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Let us consider the set of joint quantum correlations arising from two-outcome local measurements on a
bipartite quantum system. We prove that no finite dimension is sufficient to generate all these sets. We
approach the problem in two different ways by constructing explicit examples for every dimension d, which
demonstrates that there exist bipartite correlations that necessitate d-dimensional local quantum systems in
order to generate them. We also show that at least ten two-outcome measurements must be carried out by the
two parties altogether so as to generate bipartite joint correlations not achievable by two-dimensional local
systems. The smallest explicit example we found involves 11 settings.
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I. INTRODUCTION

We consider the following standard bipartite measurement
scenario �1�. Two distant separated parties, conventionally
called Alice and Bob, share a joint quantum state �. The two
participants carry out measurements on their respective states
and may obtain two possible classical outcomes of �1. Let
us specify the situation, that Alice �Bob� has mA �mB� number
of �1-valued observables A1 , . . . ,AmA

�B1 , . . . ,BmB
�. In a

particular run of the experiment Alice and Bob each mea-
sures one observable, Ai and Bj, getting the respective out-
puts ai� �1 and bj � �1, and then makes the product aibj.
By repeating this process many times they can form the joint
correlation

E�ai,bj� = �AiBj� = Tr��Ai � Bj� , �1�

which is the expected value of the product aibj. These joint
correlations for all �i , j� form an mAmB-dimensional vector,
designated by c.

We are interested in the following problem. We are given
a vector c of joint correlations E�ai ,bj�, with i=1, . . . ,mA
and j=1, . . . ,mB, for a particular number of settings mA and
mB. What is the minimum Hilbert-space dimension which is
needed to reproduce this vector c? Is it the case that all sets
of these vectors for any mA and mB are possibly reproduced
by two-dimensional local Hilbert spaces? In a recent work
we provided counterexamples for small values of mA and mB
�numerically for mB=4 and mA=8; an exact treatment was
carried out for mB=6 and mA=15�, which shows that indeed
higher than two-dimensional local Hilbert spaces are re-
quired in order to produce all the set of such vectors �2�. The
same conclusion, based on the gap between a lower bound
on the Grothendieck constant in infinite dimensions �3� and
an upper bound on the three-dimensional Grothendieck con-
stant �4�, was obtained by Brunner et al. �5�. In this paper the
idea of dimension witnesses was put forward as well. Brun-
ner et al. �5� defined a d-dimensional witness as a certain
kind of generalization of Bell inequalities �1�, such that all
quantum correlations arising from observables on

d-dimensional component Hilbert spaces satisfy the inequal-
ity. Hence, correlations which violate the inequality could be
established only by measuring systems of dimension larger
than d. Thus dimension witness is a useful tool for measuring
the dimension of multipartite quantum systems relying only
on experimental data.

The results in �2,5� prove the existence of two-
dimensional witnesses in bipartite systems based on only
joint correlations. On the other hand, Pérez-García et al.
�6� gave a nonconstructive proof of the existence of
d-dimensional witnesses for tripartite systems for any dimen-
sion d. In particular, they proved in Ref. �6� in their Theorem
1 that for every dimension d, there exists a dimension D, a
pure state 	�� on Cd � Cd � CD, and a Bell inequality with
�1-valued observables such that the violation by 	�� is
greater than 
d up to some universal constant. We also men-
tion a recent paper by Wehner et al. �7�, in which a method
was given to bound from below the dimension of a Hilbert
space by relating this problem to the construction of quantum
random access codes. Their method works for quantum sys-
tems involving any number of parties �can be applied even
for a single system� and is most useful for small number of
settings.

In this paper we tackle the problem of whether there exist
dimension witnesses for bipartite systems built from two-
outcome measurements for any dimension d. Note that the
tripartite case was affirmatively answered in �6�. On the other
hand, the fact that this may also hold for the bipartite case
was conjectured in Ref. �5� based on the plausible assump-
tion that the Grothendieck constant �8� for infinite dimension
is strictly larger than the Grothendieck constant for every
finite order. In the numerical works in �9,10� we found vari-
ous dimension witnesses up to dimensions of three and four,
respectively, using bipartite Bell inequalities up to five bi-
nary measurement settings, mA=mB=5. But there, besides
joint correlations, local marginal terms were also involved.

In particular, in Sec. II of the present paper, we discuss
the link between joint correlations of two-party outcomes
arising from two-outcome measurements and dot products of
unit vectors in the Euclidean space. Armed with this connec-
tion two families of Bell inequalities are presented �in Secs.
III and IV�, proving the existence of bipartite correlations for
any dimension d which require at least d-dimensional sys-
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tems in order to generate them. The first family �Sec. III�
involves a finite number of settings for any finite d, while in
case of the other family the number of settings is infinite. In
Sec. III, as a by-product, it is shown analytically that joint
correlations of two parties resulting from two-outcome mea-
surements, which require more than two-dimensional com-
ponent spaces, cannot be generated by mB=4 and mA=6 or
by less settings. That is, these numbers of settings are not
enough to define a two-dimensional witness. On the contrary,
examples are given for a two-dimensional witness for set-
tings mB=4 and mA=7 and for settings mB=5 and mA=6.
The paper concludes with Sec. V.

II. REPRESENTATION OF JOINT CORRELATIONS
WITH DOT PRODUCTS

This section contains two lemmas. The first one is bor-
rowed from �11� �their Lemma 2�, establishing a link be-
tween dot product of unit vectors in the Euclidean space and
joint correlations originating from projective measurements
in the Hilbert space, whereas the second one is a strengthen-
ing of this lemma regarding dimension witnesses.

Here we state the first lemma without proof.
Lemma 1. �Acín et al. �11�� Suppose Alice and Bob mea-

sure observables A and B on a pure quantum state 	���Cd

� Cd. Then we can associate a real unit vector a� �R2d2
with

A �independent of B� and a real unit vector b� �R2d2
with B

�independent of A� such that E�a ,b�=a� ·b� . Moreover, if 	�� is
maximally entangled, then we can assume that the vectors a�

and b� lie in Rd2−1.
Let us fix some notations regarding dimension witnesses

�5� based on joint correlations. A d-dimensional witness �5�,
in terms of joint correlations �1�, is a linear function of these
correlators, described by a vector m of real coefficients Mij,
such that

m · c = �
i=1

mA

�
j=1

mB

MijE�ai,bj� � Wd �2�

for all correlations of form �1� with � in Cd � Cd, and such
that there are joint correlations for higher than d-dimensional
systems for which m ·c�Wd. Note that due to convexity
arguments it is sufficient to consider only pure states �
= 	����	 in order to achieve the maximum on the left-hand
side of Eq. �2�.

Lemma 1 implies the following. Let us take an arbitrary
vector m in Eq. �2� defined by some coefficients Mij, and
denote the maximum value

Qd = max
c

�m · c� �3�

achievable by correlations �1� from Cd � Cd. Because of
Lemma 1 we can associate with the elements of c, E�ai ,bj�,
two normalized vectors a� i ,b� j �Rn such that E�ai ,bj�=a� i ·b� j.
Defining

B = �
i=1

mA

�
j=1

mB

Mija� i · b� j , �4�

and denoting the extremal value in the n-dimensional Euclid-
ean space by

Tn = max
a� i,b

�
j�Rn

B , �5�

Lemma 1 implies that Qd�Tn for n=2d2.
This way we can bound the quantum value Qd achievable

in d-dimensional component Hilbert spaces from above by
dot product of unit vectors in Rn. On the other hand, due to
the construction by Cirel’son �12�, all dot products of unit

vectors a� ,b� �Rm can be realized as �1-valued observables
on a maximally entangled state on CD � CD, where D=2�m/2�.
Then in light of this and the fact that Qd�Tn for n=2d2,
constructing a Bell expression �4� for which Tn�Tm, with
n�m, implies a d-dimensional witness. The next lemma
sharpens this statement.

Lemma 2. In the notation defined above by Eqs. �3� and
�6�, we have Qd�Tn for n=2d−1. Furthermore, if the Hil-
bert space is restricted to be real, then the above relation
holds true with n=d. Thus, by constructing a Bell expression
B for which Tn�Tn+1 implies a d-dimensional witness with
d= � n+1

2 �.
In Sec. III we present a family of Bell expressions, char-

acterized by Bob’s number of settings n=mB, for which one
can prove that the above condition Tn�Tn+1 holds for the
�n+1�th member of the family. In case of this family, how-
ever, we can give the gap �Tn+1−Tn� explicitly only for small
n values. In Sec. IV another Bell expression is provided,
where this gap can be calculated analytically for every n.

Proof. Here we prove Lemma 2 and start by proving the
relation Qd�Td in the case of Hilbert space Cd � Cd re-
stricted to be real. Since Ai and Bj are �1-valued observ-
ables, the normalization conditions �l=1

d �akl
i �2=1 and

�l=1
d �bkl

j �2=1 are satisfied for all k=1, . . . ,d, where Ai= �akl
i �

and Bj = �bkl
j � are d�d symmetric matrices with real coeffi-

cients �designations i and j are moved to upper indices for
convenience�. On the other hand, for given m, Qd

=maxc�m ·c�=max �ijMij��	Ai � Bj	��, where maximization
is over all 	����	 in Cd � Cd and for all observables Ai and Bj

in Cd. The state 	�� can be written in Schmidt form, 	��
=�i=1

d 	i	ii�, where 	i can be chosen positive and their
squares add up to unity. Then we have

m · c = �
ij

Mij��	Ai
� Bj	�� = �

kl

	k	lNkl, �6�

where Nkl=�ijMij�akl
i bkl

j +alk
i blk

j � /2. Note that in the case of
real matrices Ai and Bj, the products akl

i bkl
j and alk

i blk
j are the

same. However, this form will turn out to be useful in the
proof of the complex case. Now let us flip the signs of akl

i

and alk
i for all i=1, . . . ,d in each pair �k , l� if Nkl is negative.

By performing the necessary sign flips we obtain the matri-

ces Ãi defined by elements ãkl
i . In this way the sum Ñkl

=�ijMij�ãkl
i bkl

j + ãlk
i blk

j � /2 becomes positive for any given
�k , l� pair. Thus, as a result the value of m ·c cannot decrease.
Furthermore the normalization condition still holds for the
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sign-flipped matrices, �l=1
d �ãkl

i �2=1. In the following, through
a chain of inequalities we obtain an upper bound for Qd. First
of all, we can write

�
kl

	k	lNkl � �
kl

�	k
2 + 	l

2�Ñkl/2 �7�

=�
kl

	k
2�

ij

Mij�ãkl
i bkl

j + ãlk
i blk

j �/2 �8�

=�
k

	k
2�

ij

Mija�k
i · b�k

j �9�

��
k

	k
2�

ij

Mija�
i · b� j = �

ij

Mija�
i · b� j , �10�

where the unit vectors a�k
i ,b�k

j and a� i ,b� j are in the
d-dimensional Euclidean space. In inequality �7� we used

Nkl� Ñkl and the relation 2xy�x2+y2 holding for any real
number x and y. Equality �8� follows from the fact that the

matrices Ãi and Bj are symmetric. In equality �9� we ex-
ploited that ãkl

i and bkl
j can be treated as the d real compo-

nents of unit vectors a�k
i = �ãk1

i , ãk2
i , . . . , ãkd

i � and b�k
j

= �bk1
j ,bk2

j , . . . ,bkd
j �. In the last inequality we omitted index k,

but keeping in mind the normalization conditions for a�k
i and

b�k
j we have a� i ·a� i=1 and b� j ·b� j =1. Finally the last equality

owes to �k	k
2=1. According to Eqs. �3� and �6�, Qd is the

maximum of �kl	k	lNkl over all observables and states of
dimension d. Thus, by use of the chain of inequalities �10�,
we obtain the upper bound

Qd � max
a� i,b

�
j�Rd

�
ij

Mija�
i · b� j = Td, �11�

where a� i and b� j are unit vectors.
The proof regarding the complex case goes along the

same line as in the real case, but in this case Ai= �akl
i � and

Bj = �bkl
�j� are by definition Hermitian matrices and their com-

ponents are complex valued, where � denotes complex
conjugation. Similarly as in the real case, ãkl

i is defined
by flipping the sign of akl

i if Nkl is negative for a given pair
�k , l�. Then in the complex case, in place of the real
number �ãkl

i bkl
j + ãlk

i blk
j � one can write 2�Re ãkl

i Re�bkl
j �

−Im ãkl
i Im�bkl

j ��, and then in Eq. �9� we have

a�k
i = �Re ãk1

i , Im ãk1
i , . . . , ãkk

i , . . . ,Re ãkd
i , Im ãkd

i � and b�k
j

= �Re bk1
j ,−Im bk1

j , . . . ,bkk
j , . . . ,Re b̃kd

j ,−Im b̃kd
j �. Since com-

ponents ãkk
i and bkk

j are real, these vectors lie in the
�2d−1�-dimensional Euclidean space, and they can be
checked to be of unit length. Therefore, in the complex case

in Eq. �11� one has the unit vectors a� i ,b� j �R2d−1 and the
right-hand side becomes T2d−1, which completes the proof. �

Some remarks about Lemma 2 are in order. First, pro-
vided that the real Hilbert-space result is given, one can also
obtain the result concerning the complex case by mapping
the d�d Hermitian observables to 2d�2d real observables
�as discussed in the Appendix of �9� and in the multipartite
setting in �13��, which latter matrices have the property that
at each column there is at least one zero component, entail-

ing the �2d−1�-dimensional Euclidean vectors a� i and b� j in
the upper bound expression on Qd. Second, in light of the
proofs in Refs. �2,5� regarding the qubit case, in Lemma 2,
Q2 is equal to T3 and T2 in the respective cases of complex
and real qubits.

III. BOUNDS ON DIMENSIONS WITH FINITE
NUMBER OF SETTINGS

In this section an example for dimension witness is pro-
vided for every dimension d. Let us consider the expression
B defined earlier in Sec. II by Eq. �4�. According to Lemma
2, a Bell expression with a specific matrix m for which Tn

�Tn+1 �Tn denoting the maximum value of Eq. �4� in Rn�
implies the existence of a d-dimensional Hilbert-space wit-
ness in a bipartite system with d= � n+1

2 �.
In Sec. III A it is shown that if mA�mB�mB−1� /2, then

vectors from a smaller space than dimension mB are enough
to maximize B. Then in Sec. III B it is shown via a particular
family of Bell inequalities �labeled by Bob’s measurements
mB� that when mA=mB�mB−1� /2+1 for any given value of
mB, the whole mB-dimensional Euclidean space is required to
maximize B. This proves for every n=mB−1 that Tn�Tn+1,
and implies that the Bell coefficients m= �Mij� of this par-
ticular family define a dimension witness in Hilbert-space
dimension d= �mB

2 �, where mB is the number of settings on
Bob’s side. In Sec. III C we determine the gap between the
maximum value achievable in mB and in
�mB−1�-dimensional Euclidean spaces for small mB, and we
also discuss the question of minimal number of settings in
order for witnesses for two-dimensional component spaces to
exist.

A. Limits on the number of settings

Let us start from expression �4�. Without the loss of gen-
erality, we may suppose that mB�mA. The dimensions of the
real vector spaces are large enough to accommodate vectors
that maximize the expression. From

B = �
i=1

mA

a� i·��
j=1

mB

Mijb� j �12�

it is clear that when B is maximal, each a� i points to the same

direction as the linear combination of the b� j vectors it is
multiplied with. Therefore, however large the number of Al-
ice’s measurement settings mA is, her vector space need not
have a larger dimensionality than that of Bob. Bob’s mB vec-
tors can always be accommodated in an mB-dimensional
space. What we will show here is that if mA�mB�mB
−1� /2+1, then even vectors from a smaller space are enough
to maximize B.

Let B be the same as B with Alice’s vectors a� i chosen

optimally. B is only the function of Bob’s vectors b� j:

B = �
i=1

mA ��
j=1

mB

Mijb� j� � �
i=1

mA

li. �13�

We can always find the maximum of B by maximizing B in

terms of the unit vectors b� of an mB-dimensional vector
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space. The terms of the above equation can further be written
as

lk = 
�
i

Mki
2 + 2�

i�j

MkiMkjXij , �14�

where

Xij � b� i · b� j . �15�

The Xij �j� i�mB� values determine the relative directions
of the unit vectors and, therefore, up to an irrelevant orthogo-
nal transformation, the vectors themselves. We will regard B
as a function of these N�mB�mB−1� /2 numbers. Besides
	Xij	�1, the variables must satisfy several other constraints.
The domain of the function is where the Gramian matrix, the
symmetric matrix containing Xij and Xii=1 is positive
semidefinite. Its determinant, the Gramian, is zero at the

boundary of the domain, which means that the vectors b� j are
linearly dependent. If the Xij variables maximizing B lie
there, then a space of less than mB dimensions is enough to
accommodate the corresponding vectors. The whole
mB-dimensional space is only required if the maximum is not
at the boundary of the domain. The B as a function of Xij is
nonanalytical only where li=0, but that occurs only at the
boundary, as li=0 means linear dependence of the vectors.

From these it follows that if the vectors b� j maximizing B
span the mB-dimensional space, then all partial derivatives of
the function must vanish there. Let us introduce a single
index denoted by a Greek letter instead of the pair �i , j�, say
let there be 
= �i−1��i−2� /2+ j. We also introduce the fol-
lowing notation: x
�Xij, Yk
�MkiMkj, and Ck��iMki

2 . With
this notation

lk =
Ck + 2�

=1

N

Yk
x
. �16�

At the maximum of B

�B
�x	

=
�

�x	
�
k=1

mA

lk = �
k=1

mA

Yk	

1

lk
= 0 �17�

must hold. This is a set of N homogenous linear equations
for 1 / lk. If the number of variables mA is less than N+1, the
equations may only have nontrivial solution if no more than
mA−1 of them are independent. If such a solution exists, it
may define lk only up to a constant factor. Therefore, lk
=y /�k, where �k is a nontrivial solution. All �k must be
nonzero and must have the same sign, because lk must be
positive. If these conditions hold, from Eq. �16� we get a set
of mA linear equations for y2 and x
:

2�

=1

N

Yk
x
 − y2/�k
2 = − Ck. �18�

The solution of these equations can only correspond to a
solution of our problem if y2 is positive and x
 are within the
boundary of the domain and if it defines a maximum. How-
ever, if all these are true, the solution is not unique if the
number of equations mA is less than the number of variables
N+1=mB�mB−1� /2+1. In this case the equations are satis-

fied on a whole subspace of the space containing the domain
of B. The function is constant in that subspace up to the
boundary of the domain. Therefore, where the subspace
crosses the boundary, the function will still have its maxi-
mum value. This way B can be maximized in a less than
mB-dimensional space.

To summarize the argument, if mA is not large enough, the
equations requiring the partial derivatives to be zero usually
have no solution corresponding to a maximum. In this case
the function will take its maximum value with its variables at
the boundary of their domain. With the Bell factors Mij hav-
ing some very special values the equations may be solvable,
but then they cannot be independent. Therefore they cannot
define the variables in a unique way. The function will have
the same value on a subset of its domain, extending to the
boundary. This means that either there is no solution or there
is an infinity of them. Only vectors spanning a less than
mB-dimensional space will maximize B in the first case, and
there will exist such vectors maximizing B in the second
case.

B. Family of Bell expressions

When mA=mB�mB−1� /2+1=N+1 then the whole
mB-dimensional space may be required to maximize B. An
example of such a case is the following:

B � �
mB�i�j�1

a� ij�b� i − b� j� + a�0�
i=1

mB

b� i, �19�

where the corresponding Mij is defined through Eq. �4�, pa-
rametrized by mB, and �0. Note that setting =0, we ob-
tain the Zn family introduced in �2�. By choosing Alice’s
vectors optimally,

B = �
i�j

	b� i − b� j	 + ��
i=1

mB

b� i�
= �

�=1

N


2 − 2x� + 
mB + 2�

=1

N

x
. �20�

Here we used the single Greek letter notation for the �i , j�
pair we introduced earlier. The partial derivatives of Eq. �20�
are

�B
�x	

= −
1


2 − 2x	

+



mB + 2�

=1

N

x


, �21�

which are zero at

x	 = x =
22 − mB

22 + mB�mB − 1�
. �22�

Thus at the extremal point all nondiagonal entries of the
Gramian will be equal, x�1, and the diagonal ones are all 1

�the b� i are normalized�. Let us consider a determinant of size
k�k with all diagonal elements having the value of p and all
nondiagonal ones are equal to q. Let us subtract the �i
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−1�th column from the ith one in turn for i=k ,k
−1, . . . ,3 ,2, in this order. Then each column, except for the
unchanged first one, will contain p−q in the diagonal, q− p
just above it, and zero everywhere else. Then add the ith row
to the �i−1�th one in turn for i=k ,k−1, . . . ,3 ,2, in this or-
der. This way only the diagonal element will be nonzero in
each column but the first one, with a value of p−q, while the
first element of the first column will be the sum of all origi-
nal entries in that column, that is, p+ �k−1�q. Therefore, the
value of the determinant, which is now the product of all
diagonal entries, will simply be �p+ �k−1�q��p−q�k−1. With
p=1 and q=x�−1 / �mB−1�, which is true if �0, the de-
terminant is positive for any k�mB. Therefore, the Gramian
is positive definite, which means that we are not at the
boundary of the domain. This is the only extremal point, and
at that point

B = TmB = mB

2 + mB�mB − 1�/2. �23�

The second derivatives of Eq. �20� are

�B
�x	 � x�

= − �2 − 2x	�−3/2�	� − �mB + 2�

=1

N

x
−3/2

.

�24�

At the extremal point all nondiagonal elements 	�� of �1
times the matrix are equal, q�=�mB+mB�mB−1�x�−3/2�0,
and also all diagonal elements 	=� are equal, p�=q�+ �2
−2x�−3/2�q�. From the values of the determinants of matri-
ces with such entries given above, it follows that minus one
times the second derivative matrix is positive definite at the
extremum; therefore the extremum is a true maximum. There
is no other extremal point in the domain of the function, so
this one has to be the absolute maximum of B. This proves
Tn�Tn+1 for Bell expression �19� for n=mB−1, entailing a
dimension witness d= �mB /2� for every mB according to
Lemma 2.

The =
mB /2 is an interesting special value, in which

case x=0; that is, all b� i vectors are orthogonal to each other.

Geometrically, we may consider b� i as edges, and b� i−b� j as

face diagonals of a hypercube, while �i=1
mBb� i is a vector point-

ing toward one of its space diagonals. If we decrease , that
is, the weight of this space diagonal in the expression to be
maximized, the geometrical object will flatten along this di-
rection, and at =0 it will collapse to become an
�mB−1�-dimensional object. The corresponding Bell inequal-
ity has one less measurement settings for Alice, and it be-
longs to family Z in Ref. �2�. When �0, the one extra term
is enough to prevent the collapse, and the whole
mB-dimensional space is required to accommodate the opti-
mum object.

We can determine the classical limit as the maximum
value of

B = �
i�j

	zi − zj	 + ��
i=1

mB

zi� , �25�

with zi= �1 for all i�mB. The expression is permutation
invariant; therefore it only depends on the number of zi=

+1 values. Let it be k. Then �i�j	zi−zj	=2k�mB−k�, because
	zi−zj	=2 when zi�zj, which occurs k�mB−k� times; other-
wise it is zero. At the same time 	�i=1

mBzi	= 	k− �mB−k�	= 	mB
−2k	; therefore, B=2k�mB−k�+	mB−2k	. This expression
has the same value at k and at mB−k; therefore it is enough
to consider k�mB /2. It is easy to show that B takes its
maximum at kmax, which is the non-negative integer nearest
to �mB−� /2, and its maximum value, that is, the classical
limit, is Bcl= �mB

2 +2−4�2� /2, where �= 	�mB−� /2−kmax	.
For �mB this value is mB.

As we have shown, to get the maximum value for this
family of Bell inequalities we need mB-dimensional vector
spaces. With �mB−1�-dimensional spaces we may only get a
smaller value, but it is interesting to know how much
smaller. In the following this gap will be determined for
particular number of mB.

C. Two-dimensional witnesses

We have determined numerically the maxima achievable
in �mB−1�-dimensional spaces for small mB cases. The solu-
tions are nontrivial; they have different structures for differ-
ent ranges of . As three-dimensional spaces correspond to
qubits �2,5�, Bell expression �19� defined above with mB=4
and mA=7 are especially interesting. They have the smallest
number of measurement settings for one of the parties among
correlation-type Bell expressions �i.e., involving only joint
correlation�, whose maximum violation cannot be obtained
with qubits, while the other participant has just as few mea-
surement settings as absolutely necessary. The maximum
value that can be achieved with three-dimensional vectors
�i.e. with qubits when working with tensor products of Hil-
bert spaces� as a function of  consists of three regions. For

=0 the four vectors b� i point toward the vertices of a regular
simplex. For finite  this simplex becomes somewhat dis-
torted; its shape will be a pyramid, whose base is a regular
triangle and whose apex is above the center of the base. The
maximum is given by such a solution up to =1.4153, a
value very near to 
2, where a less regular shape takes over.
This is where the three-dimensional maximum value differs
the most from the global, the four-dimensional, one; their
ratio here is 1.010 716 1. In the third region, valid for larger

, the four b� i vectors point toward the corners of the square.
Remembering �according to remarks at the end of Sec. II�

that real qubits correspond to two-dimensional Euclidean
spaces and recalling the proof of Sec. III A, it follows that
correlation Bell inequalities with mA ,mB�3 do not require
complex Hilbert spaces for their maximal violation. On the
other hand, Bell inequality �19� with mB=3 and mA=4 and
with =1 does require complex numbers to achieve maxi-
mum violation �in the Euclidean space Bob’s optimal vectors
form an orthogonal triad�. Note that this inequality is just the
same as the 3�4 setting elegant Bell inequality introduced
in �14�. From Eq. �23� it follows that the maximum value is
6 in R3, corresponding to complex qubits. On the other hand,
the maximum restricted to R2, i.e., to real qubits, can be
obtained through semidefinite programming �15�. Expression
�19� to be maximized can be brought to a form containing
only quadratic variables subject to quadratic constraints �ac-
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tually we have 14 variables with 7 constraints�. This noncon-
vex problem can be solved via a series of convex relaxations
of increasing size �16�. This technique provides in each step
a better upper bound to the global optimum. We obtain the
upper bounds of 6 in the first order and 5.8894 in the second
order, with the latter value coinciding up to numerical preci-
sion with the value which can be attained numerically. We
used the GLOPTIPOL 3 package �17� to solve this global op-
timization problem. This approach thus gives the gap be-
tween the maximum quantum value achievable in the com-
plex and real qubit spaces through an exact treatment �the
ratio being 6 /5.8894=1.018 78�. The gap takes its maximum
at =1.3946 with a ratio of 1.020 804 7. On the other hand,
using a heuristic method for the mB=5 and mA=11, and for
the mB=6 and mA=16 cases, the maximum ratios are
1.006 231 7 �at =1.6396�, and 1.004 196 4 �at =1.7642�,
respectively.

Now let us come back to Bell expression �19� with mB
=4 and mA=7. From our proof it does not follow that this is
actually the one with the minimum total number of measure-
ment settings whose maximum violation requires higher-
dimensional spaces than qubits. If we allow both participants
to have more than the minimum number of measurements,
the sum may be decreased; with mB=mA=5 it is just 10. We
have generated and checked numerically all 44 685 non-
equivalent nontrivial inequalities with Mij values restricted
to 0, 1, and −1, and we have found that qubits were enough
to get the maximum value for each of them. We then allowed
Mij to be 0, 1, −1, 2, and −2 while confining ourselves to
symmetric matrices. We found no case requiring more than
qubits for maximum violation even among these 7.66�106

inequivalent cases. Although this still does not prove that
there is no mB=mA=5 correlation-type Bell inequality with
this property, but it makes it likely. With mA+mB=11 we
found several examples even with allowing only 0, 1, and −1
values for Mij. With mB=4 and mA=7 we found 11 inequiva-
lent cases �including the one discussed above with =1�, and
with mB=5 and mA=6 our extensive search gave 79 ex-
amples. Note that in these cases all of our results are due to
numerical search, since the complexity of this particular
problem was too large to be handled by the semidefinite-
programming approach discussed previously. We are quite
confident, though, about the results obtained by heuristic nu-
merical computations.

The necessity of four-dimensional Euclidean space in
achieving the maximum value means that in the Hilbert-
space picture a pair of qubits is not enough �2,5�. However,
according to the construct of Cirel’son �12� �see paragraph
above Lemma 2�, what one can achieve in four-dimensional
Euclidean spaces, one can also get with measurement opera-
tors in four-dimensional complex Hilbert spaces. We have
calculated the maximum violation of the 79 mB=5 and mA
=6 and the 11 mB=4 and mA=7 inequalities mentioned in the
previous paragraph, the -dependent mB=4 and mA=7 case
for a few  values, and for the mB=4 and mA=8 example X4
introduced in Ref. �2� with determining the appropriate mea-
surement operators via numerical optimization according to
Refs. �9,10�. In all cases complex four-dimensional Hilbert
spaces were required; smaller spaces were never enough.

IV. BOUNDS ON DIMENSIONS WITH INFINITE
NUMBER OF SETTINGS

In this section we consider a bipartite Bell inequality with
a continuum infinite number of two-outcome measurement
settings for each party, which will be proved to serve as
dimension witnesses for arbitrary dimensions. Let the indices
of the measurement settings be m-dimensional unit vectors,
that is, elements of Sm−1, the surface of the unit sphere in Rm.
Let the Bell coefficients be proportional to the inner product
of their indices,

M�x,y� � m�x,y� , �26�

where the factor of m has been introduced for the sake of
convenience. By construction the coefficient matrix M�x ,y�
is positive semidefinite. Equation �26� was worked out by
Grothendieck �18� in context of functional analysis. We use
it in the following in matrix version formalized in �19�. The
Bell expression with n-dimensional Euclidean vectors will
then be

B � �
Sm−1

d��x��
Sm−1

d��y�m�x,y�a��x� · b��y� , �27�

where � denotes the normalized surface of the

m-dimensional unit sphere Sm−1, and a��x� �x�Sm−1� and b��y�
�y�Sm−1� are the n-dimensional unit vectors corresponding
to the measurement operators of Alice and Bob, respectively.
As in the previous sections, we denote the scalar product of
these vectors with a dot. Grothendieck �18� constructed this
example to provide a lower bound for his constant �8�. Ac-
tually, he calculated expression �27� for a uniform distribu-
tion of x ,y�Sm−1 for m→�, but to our knowledge the op-
timality of the solution for any m and n has not been proved
yet. Below we give an optimal solution for any value of m
and n, and show that by fixing m→� the maximum value in
Rn is strictly increasing in n. As discussed in Lemma 2, this
will provide us a dimension witness for any finite dimension.
The maximum value of the Bell expression achievable with
n-dimensional vectors will then be

Tn = sup
b��y��Sn−1

m�
Sm−1

d��x���
Sm−1

d��y��x,y�b��y�� ,

�28�

where a��x� has been chosen optimally, that is, parallel to

h��x� � �
Sm−1

d��y��x,y�b��y� . �29�

In the following an exact value will be given for the maxi-
mum value of this Bell expression for any dimension n in the

Euclidean space with respect to the classical case a� ,b� = �1
�i.e., setting n=1�. Due to the lemma of Rietz �20� this ratio
can maximally be � /2 for a positive semidefinite matrix M.
Due to Grothendieck �18� this ratio can be achieved for in-
finite m ,n. This proves incidentally that the solution in infi-
nite m ,n is optimal. However, next we can calculate exactly
the optimal values Tn for any n and m in contrast to the case
in Sec. III B.

TAMÁS VÉRTESI AND KÁROLY F. PÁL PHYSICAL REVIEW A 79, 042106 �2009�

042106-6



Due to the linearity of h��x�, for each of its components
hi�x� there exist a zi�Sm−1 and a scalar �i �21� such that

hi�x� = �i�x,zi� . �30�

The hi�x� is maximal at zi, and its value there is �i:

�i = hi�zi� = �
Sm−1

d��y��zi,y�bi�y� . �31�

From these it follows that the maximum value of B in Rn

may be written as

Tn = sup
b��y��Sn−1

m�
Sm−1

d��x�
�
i=1

n

�i
2�x,zi�2. �32�

Let us introduce the following generalized spherical polar
coordinates for the components of unit vector x:

x1 = cos �1,

xi = cos �i�
�=1

i−1

sin ��, 1 � i � m ,

xm = �
�=1

m−1

sin ��. �33�

The integral of a function F�x� on the normalized unit sphere
is

�
Sm−1

d��x�F�x� = �
0

2�

d�m−1�
0

�

d�m−2 sin �m−2 ¯ ,

�
0

�

d�i sinm−i−1 �i¯�
0

�

d�1 sinm−2 �1F
1

2s0s1 ¯ sm−2

,

�34�

where si��0
�sini �d�=
��(�i+1� /2) /�(�i+2� /2).

Let us consider the case of n�m. Let us choose the basis
such that the last n unit vectors em−n+1 ,em−n+2 , . . . ,em span an
n-dimensional subspace which contains all zi. The value of
expression �32� does not change if we replace x in the inte-
grand with its projection Pnx onto this subspace. Let us de-
fine �Pnx�=
�Pnx , Pnx� and introduce

x� �
Pnx

�Pnx�
, �35�

a unit vector in the n-dimensional subspace. Then

Tn = sup
b��y��Sn−1

m�
Sm−1

d��x�
�
i=1

n

�i
2�x�,zi�2�Pnx� . �36�

With our choice of the basis one can easily see from defini-
tion �33� of the generalized polar coordinates that �Pnx�
=sin �m−n sin �m−n−1¯ sin �1, depending only on the first
m−n angles. At the same time, x� is independent of these
variables; therefore, the two factors in the integrand of Eq.
�36� may be integrated separately. The integral of the first

factor will be an integral on Sn−1, while the value of the
integral of the second factor, as one can easily verify by
substituting F with �Pnx� in Eq. �34�, is sm−1 /sn−1.

We will determine Tn by constructing an upper limit, and
then finding an explicit solution which saturates it. Let us
consider

Ukn = �
Sk−1

d��x�
�
i=1

n

�i
2�x,zi�2. �37�

The function depends on b��y� �through �i and zi�, and
Tn=msm−1 /sn−1 supb��y��Sn−1 Unn if n�m, and
Tn=m supb��y��Sn−1 Umn otherwise. By using �f�x�dx

�
�dx�f2�x�dx we get

Ukn �
�
Sk−1

d��x��
i=1

n

�i
2�x,zi�2 =
1

k
�
i=1

n

�i
2. �38�

To get the last expression the integral of �x ,zi�2 on the
k-dimensional sphere has been carried out, which can easily
be done using appropriate polar coordinates. For �i=1

n �i
2 we

get

�
i=1

n

�i
2 = �

Sm−1
d��y��

i=1

n

�i�zi,y�bi�y� , �39�

by substituting one �i factor in each term according to Eq.
�31� and by changing the order of the summation and the
integral. We may increase the integrand by replacing the vec-

tor b��y� by the unit vector parallel to h��y�, that is, the vector
whose components are �i�zi ,y�. We may not necessarily be

allowed to choose b��y� this way, as �i and zi are determined

by b��y�, and this choice may be inconsistent. However, we
can overestimate the integral by making this replacement;
therefore

�
i=1

n

�i
2 � �

Sm−1
d��y�
�

i=1

n

�i
2�zi,y�2. �40�

Comparing the right-hand side of this inequality with Eq.
�32�, we can see that the maximum value it may take is
nothing else but Tn divided by m. Therefore, it follows that if
n�m,

Tn �
msm−1

sn−1

1

n

1

m
Tn, �41�

that is,

Tn �
m

n

sm−1
2

sn−1
2 =

sm−1

sm

sn

sn−1
. �42�

For the last form we used the identity nsnsn−1=2�.

Let us choose b��x� to be the normalized projection of x
onto the n-dimensional subspace of the m-dimensional space
spanned by the last n members of the basis introduced ear-
lier, that is,
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bi�x� =
�em−n+i,x�


 �
j=m−n+1

m

�ej,x�2

=
�em−n+i,x�

�Pnx�

= cos �m−n+i �
�=m−n+1

m−n+i−1

sin ��. �43�

For the last form we used the form of generalized polar co-
ordinates �33�, and that �Pnx�=��=1

m−nsin ��. To get hi�ej� we
have to integrate the product of �ej ,x�=cos � j��=1

j−1 sin �� and
bi�x� on Sm−1 �see Eq. �29��. From Eq. �34� one can see that
for � j and for �m−n+i, we have to integrate the product of the
cosine function and a power of the sine function if j�m
−n+ i. Therefore hi�ej�=0 for these values of j. From this it
follows that zi=em−n+i, being hi�x� maximal for that vector.
Then we can explicitly calculate �i from Eq. �31� by inte-
grating �em−n+i ,x�bi�x�
=��=1

m−nsin ���
=m−n+1
m−n+i−1 sin2 �
 cosm−n+i

2 �
 on Sm−1. Substitut-
ing this into Eq. �34�, performing the integrations, and sim-
plifying the expression by ��=m−n+i+1

m−1 sm−�−1, we get

�i =

�
�=1

m−n

sm−� �

=m−n+1

m−n+i−1

sm−
+1�sn−i−1 − sn−i+1�

�
�=1

m−n+i

sm−�−1

=
sm−1

sn−1

snsn−1

sn−i+1sn−i

sn−i−1 − sn−i+1

sn−i−1
=

sm−1

nsn−1
. �44�

For the last equality the identities sn /sn−2= �n−1� /n and
nsnsn−1=2� have been used. Thus �i is independent of i, as it
has to be due to symmetries. Then by bringing �=�i in front
of the integral in Eq. �32� and using zi=em−n+i, we can see
that the integrand remaining is nothing else but �Pnx�, whose
integral is sm−1 /sn−1, as we have seen earlier. The result we
get then for Tn is equal to upper limit �42�.

For n�m, it is easy to verify that the upper limit is 1
�instead of Eq. �41� we get Tn�
Tn�, which is the well-
known quantum limit for this inequality. It can be reached

with m-dimensional vector space, with b��x�=x. As the limit
remains the same for n�m, there is no need for the extra
dimensions. Although the Bell inequality involves an infinite
number of measurement settings for each party, a finite-
dimensional space is enough to reach the quantum limit.

Now we set m→� in Eq. �42� and calculate Tn for dif-
ferent n values. In this case Tn=sn /sn−1. By choosing n=1
we obtain the known classical limit 2 /�. Thus the maximum
quantum violation �quantum limit per classical limit� is
�� /2�sn /sn−1. For n=2 the ratio is �2 /8�1.2337, corre-
sponding to measurement on pairs of real qubits, while with
n=3, corresponding to complex qubits, it is 4/3. We have to
go up to n=5 to get a maximum violation of 64 /45
�1.4222, larger than the value of 
2 one can achieve with
the Clauser-Horne-Shimony-Holt �CHSH� inequality. For n
→� the maximum violation is the well-known � /2, which is
3� /8�1.1781 times larger than what we can achieve with
qubits.

Most importantly the ratio sn /sn−1 is a strictly increasing
function of n. Notably for n even it is �� /4��i=1

n/2−1�2i
+1�2 / ��2i+1�2−1� and for n odd it is equal to
�2 /���i=1

�n−1�/2�2i�2 / ��2i�2−1�. Clearly both are strongly
monotone functions of n. This entails Tn�Tn+1 by m→� for
all n and owing to Lemma 2 proves the existence of dimen-
sion witnesses for any finite dimension.

V. CONCLUSION

In the present work we focused our attention on joint
quantum correlations arising from local measurements on bi-
partite systems. Cirel’son �12� established a connection be-
tween these joint correlations in Hilbert space and standard
inner products of unit vectors in Euclidean space. Based on
this result we give a proof that constructing a correlation Bell
expression for which Tn�Tn+1 in the vectorial picture
�where Tn denotes the maximum value achievable in the
n-dimensional Euclidean space� implies joint correlations
which cannot be reproduced in a d-dimensional Hilbert
space, where d= � n+1

2 �. This defines a d-dimensional witness.
For this sake, we discuss two particular families of Bell in-
equalities. The one in Sec. III involves a finite number of
measurement settings mB and mA=mB�mB−1� /2+1, whereas
the other one in Sec. IV involves continuously many settings
on both sides. Though in the former case we cannot give the
difference Tn+1−Tn explicitly, except for small values of mB,
in the latter case this difference can be analytically calculated
for all n. This conclusively proves the existence of dimen-
sion witnesses for arbitrary dimension d in a bipartite quan-
tum system. Recently, we learned that Briët et al. arrived in
Ref. �22� at similar conclusions. Furthermore, we discuss the
minimum number of measurement settings arising in corre-
lation Bell expressions in order to generate dimension wit-
nesses. In this respect we prove that the numbers of settings
mB=4 and mA=6 �or less settings� are not sufficient to gen-
erate a two-dimensional witness. In contrast, examples are
given for a two-dimensional witness for settings mB=4 and
mA=7 and for settings mB=5 and mA=6. It remains an open
question whether for the pair of settings mB=5 and mA=5
there exists a two-dimensional dimension witness or not.

Due to the work of Cirel’son �12� for a given finite num-
ber of binary measurement settings, it is always possible to
generate all the joint bipartite quantum correlations of binary
outcomes in a finite-dimensional Hilbert space. However, in
generic Bell expressions involving local marginal terms as
well, this may not be true. With respect to it, Navascués et al.
�23� asked recently whether there exist scenarios with finite
number of measurement settings for both parties, for which
all quantum correlations can be attained by measuring an
infinite-dimensional entangled system. We leave this interest-
ing problem as a challenge for future investigations.
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