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We experimentally and theoretically study nonlinear light propagation in a rotating waveguide array. We
show that noninertial effects can lead to mode conversion, enhanced transport, and vector �gap� soliton for-
mation. Experimentally, we directly observe these dynamics, both within and between bands, by recording
intensity in position space and power spectra in momentum space. The results are fundamental to all rotating
nonlinear lattices and hold potential for a variety of twisted photonic devices.

DOI: 10.1103/PhysRevA.79.041804 PACS number�s�: 42.65.Wi, 42.65.Tg, 67.85.Hj

Rotating systems often provide more interesting dynamics
than their stationary counterparts, as centripetal and Coriolis
forces modify the effects of existing potentials and interac-
tions. This is especially true for wave systems, in which
modifications to the phase affect interference, waveguide
tunneling, etc. For example, light propagating in a twisted
fiber can acquire new polarization dynamics �1–3� and expe-
rience suppressed tunneling to an adjacent fiber �4�. In rotat-
ing arrays, this behavior extends to modified Bragg reflec-
tions and coupling of the underlying Bloch modes. Here, we
introduce the added complexity of nonlinearity, in which an
intensity-dependent phase modifies the wave propagation as
well. We show that nonlinearity, in conjunction with rotation,
couples Bloch modes both within and between bands. De-
pending on the local dispersion or diffraction, i.e., the under-
lying array structure in the signal’s reference frame, these
effects can lead to mode conversion, enhanced transport, and
vector �gap� soliton formation. Experimentally, we demon-
strate these effects by observing nonlinear light propagation
in a rotating waveguide array.

The rotating waveguide system studied here is well de-
scribed by the nonlinear Schrödinger equation
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where � is the slowly varying amplitude of the optical
field, k0=2�n0 /� is the wave number in the material,
V�r ,� ,z�= �E�r ,� ,z��2 is a rotating potential, and �n is the
nonlinear index change induced by the light intensity. For a
medium with a Kerr response, for which most theory is done,
�n=n2k0���2 /n0, where n2 measures the strength of the non-
linearity �n2�0 for defocusing�.

As is well known, Eq. �1� also describes the mean-field
dynamics of a condensate system. In this case, rotating lat-
tices are commonplace, with examples including magnetic
field lines in superconductors �5� and vortex lattices in su-
perfluids �6,7� and Bose-Einstein condensates �8�. In the lat-
ter examples, the fluid is typically rotated as a whole and
individual; quantized vortices appear in an arrayed fashion.
The opposite logic, phase imprinting an array of vortices in
an optical beam, can be used to create an array that rotates as
a solid body �9,10�. Here, we combine this technique with
the method of optical induction �11–13� to create a rotating

array of waveguides in a photorefractive crystal. That is, we
create a vortex array with a field E�r ,� ,z=0�
=� j=1

M Aj�rj�exp�imj� j�, where Aj�rj� is the amplitude of the
jth vortex at position rj, mj is the vortex charge number, and
� j is the phase, and image it into the crystal. By using a
self-defocusing nonlinearity, the dark core of each vortex
becomes a region of higher index, i.e., a waveguide �14,15�.

For the experiments, we use an �8�8�8� mm strontium
barium niobate �SBN�:75 crystal. In this material, the photo-
refractive nonlinearity �n=−�1 /2�n0

3riiEappĪ / �1+ Ī�, where
n0=2.3 is the base index of refraction, rii is the appropriate
electro-optic coefficient with respect to the applied field Eapp
and the crystalline axes �r33=1340 pm /V for extraordinary
polarization and r13=67 pm /V for ordinary polarization�,
and the relative intensity Ī is the input intensity ���2 mea-
sured relative to a background �dark current� intensity
�16,17�. A self-defocusing nonlinearity is created by applying
a voltage bias of −450 V across the crystalline c axis and
taking advantage of the photorefractive screening effect.
�Note that in most cases, the use of defocusing nonlinearity
minimizes the difference between saturable and Kerr systems
�18�.� Since changing voltage can affect both the self-
induced nonlinearity and the waveguide depth, this voltage
was kept fixed throughout the experiments. Linear behavior
was observed by using a low-power probe beam of �1 mW,
while nonlinear behavior was observed by increasing the
probe power by a factor of 10.

The experimental setup is shown in Fig. 1�a�. It consists
of three basic parts: �1� an ordinarily polarized vortex beam
modulated by spatial light modulator to induce a triangular
vortex array pattern, �2� an extraordinarily polarized probe
beam as input, and �3� an imaging system to observe the
light exiting the crystal. The two-stage input, formed by
splitting 532 nm laser light, takes advantage of the optical
anisotropy of the SBN crystal: the rotating array of
waveguides propagates linearly, while the probe beam expe-
riences the rotating periodic potential under defocusing non-
linearity. At the exit face of the crystal, the output is imaged
into two charge-coupled device �CCD� cameras: one for the
direct �near-field� intensity in position �x� space and one for
the Fourier �far-field� intensity in momentum �k� space.

A schematic of the vortex pattern and experimental input
and output images of the rotating waveguide array are shown
in Fig. 1�b�. By packing the vortices close together in an
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array of 30 	m spacing, their relative positions stay fixed
but the entire lattice rotates by 0.56 rad �32°� as a solid body
over L=8 mm of propagation. Due to symmetry, the central
waveguide in Fig. 1�b� propagates straight through the crys-
tal. All other waveguides rotate around this one, with a rota-
tion velocity that depends on their radial distance from the
center. Unlike a periodic lattice in an inertial frame, in which
every point is identical, the properties of each waveguide
here depends on how far it is from the origin. To isolate the
effects of rotation, we consider here a probe beam initially
focused into one waveguide, input parallel to the central
waveguide �rotation axis�, i.e., single-site excitation with no
initial transverse momentum.

The relatively slow rate of rotation, compared to the cou-
pling length between waveguides �18�, means that changes in
the array structure happen adiabatically. In particular, the un-
derlying Bloch modes of the rotating array should be the
same as those of a stationary trigonal array �Fig. 1�c��; the
primary effect of rotation would then be a coupling of these
modes. For the probe beam considered here, only the modes
at the top of the first band �near the first-band 
 point� are
excited initially. As the beam propagates, however, other
modes throughout the Brillouin zone appear due to the non-

inertial forces F� �=F� centripetal��2r��+F� Coriolis��� �v��, where �
=d� /dz is the constant rotation rate of the array �4° /mm�
and the eikonal gradient v� =�� �S is an effective velocity. Ad-
ditionally, the probe phase S acquires an extra topological
contribution �Berry phase �19�� �=2��1−cos ��, where the
helical angle �=cos−1�L / �L2+ �2� ·32 /360·r�2�1/2	 depends
on the radial distance from the center site �1,2,19�. The geo-
metric phase ��r� modifies the probe beam’s polarization
and propagation constant, which in our anisotropic system
would result in a periodic variation in the nonlinearity. For
the limited propagation distance in the experiment, this
variation is insignificant. In the simulations below, we main-
tain a constant �extraordinary� polarization and make no as-
sumptions on the adiabaticity of the lattice rotation rate.

Linear dynamics in the system are dominated by centrip-
etal forces and waveguide coupling. Nonlinear dynamics de-
pend on the probe intensity and its spectral position within
the linear transmission spectrum. Figure 1�c� shows the first
three Brillouin zones of a straight �nonrotating� trigonal lat-
tice and the spectral structure of the first two bands. Within
each band, the curvature of the transmission spectrum
�2kz /�2kx varies with the spatial frequency �transverse mo-
mentum�, resulting in regions of normal and anomalous dif-
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FIG. 1. �Color online� Setup and properties of the rotating lattice. �a� Experimental setup. Light from a 532 nm laser is first split by a
polarizing beam splitter. The ordinarily polarized beam is phase modulated into a vortex lattice by a spatial light modulator �SLM�. The
extraordinarily polarized beam is focused into a Gaussian probe beam. The two beams then are recombined onto an SBN:75 photorefractive
crystal. Light exiting the crystal is imaged into two CCD cameras: one for the intensity in position �x� space and one for the power spectrum
in momentum �k� space �obtained by performing an optical Fourier transform�. �b� Demonstration �top� and experimental pictures of the
rotating waveguide array. Input frame �middle� rotates by 32° at the output face �bottom�. The spacing of the array sites is 30 	m. �c�
Brillouin zones and linear transmission spectrum of a straight �nonrotating� trigonal waveguide array.
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fractions �18�. These two regions respond differently to a
given nonlinearity, with diffraction either enhanced or sup-
pressed depending on the relative sign of the curvature. That
is, the nonlinear modes are either pushed into the gaps �to
facilitate lattice solitons �12,13,20�� or into the transmission
bands �to facilitate lattice shock waves �21��.

Experimental and numerical results are shown in Figs.
2–4. In Fig. 2, the probe beam is initially focused into the
center waveguide �zeroth site�. This waveguide does not ro-
tate, so its behavior is similar to that of a fixed trigonal
lattice. In the linear case, the initial modes experience normal
diffraction �20�, with a slight asymmetry due to the rotation
of the neighboring waveguides around the central axis �Figs.
2�a� and 2�b��. In the nonlinear case, self-defocusing leads to

enhanced spreading �Figs. 2�c� and 2�d��. Note that both the
intensity and transverse momentum of the nonlinear beam
are wider than their linear counterparts.

Figure 3 shows the output when the probe beam is ini-
tially launched into a waveguide site nearest to the center.
This first-site waveguide has an initial angular velocity, so
even for a probe beam launched on axis, there is a relative
velocity difference right from the start. The initial relative
angle between tangent of the waveguide and the probe beam
is calculated to be �1=kx /kz=2D sin��r /2� /L=2.1 mrad,
while the angle to point 
 of the first Brillouin zone is
�
,BZ= �� /D� / �2�n /��=3.9 mrad. This wave-number mis-
match gives rise to the excitation of modes in the middle of
the first Brillouin zone, even in the linear case �Figs. 3�a� and
3�b��. Moreover, the rotation rate d� /dz is constant, so that
the mismatch is maintained for each step or frame in the
propagation direction. In the nonlinear case, self-defocusing
drives the initial modes downward into the first band gap,
decoupling the modes from the linear transmission band. The
result is a focused beam, nearly a gap soliton, with compo-
nents at both 
 and X �Figs. 3�c� and 3�d��. Since the band
curvature in this region is flat �Fig. 1�b��, the two soliton
modes can coexist under defocusing nonlinearity. That is, the
rotating array naturally supports in-band vector lattice soli-
tons. These are similar to, but more complex than, the dis-
crete solitons recently predicted to occur in rotating lattices
with self-focusing nonlinearity �22�.

In Fig. 4, we focused the same probe beam onto the
second-nearest site from the center �second site�. Here, the
initial relative angle between the probe beam and the array is
�2=4D sin��r /2� /L=4.2 mrad, which is comparable to
�
,BZ and �X,BZ. Thus, the probe beam immediately couples
to modes at the edge of the first Brillouin zone. In the linear
case �Figs. 4�a� and 4�b��, the initial energy is coupled from
first-band 
 point to modes 
 to X at the edge of the first
Brillouin zone. In the nonlinear case, energy is coupled be-
tween mode X of the first band and mode 
 of the second
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FIG. 2. �Color online� Output pictures of the probe beam inci-
dent onto the center site. Top row: intensity in position �x� space;
bottom row: power spectrum in momentum �k� space. �a� and �b�
Linear output. �c� and �d� Nonlinear output. Inset pictures are simu-
lations. Dashed lines in �b� and �d� outline the edge of the first
Brillouin zone.
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FIG. 3. �Color online� Output pictures of the probe beam inci-
dent onto the nearest site to the center. Top row: intensity in posi-
tion �x� space; bottom row: power spectrum in momentum �k�
space. �a� and �b� Linear output. �c� and �d� Nonlinear output. Inset
pictures are simulations. The cross in �a� and �b� indicates the center
of the array and the dashed lines in �b� and �d� outline the edge of
the first Brillouin zone.
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FIG. 4. �Color online� Output pictures of the probe beam inci-
dent onto the second-nearest site to the center. Top row: intensity in
position �x� space; bottom row: power spectrum in momentum �k�
space. �a� and �b� Linear output. �c� and �d� Nonlinear output. Inset
pictures are simulations. The cross in �a� and �b� indicates the center
of the array and the dashed lines in �b� and �d� outline the edges of
the first and second Brillouin zones.
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and third bands �actually a degenerate point of several Bril-
louin zones�. This skipping of band 2 is necessary since the
nonlinearity can only couple and confine modes with the
same band curvature �23,24�.

These effects become more pronounced as the rotation
rate is increased. Even in the adiabatic case considered here,
the outward progression of mode coupling as the input radius
is increased is evident from Figs. 2–4. The relative phase
differences that accumulate in adjacent shells lead to an extra
design parameter for phase matching. For example, second-
harmonic generation in �2 material can be modulated by the
spiral structure, in much the same way that parametric pro-
cesses occur in magnetized plasmas and helical traveling-
wave tubes. Similarly, twisted holes in photonic crystal fibers

�25� hold potential to modify propagation dynamics, as dif-
ferent rotational and dispersion characteristics couple and
compete with fiber nonlinearity.

In conclusion, we have studied nonlinear light propaga-
tion in rotating waveguide arrays. The arrays were generated
by phase imprinting a vortex lattice inside a photorefractive
crystal, and wave propagation was observed as a function of
incident beam position. Compared to previous work on
waveguide arrays, here the rotational nature of the lattice
provided noninertial forces, leading to in-band and multi-
band wave couplings and soliton generation. The results are
fundamental and hold potential for a variety of twisted pho-
tonic devices, including helical arrays and chiral optical
media.
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