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Recently a generalized master equation was derived that extends the Lindblad theory to highly non-
Markovian quantum processes �H.-P. Breuer, Phys. Rev. A 75, 022103 �2007��. We perform a stochastic
unraveling of this master equation by considering n random state vectors that satisfy the corresponding sto-
chastic differential equation for a piecewise deterministic process. As an application we consider a two-state
system randomly coupled to an environment consisting of two energy bands with finite number of levels. Our
numerical results are compared to results obtained from the time-convolutionless projection operator method
using correlated projection superoperators and the exact solution of the Schrödinger equation for this system.
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I. INTRODUCTION

The success of present and future quantum technologies
relies almost entirely on the quantum device’s interaction
with the environment it is in. Decoherence and dissipation
phenomena dictate how much information can be transmitted
from one quantum manipulation to the next. Decoherence,
which is the loss of phase coherence between superpositions
of quantum states, and dissipation, which is the leakage of
population from the system to the environment, are major
hurdles to the realization of realistic quantum technologies.
As a result, the investigation of the dynamics of open quan-
tum systems is of utmost importance to our understanding of
such undesirable phenomena �1�.

Most approaches to the investigation of open quantum
systems are based on Markovian assumptions, which makes
use of the Born and Markov approximations that ultimately
lead to the quantum Markov equation in Lindblad form �2,3�.
In most cases this Lindblad master equation is stochastically
unraveled, enabling the efficient use of stochastic wave-
function methods to analyze the dynamics of the open quan-
tum system. These methods have prominence in applications
to many quantum optical systems �4–8�.

In some instances, however, open quantum systems asso-
ciated with more realistic quantum technological process are
classified as non-Markovian. Some prime indicators of the
presence of non-Markovian effects and the failure of Mar-
kovian approximations are when the system-environment
couplings are strong or when the initial states are classically
correlated or entangled. Some examples of non-Markovian
systems include spin star systems �9,10� and circuit quantum
electrodynamics �11,12�. Various techniques have been de-

veloped to describe non-Markovian quantum process. Gen-
eralized or non-Markovian master equations have first been
introduced in Refs. �13,14�. The Nakajima-Zwanzig formal-
ism �15,16� and the time-convolutionless projection operator
method �17–19� have proved to be useful in deriving ap-
proximations based on projection operator techniques. The
latter method, employing correlated projection superopera-
tors, was recently used to derive a non-Markovian generali-
zation of the Lindblad equation �20�. Stochastic wave-
function methods have also been proposed and developed for
non-Markovian quantum master equations �21–23� and more
recently by Piilo et al. �24�.

In this paper we perform a stochastic unraveling of the
generalized Lindblad master equation which allows for the
use of traditional Markovian stochastic wave-function simu-
lations. This approach is applicable to both time-dependent
and time-independent rates. As an application we consider a
two-level system coupled to an environment consisting of
two energy bands, each with a large number of energy levels.
Due to its highly non-Markovian characteristic, this model
has gained some interest over the past couple of years
�20,25–27�. In Ref. �25�, the time-convolutionless projector
operator technique and the Hilbert-space-average method
was used to analyze this model; our Monte Carlo simulations
are compared to the former technique. Similar models of this
type have also been studied before. These include the model
by Esposito and Gaspard �28�, and the models by Bixon and
Jortner �29� in the late sixties �30�.

Huang et al. �31� recently discussed an unraveling for the
generalized Lindblad equation as applied to the model being
discussed in this paper for the case of constant rates. Here,
we are interested in the case of time-dependent rates in-
volved in the strong-coupling regime of this model.

The paper is organized as follows. In Sec. II we describe
the stochastic unraveling of the generalized Lindblad equa-
tion that was derived in Ref. �20�. In Sec. III we describe the
model used and quote results obtained from the TCL expan-
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sion using correlated projection superoperators as derived in
Ref. �25�. In Sec. IV we perform the stochastic wave-
function simulations for the model and consider both the
weak-coupling and strong-coupling regimes. Results and
conclusions follow, respectively, in Secs. V and VI.

II. GENERALIZED LINDBLAD EQUATION AND ITS
STOCHASTIC UNRAVELLING

The general form of the non-Markovian master equation,
obtained from the application of correlated projection super-
operators, derived in Ref. �20�, is given by

d

dt
�i = − ı�Hi,�i� + �

j�
�R�

ij� jR�
ij† −

1

2
�R�

ji†R�
ji,�i�	 , �1�

where i , j=1,2 , . . . ,n with Hi being arbitrary Hermitian op-
erators and Rij arbitrary system operators �with �=1�. This
master equation preserves the normalization and positivity of
the density matrix, �i�t�. Following the procedures discussed
in Ref. �1�, the stochastic unraveling of this equation is ob-
tained by taking n random state vectors 
�i�t�� that satisfy the
stochastic differential equations for a piecewise deterministic
process in Hilbert space,

d
�i� = − ıGi
�i�dt + �
j�
�R�

ij
� j�
M�

j
− 
�i��dN�

j �t� . �2�

The unnormalized density matrices �i are then determined by
the expectation values

�i�t� = E„
�i�t����i�t�
… . �3�

The second term on the right-hand side of Eq. �2� contains
the Poisson increments dN�

j �t�, which satisfy

dN�
j dN��

j� = ����� j j�dN�
j �4�

and

E�dN�
j � = M�

j dt , �5�

where

M�
j = �

i

�R�
ij
� j��2. �6�

The first term on the right-hand side of Eq. �2� describes
the deterministic drift of the process given by

Gi„
�i�t��… = Hi −
ı

2�
j�

�R�
ji†R�

ji − M�
j � , �7�

and with this, the deterministic pieces of the process are
described by the differential equation

d

dt

�i� = − ıGi
�i� . �8�

The jumps are given by


�i� →
1

M�
j
R�

ij
�i� , �9�

which occur at the rate M�
j . It should be noted that all state

vectors jump simultaneously.

Using the Ito calculus �1,32� for piecewise deterministic
processes, one can demonstrate that the expectation values
given by Eq. �3� satisfies the generalized Lindblad Eq. �1�.
The stochastic unraveling nicely illustrates the fact that the
master equation preserves the positivity of the �i since an
expectation value of form �3� automatically represents a
positive matrix.

A further remarkable property of the piecewise determin-
istic process is that the total normalization is strictly pre-
served under the time evolution,

�
i

��i�t�
�i�t�� � 1. �10�

This implies that the trace of the reduced density matrix

�S�t� = �
i

�i�t� �11�

is strictly conserved �not only on average� as follows:

tr �S�t� = �
i

tr �i�t� = �
i

��i�t�
�i�t�� = 1. �12�

Moreover, the quantities ��i 
�i� can vary only between 0 and
1 and the norm of all components is bounded. This means
that there is no exponential growth of the norm of the state
vectors as in other Monte Carlo approaches to non-
Markovian quantum dynamics.

III. MODEL AND RESULTS FROM THE TIME-
CONVOLUTIONLESS METHOD

We consider the two-state system coupled to an environ-
ment consisting of two energy bands, each with a finite num-
ber of evenly spaced levels �see Fig. 1�. The total Hamil-
tonian in the Schrödinger picture is given by �25�

H =
1

2
�E�z + �

n−1

��

N1
n1
n1��n1
 + �

n2

��E +
��

N2
n2	
n2��n2


+ V�n1,n2� , �13�

where the system-environment interaction potential has the
form

FIG. 1. A two-state system, with level distance �E, coupled to
an environment consisting of two energy bands, each with a finite
number of evenly spaced levels N1 and N2. �� is the width of the
bands and V is the system-environment interaction potential.
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V�n1,n2� = 	 �
n1,n2

c�n1,n2��+
n1��n2
 + H.c. �14�

Here, n1 and n2 label the levels of the lower �N1 levels� and
upper �N2 levels� energy band and 	 gives the overall
strength of the interaction. �� is the width of the upper and
lower energy bands and �E is the level distance of the two-
state system. The coupling constants c�n1 ,n2� are complex
Gaussian random variables with zero mean and unit vari-
ance.

We consider the initial state where only the lower band is
occupied. For the weak-coupling case where �
t�1, the sec-
ond order of the TCL expansion using correlated projection
superoperators introduced in �25�, which we call TCL2,
gives the following equations of motion:

d

dt
�1 = �1�+�2�− −

�2

2
��+�−,�1� , �15�

d

dt
�2 = �2�−�1�+ −

�1

2
��−�+,�2� , �16�

with the following solution for the population of the upper
level:

�11 = �11�0�� �1

�1 + �2
+

�1

�1 + �2
e−��1+�2�t� . �17�

For the case where the times t do not satisfy the condition
�
t�1 �strong coupling�, the second order of the TCL ex-
pansion using correlated projection superoperators, which we
call TCL2�t�, the equations of motion are

d

dt
�1 = �

0

t

dt1h�t − t1��2�1�+�2�− − �2��+�−,�1�� , �18�

d

dt
�2 = �

0

t

dt1h�t − t1��2�2�−�1�+ − �1��−�+,�2�� , �19�

where �2h�t− t1� is the two-point environment correlation
function such that

h�t� =
��

2

sin2���t/2�
���t/2�2 . �20�

The solution for the populations of the upper level in this
case is given by

�11 = �11�0�� �1

�1 + �2
+

�1

�1 + �2
e−��t�� , �21�

where

��t� = 2��1 + �2��
0

t

dt1�
0

t1

dt2h�t1 − t2� . �22�

For both cases, the relaxation rates are given by

�1,2 =
2	2N1,2

��
. �23�

IV. STOCHASTIC WAVE-FUNCTION SIMULATIONS

In this section we perform Monte Carlo simulations of the
generalized master equation for our model for both the weak-
coupling and strong-coupling cases. The terminology, weak
coupling, and strong coupling are used in the same sense as
described in Ref. �1�. Details of the simulation algorithm can
also be found in Ref. �1�.

A. Weak coupling

It is clear to see that Eqs. �15� and �16� are of the same
form as Eq. �1� with the associations

H1 = H2 = 0, R11 = R22 = 0, �24�

R12 = �1�+, R21 = �2�−. �25�

Here we have n=2 and therefore consider two state vectors

�1� and 
�2�. The drift terms for the model from Eq. �7� are
therefore given by

G1 = −
ı

2
��2�+�− − �2��−
�1��2 · 1 − �1��+
�2��2 · 1�

= −
ı

2
��2 − �2c1 − �1c2 0

0 − �2c1 − �1c2
	 , �26�

with realizations


�1�t�� →
e−ıG1t
�1�

�e−ıG1t
�1��
�27�

and

G2 = −
ı

2
��1�−�+ − �2��−
�1��2 · 1 − �1��+
�2��2 · 1�

= −
ı

2
�− �2c1 − �1c2 0

0 �1 − �2c1 − �1c2
	 �28�

with realizations


�2�t�� →
e−ıG2t
�2�

�e−ıG2t
�2��
, �29�

where c1= ��−
�1��2 and c2= ��+
�2��2.
The two possible jumps are


�1� → 0, 
�2� →
�−
�1�

��−
�1��
�30�

with rate M1=�2��−
�1��2 and


�1� →
�+
�2�

��+
�2��
, 
�2� → 0 �31�

with rate M2=�1��+
�2��2.
The total waiting time distribution is

F��� = 1 − exp�− �
ij,	

�R	
ij
� j��2��

= 1 − exp�− �1��+
�2��2� − �2��−
�1��2��

= 1 − exp�− �1c2� − �2c1�� �32�
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and depending on the current realizations, c1 or c2 equals
zero. It is easy to see that this process is rather simple, in
that, beginning with the initial state 
�1�0��= 
e� and 
�2�0��
=0, the process simply jumps between 
�1�= 
e�, 
�2�=0 and

�1�=0, 
�2�= 
g�.

B. Strong coupling

In this case, Eqs. �18� and �19� are of the same form as
Eq. �1� with the associations

H1 = H2 = 0, R11 = R22 = 0, �33�

R12 = 2�1�+, R21 = 2�2�−. �34�

The drift terms and realizations are of the same form as for
the weak-coupling case, except here we need to take into
consideration the time dependence in the waiting times. The
total waiting time distribution is given by

F��� = 1 − exp�2�
0

�

dt1h�� − t1��− �1c2� − �2c1���
= 1 − exp�2�− 1 + cos����� + ���Si������

���

��− �1c2� − �2c1��� , �35�

where Si���=�0
� sin x

x dx. Once again, depending on the cur-
rent realizations, c1 or c2 equals zero.

V. RESULTS

In both cases we have considered the environment with
N1=N2=200 energy levels and the relaxation rates �=�1
=�2. �� was chosen to be 0.31 so that for 	=0.001, the ratio
�1,2

�� =0.013 and for 	=0.01,
�1,2

�� =1.3. Note that for the two
cases considered, the relaxation rates differ by a factor 100.

For the simulation of the TCL2 with time-independent
rates the waiting time distribution is F��1,2�=exp�−�2,1�1,2�,
which is just the exponential distribution. For the initial con-
dition �11�0�=1, we simulate

�11�t� =
1

2
+

1

2
e−2�1,2t. �36�

For the simulation of the TCL2�t�, the procedure is the same
except that we need to include the time dependence in the
waiting times. A Gaussian quadrature algorithm was used to
evaluate the integral of h��− t1� and a polynomial interpola-
tion algorithm was used to extract the waiting times, �1,2.
With initial condition �11�0�=1, we simulate

�11�t� =
1

2
+

1

2
e−�1,2�t�, �37�

where �1,2�t�=4�1,2�0
t dt1�0

t1dt2h�t1− t2�. In both cases the
Monte Carlo simulations were done with the initial state:

�1�0��= 
e� and 
�2�0��=0. Also, in both cases, 5000 trajec-
tories where used in the Monte Carlo simulations to recover
the quantum master equation.

We have also performed numerical solutions of the full
Schrödinger equation corresponding to the Hamiltonian
given in Eq. �13�. The initial state was taken to be 
1� � 
��,
where the environmental state 
�� was of the form

��� = �0, . . . ,0

N2

,d1, . . . ,dN1
� , �38�

where d1 , . . . ,dN1
are Gaussian random variables with zero

mean and variance equal to one. �E the level distance of the
two-state system was taken to be unity.

In Figs. 2 and 3 we compare the results of the four differ-
ent methods discussed in the paper, i.e., the TCL2 given by
Eq. �36�, the TCL�t� given by Eq. �37�, the numerical solu-
tion of the Schrödinger equation and the Monte Carlo simu-
lations based on the unraveling of the master equation. For
the weak coupling, Fig. 2 shows a good overlap of all four
methods. For the strong coupling, as shown in Fig. 3, the
Monte Carlo simulation results overlap almost completely
with the TCL2�t� method and also gives the correct station-
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FIG. 2. �Color online� Comparison of the four methods with
N1=N2=200, �
=0.31, and 	=0.001. “TCL2” and “TCL2�t�” cor-
respond to Eq. �36� and �37�, respectively. The Monte Carlo simu-
lation, “MC,” was done with time-independent rates and the
“Schrödinger” gives the exact result.
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FIG. 3. �Color online� Comparison of the four methods with
N1=N2=200, �
=0.31, and 	=0.01. “TCL2” and “TCL2�t�” corre-
spond to Eq. �36� and �37�, respectively. The Monte Carlo simula-
tion, “MC,” was done with time-dependent rates and the
“Schrödinger” gives the exact result.
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ary state and relaxation time when compared to the exact
result obtained by solving the Schrödinger equation.

VI. CONCLUSIONS

In this paper, we have performed a stochastic unraveling
of the generalized Lindblad master equation �20� and applied
it to a two-level system coupled to an environment consisting
of two energy bands with 200 energy levels each. Our un-
raveling was applicable to both the weak-coupling regime
with time-independent rates and the strong-coupling regime
with time-dependent rates, for this model. Our Monte Carlo
simulation results were found to be in good agreement with

the second-order time-convolutionless projection operator
method results as obtained by the authors of Ref. �25�.
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