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Existence and nonexistence of an intrinsic tunneling time
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Using a time operator, we define a tunneling time for a particle going through a barrier. This tunneling time
is the average of the phase time introduced by other authors. In addition to the delay time caused by the
resonances over the barrier, the present tunneling time is also affected by the branch point at the edge of the
energy continuum. We find that when the particle energy is near the branch point, the tunneling time becomes
strongly dependent on the width of the incoming wave packet, which implies that there is no intrinsic tunneling
time. This effect is related to the quantum uncertainty in the particle’s momentum.
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I. INTRODUCTION

The definition of tunneling time—the time it takes a par-
ticle to tunnel through a potential barrier—or even whether it
can be defined or not, has been a much-debated problem and
is still a controversial one of fundamental quantum mechan-
ics [1-20]. In this paper we address this question: is there an
intrinsic tunneling time? We present a definition of tunneling
time on the basis of a time operator canonically conjugate to
the Hamiltonian [12,21]. Our tunneling time consists of two
contributions. The answer to the question is “yes” for one
contribution but is “no” for the other contribution.

The first contribution comes from the overlaps between
the incoming wave and resonant states. It is basically a
weighted sum over all resonance poles of the resonant life-
times. We may say that the incoming wave splits into reso-
nant channels of the tunneling barrier and spends the lifetime
of each resonance before it tunnels out. For a particle repre-
sented by a spatially large wave packet, it is closely related
to the phase time defined by Wigner [2], Smith [22], Pollak
and Miller [23], and others [15]. This is a dominant contri-
bution to the tunneling time when the particle energy is near
the resonance poles [24]. It gives a tunneling time (as a func-
tion of the particle energy) that is independent of the width
of the incoming wave packet. In other words, it gives an
intrinsic tunneling time, which depends only on the reso-
nance poles of the barrier.

The second contribution appears when the particle energy
is near a branch point. In contrast to the first contribution, it
is strongly dependent on the width of the incoming wave
packet. This makes a universal definition of the tunneling
time impossible near a branch point.

In short, our main point is that when the energy of the
incoming particle is near a resonance pole of the tunneling
barrier, an intrinsic tunneling time does exist, but when the
energy is near the branch point there is no intrinsic tunneling
time. This is understandable. While the resonance poles yield
the Markovian dynamics (exponential decay), the branch
point yields non-Markovian dynamics (i.e., power-law de-
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cay) with no characteristic time or length scales, which cause
deviations from exponential decay for both long time scales
[25] and short time scales [26,27]. In the following, we
present general arguments to support our claim and present
numerical results for a square-barrier model.

II. TIME OPERATOR AND AGE
Our argument starts with the time operator [12,21]

d

i=i—r
dH'

(1)

in units with Zi=1. Here H' is the part of the Hamiltonian

associated with a continuous spectrum, or the Hamiltonian

excluding the bound states of the particle,
“ dk

H'=2 | S-IEDEXES

w J o 2m

; 2)

with E;’ denoting the dispersion relation of a mode « with
wave number k of free propagation. In terms of the eigen-
states of the Hamiltonian we have

. Tdk 9,
1= % B 27T|Ek>l<9Ek<Ek|. (3)
Time operator (1) satisfies the commutation relations
[f,H']=i and [f,H,]=0, where H,, is the part of H that in-
cludes the bound states. These commutation relations give
eMie=M=f1¢, so that the time evolution just adds time ¢ to
the time operator. This property allows us to interpret the
time operator as giving the “age” of a state [28]. We define
the average age of a normalized state |i) as

@Dy = (Yl ). (4)

Since the energy is bounded from below, the time opera-
tor is not self-adjoint [29,30], i.e., {(A|{|B) # (B|f|A)*. This
means that the age of a given state at =0 can be complex.
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However, we will consider the age difference between in-
coming and outgoing states of the particle. In momentum
representation the states we consider will differ only by a
phase factor. As a result, the age difference will be real,
despite the ages being complex.

The difference in age between two states is given by

tpy = Dy, = Dy, - (5)

Keeping in mind an experimental scenario where the particle
has an average positive velocity (moving from left to right)
and tunnels through a potential barrier, we define the initial
state ¢, as a state where the particle is known to be on the
left side of the barrier, and the final state ¢, as a state where
the particle is known to be on the right side of the barrier,
with both ¢ and ¢, giving the same average velocity. Our
postulate is that Ly, will then give an average of the time it
takes the particle to move from the left of the barrier to the
right. Note that ¢, is not the time-evolved state (). If i,
were taken as i, =1(f), due to the relation e'fe=H'=f+1,
the age difference Ly (0., (0) would simply give ¢.

III. GENERAL FORM OF THE AGE DIFFERENCE

Let us consider a general one-dimensional system with a
symmetric potential barrier centered at x=0. In position rep-
resentation, the stationary eigenstates |E;) (giving the eigen-
value continuum) of the Hamiltonian have the form

T(k)e* =), x=al2
(x|Ep) = By(x), —al2=x=al2 (6)
e* 4 R(k)e 0+ x < _q/2,

where a is the width of the barrier, R is the reflection coef-
ficient, T is the transmission coefficient, and B(x) is the
wave function inside the barrier.

We will use the symmetric (e=+) and antisymmetric
(a@=-) modes of the stationary states:

: +e ™+ Fo(k)e™, x=al2
(X|E;) = > X | Bi(x) = Bi(—x), —al2=x=al2
X+ F o (k)e ™, x=-al2.

(7

The factor of 1/2 accounts for the normalization of the states
|E,f> and the double counting of positive and negative k in
Eq. (2). The coefficient

Fo(k) = [R(k) = T(k)]e ™ (8)

is the scattering amplitude for the symmetric or antisymmet-
ric outgoing waves, respectively. Since the incoming flux of
e~ * and the outgoing flux of e** should be equal for the
stationary states, the scattering amplitude must have modulo
1, i.e., |[F+(k)|*=1 for real k.

In position representation, we set the initial and final
states as

x|y = exp(ikox)/w/ITO for —Ly—al2<=x=-a/2,
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(x|h,) = exp(ikox)/\e"fo for a2 =x=Ly+al2, (9)

and O for other x. These are truncated plane waves of width
Ly. We have chosen truncated plane waves because we want
to study the limiting situation when these states approach
plane waves. This occurs when L0>k51. Then both ¢, and
i, approach plane waves with well-defined momentum k.
We could use different functions such as Gaussians, but the
functions above seem to be the simplest ones to consider.
Hereafter we will refer to truncated plane waves (9) as the
wave packets. In momentum representation, we have

<k|'//1> =fk(k—k0),

(Klih) = e RO (k — k), (10)
where f*(k—k) is the Fourier transform of (x| ),

1 — ¢itkko)Lg

1 .
filk=ko) = /——e‘(k‘kO)“/ 2

T Sk D

In the end, we will take the limit Ly—cc. This limit will
turn out to be unique for some terms of the age difference,
but nonunique for other terms, because it will depend on
other parameters such as the momentum of the incoming
particle. We will judge the “intrinsicness” of the tunneling
time by seeing whether it has a well-defined limit or not
when the size of the wave packets tend to infinity, approach-
ing plane waves with fixed momentum.

We will calculate age difference (5) as 1, 5, =(¥h[f|4)

—(¢|#|4y), where

W, “ dk J
(Wil = E+ f 7<¢j|E?>i£<E?I¢j>. (12)

w

The age difference may be separated into the age difference
with no barrier, and a delay A7 due to the barrier,

— 40
t‘!’szl_t‘/ﬁv‘/’]-’-AT. (13)

The delay time A7 can be directly measurable, because it is
just the difference between the average arrival time of the
particle with the barrier present and the average arrival time
with no barrier present.

After some algebra (see Appendix A), we obtain

9, = Lo+ap™, (14)
where v~! is the average inverse group velocity dk/ dEy,
* dk dk
k -lzf —|flk = ko)|*—, 15
v(ko) B 277[f( 0)| JE, (15)

and Ly+a is the distance from the middle region of the initial
state i to that of the final state i,. Some more algebra (see
Appendix A) allows us to split the delay time into two parts:

AT=A7,+ A7y, (16)

with
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1 F (k)
F (k) JE,

bl

A7 (ko) = 2 f Stk kP
(17)

i (° dk
Ap(ko) = EJ;O ;T

14
—f(—k—ko)&—Ekf(—k+ko)>a§i Fo(k), (18)

J
(f(— k+ kO)éI_Ekf(_ k — ko)

which are real, because |F.(k)*=1, F.(k)=F~(-k), and
f(k)=f"(—=x) for real k and k. (In the calculation we ne-
glected terms of order 1/L;). We will show in Sec. IV that
A7, is related to the motion of the particle inside the barrier,
i.e., the tunneling process. On the other hand, A7y is related
to the motion of the particle outside the barrier. We can see
this because it only involves the reflection coefficient R,
which is proportional to =,_.F (k) in Eq. (18); see also the
discussion below Eq. (37).

IV. TUNNELING TIME

In this section we will define the tunneling time. We will
first relate A7, in Eq. (17) to the phase time introduced by
Wigner [2], Smith [22], Pollak and Miller [23], and others
[15]. This phase time is defined as

d
7a() = Re(— g T(k)) (19)

for a particle with the wave number k. Writing T(k)
=|T(k)|e'™™, we have 7,,=36/JE;. To connect this to A7y,
we write the amplitude as F-(k)=exp[if.(k)], where 6.(k)
is a real phase. Then

ATA=_2

—|f(k k0)|2_0 (k). (20)

—00

Moreover, since

T=Le(F, - F ) = Lela(oits _ oit-) 21)
=jellOs+0+2ka)l2 i 2 ; . , (22)

we have 0(k)=m/2+[6,(k)+6_(k)+2ka]/2 and
%E 0,(k) = 6(k) - g ~ ka. (23)

Therefore, from Eq. (20) we obtain
* di ,
A7y = |f (k= ko) —[G(k) ka]. (24)
Using Eq. (15), we finally obtain

* dk
ATA:f ZT|f(k—kO)|2’rph(k)—av_'. (25)

The fist term on the right-hand side represents a weighted
average of the phase time, where the weight is the square
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FIG. 1. Relation between the age difference, funel> foutsides aNd
the delay times A7, and A7p.

modulus of the Fourier component of the incident wave
packet. The second term av~! is the time it would take the
particle to move through a distance a (equal to the barrier
width) by free propagation. The delay caused by the barrier
is the difference between the tunneling time and the free-
propagation time through the barrier region: A7,=f el
—av~'. Hence we identify the tunneling time with the aver-
age phase time as

© dk
Lunnel = av_l + ATA = f ;V(k - k0)|2Tph(k) (26)

(see Fig. 1).

V. EVALUATING THE INTEGRALS

In this section we will evaluate the integrals involved in
the age difference, the delay time, and the tunneling time. We
first note that in the momentum representation the time op-
erator is given by

f=i—=i——, (27)

which diverges at k=0. However, as we discuss now, this
divergence is suppressed by the term (¢;|Ef) in Eq. (12),
which vanishes at k=0. In the k representation eigenstates (7)
are given by

(|ES) = Sy + Fo (k) (|- )],

(WlES) = = 5[l = k) + FL ()] )]. (28)

When k—0 we have F.(k)——1, because when k=0 the
particle cannot tunnel through the barrier as long as the bar-
rier has a positive height and positive width. The particle is
perfectly reflected. Hence R(0)=—1 and T(0)=0, which
gives F..(0)=—1. (In Appendix B this is shown explicitly for
a square-barrier potential.)

Thanks to this behavior of the scattering amplitude, we
see that <$]|E »—0 when k—0, for j=1,2. Moreover, the
derivative &E; |;)/ ok is regular at k=0. Thus the vanishing
(¥, |E;") cancels the 1/k divergence at k=0 coming from Eq.
(27). This means that the point k=0 is not a true singularity
in the age difference.

Since the integrand in the age difference is regular at k
=0, we can replace 1/k by its principal part without chang-
ing the integration. This means that we can replace
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FIG. 2. Integration contours and poles of the age difference.

1 1 1 1
—H-( —+ ) (29)
k 2\k+ie k-ie

with €>0 real (infinitesimal).

To evaluate the integrals in Egs. (15) and (26), we will
also add an infinitesimal in the denominator of |f(k—k)|? as
(k—ko)™>— (k—ky+i€)~2, which does not change the result
because |f(k—k)|* is regular at k=k,. Similarly, we will add
infinitesimals to the denominators of f(*k* k) in the inte-
gral of A7y in Eq. (18).

Let us consider first Eq. (15), or the average inverse ve-
locity

-1 _ OC_ 2
ot= | -k

* dk m
= | —lfk-k)P—
f_w k= k)P

dk |1 l(k—kO)L0|2 m
= —/— . 30
2w (k—ko)* Kk (30)

Expanding the absolute value squared and using Eq. (29), we
obtain

_1 1 dk [1 t(k—kO)LO] + [1 _ e—i(k—kO)LO] m
e (k= ko —i€)? 2
1 1
><< — + - ) (31)
k+ie k-ie

To evaluate the integral we will close the contour with an
infinite semicircle either on the upper or the lower half k
plane, depending on whether the integrand vanishes on the
upper or lower infinite semicircle, respectively (see Fig. 2).
For the first term in brackets in the numerator, we will close
the contour on the upper half plane, and for the second term
in brackets, we will close the contour in the lower half plane.
Evaluating the residues at the double pole k=ky+i€ and the
poles k= *ie, we obtain
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4om . im 1 —e *lo i 1 —e*obo m msin(kyLo)
v = — —_— _— =
kg 2Ly Kk 2Ly K ko ko koL
(32)
Next we evaluate the integral
dk
J _|f(k ko) [* 7on(k) (33)

in Eq. (26). We follow the same procedure as for the calcu-
lation of v~! outlined above. Taking the double pole at k
=ky+ie coming from |f(k—ky)|> and the poles at k= *+ie
coming from the derivative with respect to the energy in

aa(k)_@( 1 . 1 )ao(k)
OE, 2\k+ie k-ie) ok
we obtain [with €' (k)=d6(k)/dk]

Tph(k) = ’ (34)

| 850k

om m sin(kyLg)
koa(ko)— A ORI
k
= ) - S2olo) e+ O(1ILy), (35)

0~0

where we neglected the residues at the poles of the phase
time, which are also poles of the scattering amplitudes. As
discussed in Appendix B, as long as the width and height of
the barrier are nonzero, these poles give O(1/L,) contribu-
tions, which we neglect for large L,. [Note that the term
involving sin(kyL,) is non-negligible when ky~1/L,.] In-
serting Eq. (35) into Eq. (25) we obtain

sin(koLg)

Aty =
! koLo

Tph(ko) - [k, h(k)]k =0~ v (36)
For A7y we follow a similar procedure (see Appendix C).
The result is

m
Armg=—Ly| 1- (
o
The term mLy/k, gives the time it takes the particle to travel
the distance Ly/2 on each side of the barrier with a speed

m/ k().
The age difference is

. 2
<k_L/2>) }L (37)

koLo/2

_ 40
t¢2’¢1 = t'f’zﬁ’#l + A’TA + ATB

Sln(k()Lo)

- ph(ko) [k h(k)]k 0
0
sin(koLo/2
_L0|: (1(00 )):| (38)
koLo/2
This can be written as
[11/2,114 = Tunnel T Loutside (39)

where
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sm(kOLO)

fumnet = a0™ + ATy = [k 7on (k) Jizo-

7 ph(kO)
0 Lo

(40)

and

_ m Sin(k0L0/2) 2
Loutside = Lo 1"‘ATB:k_Lo[l—(—k ) (41)
0 oLo

is the time that the particle spends outside the barrier.

VI. BRANCH-POINT CONTRIBUTION

In Sec. V we evaluated the integrals involved in the age
difference, by taking residues at the poles, including the
poles k= *ie (with e—0). These poles are in fact associated
with a branch point of the energy. Indeed, the energy of the
particle is E,=k?/2m outside the potential barrier. For the
dispersion E,xk?, the complex energy plane has two Rie-
mann sheets E;,=k%/2m with Im k>0 and with Im k<<0. We
have the branch cut on E;>0 and the branch point at E;
=0, or at k=0. For this reason we will call the residues at
k= = ie the branch-point contribution.

The terms due to the branch point are the terms containing
the sine function in Egs. (38), (40), and (41). These terms
vanish when kgLy,> 1 but are non-negligible when kLo~ 1.
Since we are considering large wave packets, this means that
the branch-point effect appears when the momentum of the
particle is close to zero (ko~ 1/L).

As ky—0 and Ly— > the branch-point terms approach
either zero or infinity depending on the limiting order. In the
limit likaHO limLOHw the branch-point terms vanish, but in
the limit limL(ﬁoo limkoﬂo they diverge. This extreme depen-
dence on L means that the tunneling time has no character-
istic scale near the branch point. It depends on the size of the
incoming wave packet rather than any intrinsic time scale
associated with the barrier. Because of this the tunneling
time is not intrinsic around the branch point. This gives a
negative answer to the question of the existence of an intrin-
sic tunneling time. As mentioned in Sec. I, the branch-point
contribution is associated with the non-Markovian dynamics
(i.e., power-law decay) with no characteristic time or length
scales [25-27].

We may understand the physical origin of the branch-
point contribution as follows. The particle states that we are
considering are, in position representation, truncated plane
waves of large width L. In contrast, in momentum represen-
tation, these wave packets are high, narrow peaks centered at
ko with a width of order 1/L,. This width expresses the un-
certainty in the momentum of the particle, which occur be-
cause the initial and final states are not plane waves but
truncated plane waves. When k, approaches zero with k,
=1/Ly, ky eventually becomes smaller than the uncertainty
range. As a result, it becomes increasingly likely for the par-
ticle to have negative momenta. Negative momenta have the
following effect on the age difference between two states: if
two states ¢, and ¢, have negative momenta only, and ¢, is
located to the right of ¢, then ¢, is actually “younger” than
;. Therefore, negative momenta give negative contributions
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to the age difference between ¢, and #;. On the contrary, if
the momenta are positive, then the age difference is positive.
As a result, as k,— 0, the average age difference, including
both negative and positive age differences, tends to zero.
This can be verified by taking this limit in Eq. (38).

In short, the branch-point terms in the age difference [Eq.
(38)] express a reverse flow of the particle due to momentum
fluctuations rooted in the uncertainty principle. The term in-
volving sin(kyL,) represents the reverse flow through the po-
tential barrier, while the term involving sin*(koLy/2) repre-
sents the reverse flow outside the barrier.

The branch-point terms give negative contributions to the
age difference. Hence they decrease the average time it takes
the particle to move from its initial state ¢, to its final state
. In a sense, the branch point causes the particle to speed
up when it has a very small classical velocity.

VII. RESONANCE CONTRIBUTION

In this section we will isolate the contribution to the tun-
neling time coming from the resonances of the scattering
amplitudes over the barrier. We will show that, in contrast to
the branch-point contribution, this contribution is an intrinsic
function of Ej, being independent of the size of the wave
packet. Moreover, we will show that the resonance contribu-
tion can be written as a weighted sum of lifetimes associated
with each resonance of the scattering amplitudes.

The resonances appear in A7y:

ATA———EJ

Jd
- —k 2_ _F
If( 0)| F lﬁEk

=——2 f —lf(k ko)|2l_1nF (42)

Taking the pole at k=k,, we obtain the residue

A==~ 2 taln F (ko). (43)

0(_7

We write the scattering amplitudes as functions of the energy
Ey=kj/2m in the form

Fo(Ey) = HE—_(ELGAEO) (44)

J
where each F..(E,) has two branches, since Eo (ko)?/2m.
The product includes all the resonance poles E of the scat-
tering amplitude. The complex conjugate resonance (E )
must appear in the numerator because F. has modulo 1. The

function G- is a remainder factor with modulo 1 as well.
Using Eq. (44) we obtain from Eq. (43)

1 i i
Am =~ -
o 25@(%—@?)* Eo—E;*>
J
—In G _(E,) |. 45
*ig, In O o)] (43)

By writing the real and imaginary parts of the poles as

042102-5



GONZALO ORDONEZ AND NAOMICHI HATANO

200
180 1
160 1
140 1
120 1

ftunnel [1/(2 V)]

0 ‘ i )
ko [\/(2"7 2]

FIG. 3. The tunneling time #,;,,¢] VS the momentum of the par-
ticle ky, for a=15, m=1, 2mV=1, and Ly=150 (solid line) and L,
=300 (dotted line).

I‘i
E; =Eg;- —2L (46)
we obtain
(T'%/2)?
A1, =2 2 E — L
o L (Ey = Ej)* + (I72)?
- = —1 G (E 47
22 ¢9Ek n G, 0) (47)

The first term in the right-hand side is the resonance-pole
contribution to the tunneling time. This is the weighted av-
erage of the resonance lifetime 1/ Ff with the Lorentzian
weights between 0 and 1. The factor of 2 in front of the
summations takes account of the fact that the particle comes
into and goes out of the barrier to tunnel, while the resonance
lifetime is only the time it takes the particle to go out of the
scattering potential.

VIII. RESULTS FOR A SQUARE BARRIER

In this section we will discuss the behavior of the tunnel-
ing time and age difference as functions of the momentum of
the particle k for a square barrier. We have

V) x| < ar2 “8)
= x| > ar2,
The phase time is given [12] by
m1 I} sinh(2ka) + 2axk*(K* — k?)
Ton(k) == . (49

kK IN 13 sinh®(ka) + 4k%k>

where [;=x?+k*=2mV. Using Egs. (40) and (49) we ob-
tained the numerical plot of the tunneling time in Fig. 3 for
two different widths of the incoming wave packet (Ly=150
and L,=300), which are large compared to the width of the
barrier (a=15). As can be seen, the tunneling time has peaks
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FIG. 4. Main plot: the age difference #,, ; (solid line) and the
age difference with no barrier tf// W (dashed line) vs kg, for L

=150, a=15, m=1, and 2mV=1. Inset a zoom-in view around k
=0.5.

near the resonance poles of the scattering amplitudes F .
(around ky=1.1). According to our theoretical analysis, in
this region the tunneling time should be independent of L,
for large L, which is confirmed by the numerical plot. Thus
fumel 18 an intrinsic function of k; in the resonance region.

On the other hand, near the branch point, i.e., near k=0,
the tunneling time depends on the size L, of the incoming
wave packet. This means that there is no unique universal
tunneling time.

Figure 4 compares the age difference Ly, with the bar-

rier present and the age difference tﬁf o w1th0ut the barrier.

Note that around ky=0.5 (inset), 7, 4, <t . The particle is
in a sense accelerated by the barrier. ThlS is the Hartman
effect [12,31-34]. Close to k=0, ty,.y, 1s also smaller than
t( . This effect is not related to the Hartman effect. It is
due t0 the branch-point effect, that is, due to the reverse flow
of the particle caused by momentum fluctuations, as we dis-
cussed at the end of Sec. VI. When k; is close to zero this
reverse flow is enhanced by the reflection due to the barrier.
This, on average, makes the particle arrive sooner when the
barrier is present than when there is no barrier.

IX. CONCLUDING REMARKS

We have proposed a definition of tunneling time obtained
from the change in expectation value of the time operator.
We considered spatially large incoming and outgoing wave
packets (truncated plane waves with average momentum k).
Our tunneling time is the average phase time, averaged over
the momentum distribution of the incident particle. It reduces
to the phase time 7,,(ky) when the energy of the tunneling
particle is far from the branch point of the energy continuum.

However, near the branch point we obtain a deviation
from the phase time (ko). The deviation depends on the
size of the incoming and outgoing wave packets. This devia-
tion gives a nonintrinsic character to the tunneling time. It
may be interesting to see if a tunneling experiment of slow

042102-6



EXISTENCE AND NONEXISTENCE OF AN INTRINSIC...

particles (with ky=1/L,) shows dependence of the tunneling
time on the size of the wave packet as predicted here.

Our calculations have centered on a symmetrical barrier
and symmetrical initial and final states. One could consider
asymmetric configurations. Another possible extension of
our work is to consider the case where the wave packets have
positive-momentum components only. In this case we expect
that there will still be branch-point effects, but they will take
a form different from the one discussed in this paper.

The definition of tunneling time we presented here is by
no means the only possible definition. There are many other
definitions, and one might wonder if our main prediction, the
appearance of deviations from the phase time for slow par-
ticles, is not an artifact of our definition. Again, it will be
important to detect the deviations in a tunneling experiment.

Olkhovsky and Recami [30] argued that the domain of the
time operator should be restricted to functions of the energy
E that vanish at E=0 (the branch point). In this way the time
operator becomes Hermitian and has real expectation values.
Moreover, even if the domain includes functions that do not
vanish at E=0, they proposed to use a bilinear time operator,
which again gives real expectation values. In our approach,
however, this issue is not very relevant because the age dif-
ference that we obtained is real to begin with. Using the
bilinear time operator proposed by Olkhovsky and Recami
[30] instead of the operator in Eq. (1) will give the same age
difference (5).

As mentioned above, our tunneling time is the average
phase time. The phase time has found some experimental
support as a good measure of the tunneling time [34] (al-
though it is not universally agreed that the phase time is the
correct tunneling time). New experiments (and possibly
more theoretical work) could confirm or negate our predic-
tion.
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APPENDIX A: CALCULATION OF THE AGE DIFFERENCE

Here we will show the main steps involved in the calcu-
lation of the age difference between the final and initial states
Y, and ¢;. Defining

Ckly) = f(k = ko), (A1)
<k| ¢2> = g*(k - ko)f(k - ko), (A2)
where
v L gl O
ﬁ(k kO) - \s’flfoe _ l(k _ ko) (A3)
and
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g (k= ko) = ¢~ Holbore), (Ad)
we have
(|E7) = 5[k = ko) + Fo(k)f(= k = ko)1,
(WlE) = = 5[A— k= ko)g(— k — ko)
+ Fo (k) f(k = ko)g(k = ko)1, (A5)
and [see Eq. (12)]
o i dk J
<¢""*”l>:z§i f E(f(k—ko)&—Ekf*(k—ko)
Jd .
+F (k)f(—k— kO)ﬁ_Esz(k)f(_ k — ko)
Jd
+F (k) f(= k- ko)a_Ekf*(k - ko)
IS ) R
k
as well as
o ] dk
(Wl = i 2 j ;T(Fa(k)f(k_ ko)
Jd
k—ko)—F"(k)g*(k -k k—k
Xg( 0)07Ek k)8 ( 0 f( 0)
J
+f(=k—ko)g(= k- ko)&_&(ﬁ(— k — ko)
X g* (= k= ko) + F o (k) f(k — ko)
Jd
k= ko) ——f"(= k —ko)g"(— k — k
Xg( O)ﬁEkﬁ( 08 ( 0)
J
+f—k—ko)g(=k— kO)&_EkFZ(k)
X (k= ko)g" (k- ko)) . (A7)

We first consider the first and second terms in the right-
hand side of Egs. (A6) and (A7). Using the relations
|F.(k)|>=1 and |g(k)|?=1 for real k, we find that they give
the following contribution to the age difference:

(A) _i ﬁ _ 2 _ d % _
gl =4 2 f 2W<|f(k ko)Pgk=ko) g (k= ko
2 a %
+|f(—k—k0)|g(—k—k0) g (—k—ky)
IE,
1 9 1 9
+flk=ky))P——F = |f(-k—k 2——F*>.
lf( 0)| FZaEk a lf( O)| FZ&E]( a
(A8)

For the terms involving —k we change the variable of inte-
gration from k to —k. Noting that F, (—k)=F..(k) we obtain
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dk J
(A _ _ 2 _ . #p
t'ﬂz»% —J 27Tlf(k k0)| gk kO)l&Ekg (k= ko)

1 dk 1. 9
- —\|flk=ko)*—i—F ..»
40§+J2W(|f( 0| F g wtec
(A9)

where c.c. denotes complex conjugate. The first term in the
right-hand side of Eq. (A9) does not involve the potential
barrier. It therefore gives the age difference with no barrier,

dk 1%
0)  _ - _ 2 _ R (L
Ly —J 2ﬂ_|f(k ko)*g(k kO)l&Ekg (k= ko)

dk k
=(Lo+ a)f ;Jf(k - k0)|2;_Ek =(Ly+av™",
(A10)

where

© dk ak
-1 2
= k—k All
o= [ Esg o (Al1)
is the average inverse group velocity. On the other hand, the

second term in the right-hand side of Eq. (A9) may be writ-
ten as

1 dk 1 9
Ary=—— —|fk = ko)|*—i—F Al2
TA 2£f2w[f( 0)| Fal(?Ek a ( )

because F- has modulo 1 and we have F.=1/F.. When
there is no potential barrier, we have F-.(k)= = 1. Hence A7,
vanishes when there is no barrier; it is a correction to the age
difference due to the barrier.

For the third and fourth terms in Egs. (A6) and (A7), we
use the relation

gk = f (k).

The contribution to the age difference from the third and
fourth terms in Egs. (A6) and (A7) is then

® _L dk
t%%"42;f2w

(A13)

(A14)
J , a

X (Fa(k)fk(k_ko)a?f(_k_kO) +f°"(—k—k0)(97

k k

)k — ko) — Foll)f(— k- m%Ekf*(k ko)

J .
—f(k—ko)a_&Fa(k)f*(—k—ko)) (A15)

Changing k— —k in the second and fourth terms in the above
expression and using F (k)=F.(-k) as well as f“(k—ko)
=f(—k+ky), we obtain
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e v 9
Ly, = ATp= 2 Z,i f 27T(Fa(k)f(— k+ ko) aEkf(_ k — ko)

- F0f(- k= k)= fl=k + ko)) . (Al6)
k

When there is no potential barrier, f(w]?w vanishes because

F. (k)= *1 with no barrier. Therefore, ’ibz?wl is another cor-

rection to the age difference coming from the barrier and we
write it as A7g. The total age difference is

tha‘ﬂl:tf/?z),lﬂl-i-ATA-i-ATB' (A17)

APPENDIX B: SCATTERING AMPLITUDE FOR A
SQUARE BARRIER

In this appendix we will write down the scattering ampli-
tudes for a square-barrier potential, and we will consider its
limits when the momentum of the particle goes to zero and
the width or height of the barrier goes to zero, with the aim
of establishing a range of validity of the age difference cal-
culated in the text.

The scattering amplitudes are obtained from their defini-
tions F.(k)=exp(—ika)[R(k) = T(k)] and the well-known ex-
pressions for the reflection coefficient R(k) and the transmis-
sion coefficient T(k). The result is

(1 xek—i(1 F ek

(1 eV +i(1 F ek’

F(k)=e (B1)
where V is the height of the barrier, a is the width of the
barrier, and k=2mV—k=2.

We will consider first the limit @ — 0. It turns out that the
limits k— 0 and a— 0 of the scattering amplitude F', are not
interchangeable. Indeed, when k—0 we have ka=a \2mV.
Thus, for any V>0 and a>0, we have lim;_, F.(k)=-1.
However, when a—0 with k>0 we have F.(k)— = 1. We
will discuss next how this affects the age difference.

The integrands that appear in the age difference are
peaked around k=k; therefore in the following discussion
we will consider k~ ky. We will focus on the branch-point
effect, which appears when k~ky~ 1/Ly,~0. Moreover, we
will consider the expression for the amplitudes when a is
small, so that ka<<1, or

\r’TVcl <. (B2)
Then we have

k+i(mV-=K12)a

F. (k)= ——m———, B3

20 k—i(mV-=K12)a (B3)
k=2i\2mV - k*a

F_(k)= (B4)

k+2iN2mV—ka

These expressions show that for F_ the limits k—0 and a
— 0 are interchangeable. For either limit we have F_——1.
However, for F, the limits are not interchangeable, as men-
tioned earlier. When the limits are taken so that amV>k
~1/Ly, then we have
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lim lim F, (k) = - (B5)
a—0 k—0
but when amV <k~ 1/L,, then we have
lim lim F,(k) = 1. (B6)

k—0 a—0

This gives to a discontinuity between the age difference with
the barrier present [Eq. (38)] and the age difference with no
barrier [Eq. (14)] when we take the limit a — 0 in the former.
This discontinuity appears because when we derived Eq. (38)
we neglected the pole contributions coming from the scatter-
ing amplitudes, arguing that they gave O(1/L,) corrections.
This was fine as long as the width a of the barrier was finite.
However, when a — 0, the poles of the scattering amplitudes
give terms comparable to the term coming from the poles at
k= =* ie (the branch-point contributions).

Specifically, one can see that when a— 0 the scattering
amplitude F, (k) in Eq. (B3) has a pole at the branch point.
When a—0 this is essentially a pole at k=0, giving a non-
negligible residue. If we include this residue, the discontinu-
ity mentioned above is removed. This brings the question of
how large a has to be so that Eq. (38) is valid.

When a— 0, the residue of the pole at k=imVa involves
the term

exp(ikLy) = exp(— mVaL,) (B7)

coming from the incoming or outgoing wave functions [see
Eq. (11)]. This term vanishes if

a>1/(mVL,). (BY)

Therefore, Eq. (38) is valid only if Eq. (B8) holds. This
condition is consistent with the condition we mentioned ear-
lier above Eq. (B5).

Similar arguments apply when we take the limit V—0
instead of a — 0. Equation (38) is valid if Eq. (B8) holds, i.e.,
if V=1/(malL,).

APPENDIX C: EXPLICIT FORM OF A7g

In this appendix we will evaluate the term A7y in Eq.
(18). Writing the derivative 3/ JE}, in terms of k, we have [see
Eq. (A16)]

Am=—§lj———@7wV(k+%r—ﬂ k = ko)

FAR k=) fie k). )

To evaluate the integral we will close the integration contour
using either the upper or the lower infinite semicircle. The
integrals are then reduced to summations over the residues of
the poles inside the contour. Since

PHYSICAL REVIEW A 79, 042102 (2009)

1= l(kikO)L

1
f( k + k()) _ _el(k+ko)a/2 (Cz)

NLO - l(k -+ ko)

we will close the contour in the upper infinite semicircle. The
functions f(—k* k) and their derivatives have no poles at
k= *k,. The scattering amplitude F.(k) may have poles in
the upper half plane. However, any residues of these poles
are, except for phase factors, independent of L. Therefore,
due to the 1/+L, factor in Eq. (C2), the poles of the scatter-
ing amplitude give O(1/L) contributions, which we neglect.
Finally, the 1/k factor gives a branch-point contribution.
Similarly as with Eq. (29) we interpret this factor as a prin-
cipal part. Equation (C1) takes the explicit form

A7p=S(ko) = S(= ko), (C3)

where
1 1
S(k, —F (k
(ko) = 2L0a_ J K5 ( —ie+k+ie)

x| pithko)ai2 1-etHbo | g itkrkg)arz L = eik+ko)Lo
e — | —]e e 77
—i(k=ko) |k ik + k)

(C4)

or

w——EJ—wwﬂl. 3)

+
2L pev k—ie k+ie

i(k—kq)L i(k+kq)L
% ei(k—ko)a/21 — /ot pilktko)ar2 1 - eftholto
—i(k— ko) Zi(k+ ko)

X (E - ) +— Lo ikt | (C5)
2 k+ kO - l(k + ko)
Taking the residue at k=i€e, we obtain
1- koL in(kyL
Ary="0S F0)| 2o holko) _ sin(RoLo) |
2 a=* kOLO kO
(Co)

When k=0, the transmission coefficient is 7=0 and the
reflection coefficient _is R=-1. Therefore, the amplitudes
F.(k)=[R(k) = T(k)]e™* become F.(0)=-1 at k=0. Hence
we have
1 —cos(kgLy)  sin(kyL)

kLo k2

ATB=—m|:2 } (C7)

or, using cos(x)=1-2 sin?(x/2) as well as Eq. (32), we ar-

rive at
in(koLy/2) |
ATB=—L0{1 (M) :|_LOU—1

(C8)
ko koLo/2
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