1/2
− �1−2/y�s� = z�s − 1���s−1/2

+ �1−2/y�s−1� = ��s − 1/2�
�37�

and the following relation:

1−�s� + 1+�s − 1� = 1�s − 1
2�A � 1B �38�

obtained from Eq. �8� and the CG coefficients, we have

�
i=1

N

�̃i = �
j=jmin

N/2−1

��j�1�j�A � 1B + �N

2
�1+N − 1

2
� � XA � 1B.

�39�

Therefore, the constraint of Eq. �4� can be satisfied for an

appropriate choice of �̃	0. Moreover, since

tr X =
2N+2

N + 2 �
j=jmin

N/2

sin2��2j + 1�
N + 2

= 2N, �40�

the constraint of Eq. �5� is also satisfied.
The optimal entanglement fidelity is then calculated as

F =
1

2N+1 tr �
s=smin

�N−1�/2

z�s�c„s,y�s�…��s�1−1/y�s�

=
1

�N + 2� �
s=smin

�N−1�/2 sin2 2�s

N + 2

sg�N��s − 1/2�
�D�s� + 1�


�D�s�
s2

s + 1

�s+1/2
+

�s−1/2
− g�N��s + 1/2� + sg�N��s − 1/2��

=
1

�N + 2� �
s=smin

�N−1�/2

sin2 2�s

N + 2
�D�s� + 1�2 = cos2 �

N + 2
,

�41�

where D�s� has been defined in Eq. �33�. The corresponding
average fidelity

f =
2

3
+

1

3
cos

2�

N + 2
�42�

is plotted by open circles in Fig. 2. The optimality of Eq.
�41� is proved in Appendix C. Since both ��� and Alice’s
measurement are simultaneously optimized, this is the best
fidelity in the teleportation scheme such that Bob simply
selects one of the multiple qubits. It is found from the figure
that the best fidelity is nearly achieved by the protocol of
employing maximally entangled ��� and SRM. Note, how-
ever, that the asymptotic behaviors of the fidelity are differ-
ent from each other, f →1−O�1 /N� for maximally entangled
��� �Eq. �30��, while f →1−O�1 /N2� if ��� is also optimized
�Eq. �42��.
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V. PROBABILISTIC VERSION

In the probabilistic scheme, the teleportation sometimes
fails, but if the teleportation succeeds, the state is faithfully
teleported with perfect fidelity f =1. The optimal protocol is
then such that it maximizes the average success probability.

Let 	�0 ,�1 ,�2 , . . . ,�N
 be the POVM elements of Al-
ice’s measurement. Suppose that the teleportation fails if �0
is obtained in her measurement; otherwise, when �i with
i�0 is obtained, the teleportation faithfully succeeds, where
the state of the Bi qubit is exactly equal to the input state of
the C qubit �see Fig. 1�. As in the case of the deterministic
version discussed in Sec. II, the teleportation channel is
given by Eq. �1� �when the teleportation succeeds�. However,
the channel is trace nonpreserving in this case, and

tr ���in� =
1

2N�
i=1

N

trAC �iAC�OO†
� �C

in� �43�

corresponds to the success probability �when the input state
is �in�. The success probability p averaged over all uniformly
distributed input pure states is then given by

p =
1

2N�
i=1

N

tr �iOO†
�

1C

2
� =

1

2N+1�
i=1

N

tr �̃i, �44�

where we again introduced �̃i= �O† � 1��i�O � 1�. Note that
p agrees with the success probability when half of PCD

− is
teleported as in the entanglement swapping. The entangle-
ment fidelity is thus given by

F =
1

p
tr PBD

− ��� � 1�PCD
− � =

1

22p
�
i=1

N

tr �̃iAB�AB
�i� .

Since F=1 for the faithful teleportation, it is found that

tr �̃i�1− P−�AiB
=0 must hold for i=1,2 , . . . ,N. This implies

that �̃i must have the form of

�̃i = PAiB
−

� �̃iĀi
for i = 1,2, . . . ,N , �45�

where 	�̃i
 with i=1,2 , . . . ,N must satisfy

�̃i 	 0 and �
i=1

N

PAiB
−

� �̃iĀi
� XA � 1B �46�

because �i	0 and �i=1
N �i�1. Here, we again introduced

X=O†O, which must satisfy Eq. �5�. The average success
probability is then written as

p =
1

2N+1�
i=1

N

tr �̃iĀi
. �47�

Therefore, the optimal protocol of the probabilistic version is
obtained by maximizing p given by Eq. �47� with respect to

	�̃i
 and X under the constraints of Eqs. �5� and �46�.

VI. OPTIMAL SUCCESS PROBABILITY

A. Maximally entangled ��‹

Let us first consider the case where the state ��� is fixed as
���= ��−��N, i.e., X=O†O=1, and only the measurement per-

formed by Alice is optimized to maximize the success prob-
ability p. The optimal POVM elements are given by

�̃iĀi
=

1

2N−1 �
s=smin

�N−1�/2
1

�s+1/2
+ 1�s�Āi

, �48�

where 1�s�Āi
is the identity on the subspace spanned by

���N−1��s ,¯��Āi
. For this choice,

�
i=1

N

PAiB
−

� �̃iĀi
= �

s=smin

�N−1�/2
1

�s+1/2
+ �

i=1

N
1

2N−1 PAiB
−

� 1�s�Āi

= �
s=smin

�N−1�/2
1

�s+1/2
+ ��s� � 1 �49�

because �s+1/2
+ is the largest eigenvalue of ��s�, and hence the

constraint of Eq. �46� is satisfied. The optimal success prob-
ability is then calculated as

p =
1

22N �
s=smin

�N−1�/2
N

�s+1/2
+ tr 1�s�Āi

=
1

22N �
s=smin

�N−1�/2
N�2s + 1�g�N−1��s�

�s+1/2
+

=
1

2N �
s=smin

�N−1�/2
�2s + 1�2N!

N − 1

2
− s� ! N + 3

2
+ s�!

, �50�

which is plotted by closed circles in Fig. 3. Moreover, we
find

p → 1 − �8/��N� for N → � , �51�

and therefore, this protocol achieves the unit success prob-
ability in the asymptotic limit of N→�. The optimality of
Eq. �50� is proven in Appendix D.

B. Optimal ��‹

Let us next consider the case where both ��� and Alice’s
measurement are optimized simultaneously. The optimal
POVM elements are given by

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of ports N

P
ro

ba
bi

lit
y

p

best
max. entangled

1− 8
π N√

1− 3
N+3

FIG. 3. The average success probability �p� in the probabilistic
scheme as a function of number of output ports �N�. The asymptotic
behavior �1−�8 / ��N�� in the case of the maximally entangled ���
is also plotted by a dashed-dotted line.
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�̃iĀi
= �

s=smin

�N−1�/2

u�s�1�s�Āi
, �52�

where

u�s� =
2N+1h�N��2s + 1�

Ng�N−1��s�
, �53�

with h�N�=6 / ��N+1��N+2��N+3��. The optimal state ��� is
specified through X given by

X = �
j=jmin

N/2

��j�1�j�A with ��j� =
2Nh�N��2j + 1�

g�N��j�
.

�54�

For the above choice,

1

2N−1�
i=1

N

PAiB
−

� �̃iĀi

= �
s=smin

�N−1�/2

u�s���s�

= u�smin��smin−1/2
− 1−�smin�

+ �
s=smin+1

�N−1�/2

	u�s��s−1/2
− 1−�s� + u�s − 1��s−1/2

+ 1+�s − 1�


+ uN − 1

2
��N/2

+ 1+N − 1

2
� ,

where 1��s� is given by Eq. �36�. Using

u�s��s−1/2 = u�s − 1��s−1/2 = ��s − 1/2�/2N−1

and Eq. �38�, the fulfillment of Eq. �46� is confirmed in the
same way as Eq. �39�. The constraint of Eq. �5� is also sat-
isfied because

tr X = 2Nh�N� �
j=jmin

N/2

�2j + 1�2 = 2N. �55�

The optimal success probability is then

p =
N

2N+1 �
s=smin

�N−1�/2

u�s�tr 1�s�Āi
= h�N� �

s=smin

�N−1�/2

�2s + 1�2 =
N

N + 3

= 1 −
3

N + 3
, �56�

which is plotted by open circles in Fig. 3. The optimality of
Eq. �56� is proven in Appendix E. Here, let us recall that the
success probability in the KLM scheme is equal to
p=1−1 / �N+1� �17�. Comparing this and Eq. �56�, it is
found that the number of ports N in our scheme must be just
three times larger than that of the KLM scheme to achieve
the same success probability. Therefore, this three times in-
crease in the number of ports is, in some sense, regarded as
the cost we have to pay to remove Bob’s unitary transforma-
tion.

It has been shown in Ref. �22� that the success probability
of the �probabilistic� KLM scheme is maximized when a
maximally entangled state is employed. On the other hand, in
contrast to the KLM scheme, the success probability in our
scheme is considerably enhanced by optimizing ��� as shown
in Fig. 3. This implies that nonmaximally entangled ��� can
provide considerably larger success probability than that of a
maximally entangled ���. Interestingly, we have from Eq.
�54�

�Bi
= trAB̄i

������

=
1

2N�2�trB̄i
XB1¯BN

T ��2

=
1

2N �
j=jmin

N/2

��j��2j + 1�g�N��j�
1Bi

2
=

1Bi

2
.

Namely, although the optimal ��� is nonmaximally entangled
in the A1A2¯AN :B1B2¯BN cut, each Bi qubit is still maxi-

mally entangled with the other qubits, with both A and B̄i
qubits, in a complicated manner. Note that this is also the
case for the optimal ��� in the deterministic version dis-
cussed in Sec. IV B; we have �Bi

=1 /2 by using Eq. �34�,
although the optimal fidelity is nearly achieved by the maxi-
mally entangled ��� as shown in Fig. 2, in contrast to the
success probability.

VII. EXAMPLE

Now, let us show the explicit form of the optimal ��� and
the optimal POVM elements of Alice’s measurement in the
simplest case of N=2 in the probabilistic scheme. From Eq.
�56�, the optimal success probability in this case is p=2 /5.
From Eq. �54� for N=2, we have

X =
2

5
1�0�A +

6

5
1�1�A =

2

5
��−���−� +

6

5
��00��00� + �11��11�

+ ��+���+�� ,

where A=A1A2 and ����= ��01�� �10�� /�2. The optimal ���
is thus

��� =� 1

10
��−�A��−�B1B2

+� 3

10
��00��11� + �11��00� − ��+���+��AB1B2

. �57�

From Eq. �52� for N=2, we have �̃1= �4 /5�1A2
, and hence

�1 = �X−1�PA1C
−

� �̃1A2
��X−1 = ���−���−� + ��+���+��AC,

�58�

where 	��−� , ��+�
 are orthogonal states given by

��−�AC =�2

3
�x−�A�0�C +�1

3
�00�A�1�C,
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��+�AC =�2

3
�x+�A�1�C −�1

3
�11�A�0�C,

with �x��= �1 /2�����+�+�3��−��. The POVM element �2 is
given by A1↔A2 in Eq. �58� �and thus, only �x�� is replaced
with �1 /2�����+�−�3��−���. It is then easily confirmed that

��−����� � �a�0� + b�1��C� =
1

�10
�a�0� + b�1��B1

�1�B2
,

��+����� � �a�0� + b�1��C� =
− 1
�10

�a�0� + b�1��B1
�0�B2

,

and hence

��1��� � �a�0� + b�1��C =
1
�5

��res� � �a�0� + b�1��B1
.

Therefore, the state of the C qubit is certainly teleported to
the B1 qubit faithfully when Alice obtains �1 in her measure-
ment �the coefficient on the right-hand side represents the
success probability of p /N=1 /5�. Here,

��res� =
1
�2

���−�AC�1�B2
− ��+�AC�0�B2

�

=
1
�2

��−�A��−�CB2

+
1
�6

��00��11� + �11��00� − ��+���+��ACB2
�59�

is the residual state after the teleportation is successfully
completed.

VIII. ENTANGLEMENT CONSUMPTION

Here, let us briefly discuss the entanglement properties in
the probabilistic scheme. In the explicit example for
N=2 shown in Sec. VII, Alice and Bob initially share the
state ��� given by Eq. �57�. Using �A=trB1B2

������, the
amount of the entanglement of ��� is calculated to be
Eini=−tr �A log2��A��1.90 ebits �entanglement bits�, which
is less than the possible maximal amount of 2 ebits for
N=2 �the optimal ��� is nonmaximally entangled as men-
tioned in Sec. VI�. When Alice obtains �1 in her measure-
ment, the state of the C qubit is faithfully teleported to the B1
qubit, i.e., the B1 qubit is used for receiving the teleported
state. However, Bob still has the B2 qubit, and as a result,
Alice and Bob still share the residual state ��res�ACB2

given by
Eq. �59� after the teleportation is completed. The entangle-
ment of ��res� �in the AC :B2 cut� is calculated to be just
Eres=1 ebit. Therefore, when the teleportation succeeds,
only Eini−Eres=0.90 ebits are violated �or consumed�, in
spite that a state of a single qubit is faithfully teleported.
Figure 4 shows such a comparison for general N, where the
entanglement of ��� and ��res� is plotted by circles and rect-
angles, respectively. It is found from the figure that the en-
tanglement consumption is less than 1 ebit even for N�2;
rather, the amount of the consumption gradually decreases
for increasing N ��0.52 ebits for N=50�.

This implies that the entanglement between Alice and Bob
even increases if they try to teleport half of a maximally
entangled state as in the entanglement swapping �and if the
teleportation is successfully finished�. This is because Alice
and Bob newly share 1 ebit by the entanglement swapping,
while the entanglement consumption is less than 1 ebit as
shown above. For this peculiar feature in our probabilistic
teleportation scheme, the use of the optimal ��� is crucial; if
��� is fixed to a maximally entangled state as discussed in
Sec. VI A, we have Eini=N and Eres�N−1 because the num-
ber of Bob’s qubits involved in ��res� is �N−1�, and hence the
entanglement consumption in this case always satisfies
Eini−Eres	1 �in fact, Eini−Eres�1.009 and 1.004 for N=10
and N=50, respectively�. Note that the peculiar feature of the
increase in entanglement, of course, does not contradict the
laws of entanglement because the scheme discussed here is
the probabilistic one and the probabilistic increase in en-
tanglement by local operations and classical communication
�LOCC� has not been prohibited by the laws of entangle-
ment.

Let us then evaluate the average amount of the residual
entanglement. When Alice obtains �0, the teleportation fails
where the residual state generally depends on the input state
to be teleported. Moreover, if the input state is a mixed state,
the residual state is also a mixed state. Since the evaluation
of the entanglement for such a mixed state is a very hard
task, let us consider the worst case where the entanglement
of the residual state when the teleportation fails is regarded
to be zero. Using the success probability p of Eq. �56�, the
average residual entanglement in this worst case is given by
pEres, which is plotted by triangles in Fig. 4. The correspond-
ing average amount of the entanglement consumption
�Eini− pEres� is roughly 2.2 ebits for N=10 and for N=50 also
�the inset of Fig. 4�. In this way, in our probabilistic telepor-
tation scheme, although Alice and Bob must initially share
much entanglement of O�N� ebits �see the inset of Fig. 4�,
only a few ebits are consumed on average during the telepor-
tation procedure. It may be said that most of the initial en-
tanglement is only used as a working space.
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FIG. 4. The amount of entanglement as a function of the number
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IX. SUMMARY

In this paper, we have considered the scheme of quantum
teleportation, where Bob has multiple �N� output ports and
obtains the teleported state by simply selecting one of the N
ports. We investigated both the deterministic version and
probabilistic version of the teleportation scheme aiming to
teleport an unknown state of a qubit and analytically deter-
mined the optimal protocols. All protocols shown in this pa-
per can asymptotically achieve the perfect teleportation �i.e.,
faithful teleportation with unit success probability� in the
limit of N→�.

In the deterministic version of the teleportation scheme, if
the state ��� employed for the teleportation is fixed to a
maximally entangled state, the optimal measurement per-
formed by Alice is the square-root measurement, where the
optimal fidelity is given by Eq. �29� �or Eq. �30��. If both ���
and Alice’s measurement are simultaneously optimized, the
generalized square-root measurement becomes optimal. The
optimal fidelity in this case is given by Eq. �42�.

In the probabilistic version, the optimal success probabil-
ity is given by Eq. �50� �or Eq. �51�� if ��� is fixed to a
maximally entangled state and given by Eq. �56� if ��� is also
optimized. In contrast to the KLM scheme �and in contrast to
the deterministic version of our scheme also�, the success
probability is considerably enhanced by optimizing ���,
namely, the use of the nonmaximally entangled ��� provides
a considerable benefit than the use of the maximally en-
tangled ���. Moreover, we showed that the scheme is not
inefficient concerning the entanglement resource because
only a few ebits are consumed on average even for large N.
If the optimal ��� is employed for the entanglement swap-
ping, the amount of entanglement even increases when the
teleportation is successfully completed.

Note finally that the form of the optimal fidelity Eq. �42�
and the form of the optimal success probability Eq. �56� are
relatively simple �although the corresponding optimal ���

and Alice’s measurement are not�. Those are the achievable
upper bounds in the general setting of selecting one of N
qubits assisted by classical communication. In this paper,
those bounds were obtained by the direct optimization, but it
will be important to study further how those bounds of hav-
ing the simple form are related to the fundamental laws of
physics. For instance, is it possible to derive those bounds
only from the no-signaling condition? This seems an intrigu-
ing and important open problem.
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APPENDIX A: PROOF OF EQ. (13)

The proof is carried out by induction by noting that
�=��N� is constructed recursively,

��N� = ��N−1�
�

1AN

2
+

1A1

2
� ¯ �

1AN−1

2
� PANB

− .

The eigenvalue equation Eq. �13� to be proven is then rewrit-
ten as

��N���N��� j
�;m�� = � j

���N��� j
�;m�� , �A1�

where we attached a superscript �N� to the eigenstates to
emphasize the relevant system size. Moreover, we introduce
the shorthand notation for the CG coefficients,

�j1,m1; j�� = � j1,m1, 1
2 , �

1
2 �j,m1 �

1
2� ,

and introduce m�=m�1 /2 and m��=m�1 and similarly
for j.

Since Eq. �A1� is obvious for N=1, our aim is reduced to
proving Eq. �A1� under the assumption that Eq. �A1� with
N→N−1 holds true. To this end, we write ��N�� in terms of
��N−1�� as follows:

�I
�N��� j

�;m�� = ��N−1��� j+
− ;m+���0�AN

��j+,m++; j++�−
��j,m+; j��−�j+,m++; j�− + �j+,m; j++�+

��j,m−; j��+�j+,m; j�−�

+ ��N−1��� j+
− ;m−���1�AN

��j+,m; j++�−
��j,m+; j��−�j+,m; j�+ + �j+,m−−; j++�+

��j,m−; j��+�j+,m−−; j�+�

+ ��N−1��� j+
+ ;m+���0�AN

��j+,m++; j�−
��j,m+; j��−�j+,m++; j�− + �j+,m; j�+

��j,m−; j��+�j+,m; j�−�

+ ��N−1��� j+
+ ;m−���1�AN

��j+,m; j�−
��j,m+; j��−�j+,m; j�+ + �j+,m−−; j�+

��j,m−; j��+�j+,m−−; j�+� �A2�

and

�II
�N��� j

�;m�� = ��N−1��� j−
− ;m+���0�AN

��j−,m++; j�−
��j,m+; j��−�j−,m++; j�− + �j−,m; j�+

��j,m−; j��+�j−,m; j�−�

+ ��N−1��� j−
− ;m−���1�AN

��j−,m; j�−
��j,m+; j��−�j−,m; j�+ + �j−,m−−; j�+

��j,m−; j��+�j−,m−−; j�+�

+ ��N−1��� j−
+ ;m+���0�AN

��j−,m++; j−−�−
��j,m+; j��−�j−,m++; j�− + �j−,m; j−−�+

��j,m−; j��+�j−,m; j�−�

+ ��N−1��� j−
+ ;m−���1�AN

��j−,m; j−−�−
��j,m+; j��−�j−,m; j�+ + �j−,m−−; j−−�+

��j,m−; j��+�j−,m−−; j�+� . �A3�
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Equations �A2� and �A3� are obtained by calculating the
overlap between �I�II�

�N� � given by Eqs. �14� and �15� and
��N−1�� given by Eq. �8� with N→N−1.

The vector ��N−1� � 1AN
�I�II�

�N� �� j
� ;m�� takes the form of the

right-hand side of Eqs. �A2� and �A3� with

��N−1��� j+
� ; . . .�� → � j+

�N−1����N−1��� j+
�N−1��; . . .�� ,

��N−1��� j−
� ; . . .�� → � j−

�N−1����N−1��� j−
�N−1��; . . .�� ,

and these are further written in terms of ���N−1��. Here, we
again attached a superscript �N� to eigenvalues � j

� to empha-
size the relevant system size. On the other hand, the vector
1ĀN

� PBAN

− �I�II�
�N� �� j

� ;m�� takes the form of the right-hand
side of Eqs. �14� and �15� with

�0�B�1�AN
→ ��0�B�1�AN

− �1�B�0�AN
�/�2,

�1�B�0�AN
→ − ��0�B�1�AN

− �1�B�0�AN
�/�2.

Putting these two results together �and after lengthy calcula-
tions�, we can see the desired eigenvalue equation,

��N��I�II�
�N� �� j

�;m�� = ��N−1�
�

1AN

2
+

1ĀN

2N−1 � PANB
− �


�I�II�
�N� �� j

�;m�� = � j
��I�II�

�N� �� j
�;m�� .

This completes the proof.

APPENDIX B: PROOF OF EQ. (31)

The proof is based on the technique used in the Holevo-
Schumacher-Westmoreland �HSW� theorem �34,35�. Let us
denote the eigenstates of ��i� by �k�i��, and hence ��i�

= �1 /dN−1��k�k�i���k�i��. The entanglement fidelity then satis-
fies

F =
1

d2 tr �
i=1

N

�−1/2��i��−1/2��i� 	
1

d2N�
i=1

N

�
k

��k�i���−1/2�k�i���2

=
1

NdN−1�
i=1

N

�
k

��k�i���dN+1�/N�−1/2�k�i���2

	
2

NdN−1�
i=1

N

�
k

�k�i���dN+1�/N�−1/2�k�i�� − 1

=
2

dN+1 tr�dN+1�/N�1/2 − 1 	 2 −
dN+1

N2 tr �2,

where x2	2x−1 was used in the second inequality and 2�1
−�1/2��21−3�+�2 was used in the last inequality �34–36�.
Since

tr �2 =
1

dN−1 �
i,j=1

N

�k�i����j��k�i�� =
N

dN−1 +
N�N − 1�

dN+1 ,

we have F	1− �d2−1� /N, and thus Eq. �31� because
f = �Fd+1� / �d+1� �26�.

APPENDIX C: OPTIMALITY OF EQ. (42)

The problem of maximizing the F given by Eq. �3� under
the constraints of Eqs. �4� and �5� is a semidefinite program
�37� and thus has the dual problem. Since the Lagrange func-
tion is

L = �
i=1

N

tr �̃i�
�i� − tr ��

i=1

N

�̃i − X � 1� − a�tr X − 2N�

= 2Na − �
i=1

N

tr �̃i�� − ��i�� − tr X�a1 − trB �� ,

where � and a are the Lagrange multipliers, the dual prob-
lem is of minimizing F=2N−2a subject to

a1A − trB � 	 0, � − ��i� 	 0. �C1�

Let us take

a =
1

2N−2cos2 �

N + 2
,

� =
1

2N−1 �
s=smin

�N−1�/2

c„s,y�s�…��s�1/y�s�.

Since any feasible solution of the dual problem gives an
upper bound of the original problem �37� and F=2N−2a
agrees with Eq. �41�, it is then enough to show that the above
� is a feasible solution, i.e., � satisfies the constraints of Eq.
�C1�. It is found from Eq. �8� and the CG coefficients that

2N−1 trB � = c�smin���smin−1/2
− �1/y�smin�2smin + 1

2smin
1smin −

1

2
�

A

+ �
s=smin+1

�N−1�/2 �c�s���s−1/2
− �1/y�s�2s + 1

2s

+ c�s − 1���s−1/2
+ �1/y�s−1�2s − 1

2s
�1s −

1

2
�

A

+ cN − 1

2
���N/2

+ �1/y�N−1/2� N

N + 1
1N

2
�

A

,

where c�s��c(s ,y�s�) and 1�j� is the identity on the sub-
space spanned by ���N��j ,¯��. Since

c�s���s−1/2
− �1/y�s�2s + 1

2s
+ c�s − 1���s−1/2

+ �1/y�s−1�2s − 1

2s

= 1 +
D�s�

2
+

1

2D�s − 1�
= 2 cos2 2�

N + 2
,

we have trB �=a1A, and hence the first constraint in Eq. �C1�
is satisfied. Moreover, in the same way as in Ref. �25�,

��s�1/y�s� −
1

c„s,y�s�…�m,�
���i��s,m,������i��s,m,��� 	 0

follows from Eq. �25�, and thus the second constraint in Eq.
�C1� is also satisfied.
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APPENDIX D: OPTIMALITY OF EQ. (50)

The problem of maximizing p given by Eq. �47� under
the constraints of Eq. �46� �with fixed X=1� is also a
semidefinite program. The dual problem is of minimizing
p= �1 /2N+1�tr � subject to

� 	 0, trAiB
PAiB

− �AB 	 1Āi
. �D1�

For the choice of

� = �
s=smin

�N−1�/2
2s + 1

s + 1 �
m,�

���s+1/2
+ ;m�����s+1/2

+ ;m�� ,

it is found from Eqs. �22� and �23� that

trAiB
PBAi

− � = �
s=smin

�N−1�/2
2s + 1

s + 1

s + 1

2s + 1
1�s�Āi

= 1Āi
,

and therefore the above � is a feasible solution. On the other
hand, p= �1 /2N+1�tr � agrees with Eq. �50� because the de-
generacy of ���s+1/2

+ ;m�� is �2s+1�g�N��s+1 /2� �see Eq.
�21�� and

�2s + 1�2g�N��s + 1/2�
s + 1

=
N

2N−1

�2s + 1�g�N−1��s�
�s+1/2

+ .

APPENDIX E: OPTIMALITY OF EQ. (56)

The dual problem for general X is of minimizing p=2Na
subject to

� 	 0, trAiB
PAiB

− �AB 	 1Āi
, a1A −

1

2N+1 trB � 	 0.

�E1�

Let us take a= �1 /2N�N / �N+3� and consider

� = �
s=smin

�N−1�/2

�
m,�

	d�s����s+1/2
+ ;m�����s+1/2

+ ;m��

+ e�s����s−1/2
− ;m�����s−1/2

− ;m��
 ,

where d�s�= �N+3+2s� / �N+3� and e�s�= �N+1−2s� / �N
+3�. Since p=2Na agrees with Eq. �56�, it is enough to show
that the above � is a feasible solution. From Eqs. �19�, �20�,
�22�, and �23�, it is found that

trAiB
PAiB

− � = �
s=smin

�N−1�/2 �d�s��s + 1�
2s + 1

+
e�s�s
2s + 1

�1�s�Āi
= 1Āi

,

and the second constraint of Eq. �E1� is satisfied. Moreover,
it is found from Eq. �8� and the CG coefficients that

trB � = �
s=smin

�N−1�/2 �d�s��2s + 1�
2�s + 1�

1s +
1

2
�

A

+
e�s��2s + 1�

2s
1s −

1

2
�

A
� =

2N

N + 3
1A,

and hence the third constraint of Eq. �E1� is also satisfied.
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