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We describe an effective resonant interaction between two localized wave modes of different nature: a
plasmon polariton at a metal surface and a self-focusing beam �spatial soliton� in a nonlinear dielectric
medium. Propagating in the same direction, they represent an exotic coupled-waveguide system, where the
resonant interaction is controlled by the soliton amplitude. This nonlinear system manifests hybridized
plasmon-soliton eigenmodes, mutual conversion, and nonadiabatic switching, which offer exciting opportuni-
ties for manipulation of plasmons via spatial solitons.
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I. INTRODUCTION

Plasmonics is an important and quickly developing area
of modern physics which offers promising applications in
nano-optics and electronics �1–4�. It deals with the so-called
surface-plasmon polaritons �5�, i.e., collective oscillations of
the electromagnetic field and electrons which propagate
along a metal-dielectric surface and decay exponentially
away from the surface.

Plasmons are characterized by frequency � and propaga-
tion constant along the interface kp=kp����k �k=��0� /c is
the wave number in the dielectric medium with the permit-
tivity �0�. Since kp�k, plasmons can only interact resonantly
with evanescent electromagnetic waves in the dielectric me-
dium �1–4�. Accordingly, there are two main methods for
excitations of plasmons: �i� via the evanescent wave gener-
ated at the total internal reflection �6� and �ii� via a periodic
structure producing evanescent modes �4,7�. The first method
can be modified if there is a dielectric waveguiding layer
parallel to the metal-dielectric interface. Propagating modes
of the waveguide have evanescent tails outside the wave-
guide. They can interact resonantly with plasmons at the
metal surface that is used for diagnosis of layered dielectric
films �8�. The plasmon channel can also be regarded as an
effective waveguide, so that this configuration can be assimi-
lated to the problem of two coupled waveguides.

In this Rapid Communication, we propose another way of
resonant interaction of plasmons with electromagnetic
waves. Instead of exploiting various inhomogeneities to gen-
erate evanescent modes, we introduce a nonlinear dielectric
medium. A nonlinear dielectric admits self-focusing solu-
tions �spatial solitons� �9� which may propagate parallel to
the metal-dielectric interface and, similarly to the modes of
the dielectric waveguide, also have evanescent tails and
propagation constant ks�k �10�. A “quasiwaveguide” is
formed by the soliton profile which modifies the effective
dielectric constant of the nonlinear medium. Hence, the
soliton-plasmon configuration couples effective linear and
nonlinear waveguides, as shown in Fig. 1, and an interaction
between the plasmon and soliton may occur at certain reso-
nant parameters. In contrast to previous studies in nonlinear

plasmonics, where the effects of nonlinearity on plasmon
modes have been considered �see, e.g., �11��, here we exam-
ine the interaction between two spatially separated modes:
soliton and linear plasmon. This system is essentially self-
influencing—the coupling is controlled by the soliton
amplitude rather than by the configuration parameters.

II. MODEL

To create a model describing the plasmon-soliton system
�Fig. 1�, we adopt several simplifying assumptions. First, the
waves propagate along the z coordinate and the wave electric
field lies in the �x ,z� plane, so that the y coordinate can be
eliminated from further consideration. Second, we assume
that the dielectric nonlinearity is localized around a certain
distance x=d from the metal surface x=0, so that it practi-
cally does not affect the plasmon field. The distance d is
assumed to be larger than the characteristic widths of the
plasmon and soliton fields, which guarantees an exponen-
tially small overlapping of their tails. Hence, the coupling is
weak and can be treated perturbatively.

Uncoupled plasmon and soliton fields �p and �s �12� can
be represented as �p�x ,z�=cp�z��p�x� and �s�x ,z�
=cs�z��s�x , �cs��, where cp,s are the z-dependent amplitudes
and �p,s are the transverse profiles of the fields with the
normalizations �p�0�=1 and �s�d�=1. The transverse profile
of the plasmon �p represents two exponents decaying away
from the metal-dielectric interface �1,2� ��p=exp�−�px� with
�p=�kp

2 −k2 in the dielectric, at x�0�, whereas the soliton

FIG. 1. �Color online� Plasmon-soliton system as two coupled
waveguides.
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profile is given by �10� �s=sech��s�x−d�� with �s

=k�� /2�cs� �Fig. 1�. Here � is the parameter of nonlinearity
of the medium �13�. We emphasize that the transverse profile
of the soliton depends on its amplitude �cs�. In what follows,
we assume that the amplitude varies slowly enough, so that
one can use quasistationary adiabatic approximation consid-
ering �cs� as a local parameter of the problem.

Thus, the total wave field in the problem � can be repre-
sented via the ansatz,

��x,z� = cp�z��p�x� + cs�z��s�x, �cs�� . �1�

In the zero approximation, when the plasmon-soliton cou-
pling is negligible, amplitudes cp and cs are independent and
obey, respectively, linear and nonlinear oscillator equations.
In the first-order approximation, the plasmon and soliton
fields become linearly coupled due to the spatial overlapping
of �p and �s and the transverse inhomogeneity of the me-
dium along x �i.e., the contrast of dielectric indices at the
metal-dielectric interface �m��0�. This results in the coupled
oscillator equations for the amplitudes cp and cs,

cp� + �p
2cp = q��cs��cs, cs� + �s

2��cs��cs = q��cs��cp. �2�

Here the prime stands for the derivative with respect
to the dimensionless coordinate 	=kz, �p=kp /k�1 and
�s=ks /k�1+��cs�2 /4 �we assume that ��cs�2
1� are the
plasmon and soliton dimensionless propagation constants,
and q
1 is the coupling coefficient.

To determine the coupling coefficient q, note that the
right-hand side of the first Eq. �2�, i.e., q��cs��cs, represents an
external source that excites plasmons at the metal surface.
Hence, up to a numerical factor, it should be equal to the
soliton field at the metal surface �s �x=0=cs�s �x=0. This yields
the estimation,

q��cs�� � �s�x=0 � exp�− k��/2�cs�d� , �3�

which is adopted below. Note that the weak-coupling ap-
proximation fails at small soliton amplitudes.

Equations �1�–�3� represent the model describing the
plasmon-soliton interaction. These equations are reminiscent
of the system of two weakly coupled nonlinear waveguides
�14�. However, there are two essential peculiarities in the
plasmon-soliton equations: �i� only one subsystem is nonlin-
ear; �ii� the coupling coefficient depends on the soliton am-
plitude.

An effective plasmon-soliton interaction and energy ex-
change occurs only near the resonance �p=�s which is
achieved at the soliton amplitude �cs�res=�4��p−1� /�. Soli-
tons with significantly larger or smaller amplitude are un-
coupled from the plasmon. In the vicinity of resonance
��p−�s�
�p, Eq. �2� can be simplified. Making substitution
cp,s�	�=Cp,s�	�exp�i	� and assuming that new amplitudes
Cp,s vary slowly ��Cp,s� �
 �Cp,s� and Cp,s� can be neglected�, we
arrive at the following equations:

− i	Cp

Cs

�

= 	 �p − q��Cs��/2
− q��Cs��/2 �s��Cs��


	Cp

Cs

 . �4�

Here

�p � �p − 1 
 1, �s � �s − 1 = ��Cs�2/4 
 1 �5�

are the small deviations of the dimensionless propagation
constants from unity. The first inequality �5� implies plas-
mons in the long-wave region of their spectrum close to the
light cone, whereas the second inequality indicates the weak-
ness of nonlinearity.

Equation �4� has the form of a vector nondiffractive non-
linear Schrödinger equation with a nondiagonal Hamiltonian
typical in quantum two-level systems �15�. It possesses the
integral of motion �Cp�2+ �Cs�2=const, which is associated
with the conservation of the total energy under the plasmon-
soliton interaction.

III. EIGENMODES

Modes of Eq. �4� are obtained via substitution Cp,s�	�
=Ap,s exp�i�	�. This yields the characteristic equation deter-
mining the eigenvalues,

����Cs�� =
�p + �s��Cs�� � ���p − �s��Cs���2 + q2��Cs��

2
, �6�

and the ratios of the plasmon and soliton amplitudes deter-
mining the eigenvectors,

���Cs�� �
Ap

As
= −

q��Cs��
2�����Cs�� − �p�

. �7�

Unlike linear systems, here the eigenvectors cannot be nor-
malized arbitrarily because the right-hand side of Eq. �7�
depends on the amplitude �Cs�= �As�.

Equations �6� and �7� describe the collective �hybridized�
plasmon-soliton modes appearing due to the coupling. They
have a standard form typical for a linear two-level problem
with close eigenvalues and small coupling �15�. In our case,
the problem is essentially nonlinear and the properties of the
solution depend on the soliton amplitude �Cs�= �As�. In other
words, the soliton amplitude plays the role of the driving
parameter.

Figure 2 shows the eigenvalues �� �Eq. �6��, together
with �p and �s, amplitude ratios � �Eq. �7��, and field
profiles ���x��2 �Eq. �1�� of the collective plasmon-soliton
modes as dependent on the soliton amplitude �Cs�. In the
interaction region ��p−�s��qres, the eigenvalues avoid
crossing �the minimal frequency gap qres�q��Cs�res�
=exp�−kd�2�p� is achieved at resonance� and eigenmodes
are collective excitations with �Ap���As�. At resonance
�s=�p, the two modes show their closest intensity distribu-
tions �B and E� corresponding to the symmetric and antisym-
metric combinations of plasmon and soliton states with equal
amplitudes. Away from the interaction region ��p−�s��qres,
the eigenvalues �� tend to the asymptotes �p and �s repre-
senting pure plasmon and soliton states. Accordingly, the en-
ergy is concentrated basically in either the plasmon �D ,C� or
the soliton �A ,F� channel. When passing through the inter-
action region along the same branch in Fig. 1�a�, the eigen-
modes exchange the amplitudes �Fig. 2�b�� and a near-soliton
mode transmutes into the plasmon one and vice versa. This
offers various possibilities for the energy conversion between
the plasmon and soliton channels.
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IV. DYNAMICS AND DISSIPATION

First, we consider the case when the soliton channel is
excited at the input with a near-resonance amplitude Cs�0�,

Cp�0� = 0, �Cs�0� − �Cs�res� 
 �Cs�res. �8�

Pure soliton is not an eigenmode, and initial condition �8�
excites a mixture of “+” and “−” eigenmodes with close
frequencies. In a linear problem, this would lead to a super-
position of two modes and a harmonic low-frequency beat-
ing. But in the plasmon-soliton system, the superposition
principle is invalid, and the solution of Eq. �4� with Eq. �8�
represents a self-modulated nonlinear beating causing a pe-
riodic mutual conversion of energy between the soliton and
plasmon channels, �Fig. 3�. The maximal conversion ampli-
tude is reached at a certain value Cs�0�max� �Cs�res. It corre-
sponds to the maximal beating period �	�2� /qres and it
drops abruptly for higher Cs�0�. The beating amplitude de-
creases with the resonant coupling qres decrease �Figs. 3�a�
and 3�b��.

Second, the soliton-plasmon conversion occurs under ma-
nipulations with the soliton amplitude—the driving param-
eter of the system. One could expect that slow changes in the
soliton amplitude will result in an adiabatic transformations
of the eigenmodes along the “+” or “−” dispersion curves
�Fig. 2�a��, and the soliton will metamorphose into plasmon
when passing over the resonance. For instance, the soliton is
excited with an off-resonance amplitude corresponding to the
zone A in Fig. 2, i.e.,

Cp�0� = 0, Cs�0� − �Cs�res � �Cs�res. �9�

These initial conditions approximately match the “+” eigen-
mode. Then, we introduce a small absorption in the medium
which makes the soliton amplitude slowly decreasing along
	, �Cs�= �Cs��	�. The losses in the plasmon and soliton chan-
nels are described by adding small imaginary parts �p,s to
their propagation constants,

�p,s → �̃p,s = �p,s + i�p,s, ��p,s� 
 qres. �10�

The weak dissipation �10� does not affect the local charac-
teristics of the waves, which change adiabatically with
�Cs��	� according to the eigenmodes �6� and �7�.

With Eq. �10�, this leads to the transformation of states as
A→B→C �Fig. 2�, i.e., almost 100% conversion of energy
from the soliton to the plasmon channel. This would be a
perfect switch, but the nonadiabatic Landau-Zener transitions
between the “+” and “−” eigenmodes may appear in the vi-
cinity of resonance ��p−�s��qres �15,16�. The probability of
the Landau-Zener transitions can be estimated using the pa-
rameter of adiabaticity � �17�,

� = �����/��+ − �−�2. �11�

If �
1, the “+” and “−” eigenmodes evolve independently
according to the adiabatic evolution. On the contrary, if �
�1, the wave undergoes diabatic evolution and practically
all the energy stored in the “+” eigenmode is converted into
the “−” one when passing the resonance. This means the
transformation of states as A→B+E→F �Fig. 2�, i.e., the
nonadiabatic transition keeps the energy in the soliton chan-

nel. In the intermediate case ��1, the output wave will
present a mixture of the “+” and “−” modes: A→C+F.

Surprisingly, the adiabatic parameter �11� cannot be made
small in the plasmon-soliton system, no matter how weak the
dissipation is. The point is that the soliton amplitude �Cs�
dramatically changes in the vicinity of resonance due to the
soliton-to-plasmon transmutation along the eigenmode, and
the adiabatic regime is never achieved. This is a purely non-
linear effect—the driving parameter is a part of the solution.
Numerical simulations of Eq. �4� with Eqs. �9�–�11� confirm
this conclusion �Fig. 4�. In the vicinity of resonance, �res
�1, which results in a partial soliton-to-plasmon switching
and the Landau-Zener transition with the consequent nonlin-

FIG. 2. �Color online� Collective modes in the plasmon-soliton
system vs the dimensionless soliton amplitude. �a� Eigenvalues ��

Eq. �7� �bold curves�; eigenvalues of uncoupled modes �p and �s

�dashed lines�. �b� Amplitude ratios � Eq. �8�. ��c� and �d�� Pro-
files of the total field ���x��2 �Eq. �1��, corresponding to the points
A-F at curves in �a� and �b�. The plasmon tails at x�0 are not
depicted, since they are determined by the properties of a particular
metal. Parameters are �p=0.2 and kd=6 �qres�0.02�.

FIG. 3. �Color online� Nonlinear beating of the plasmon �lower
curves� and soliton �upper curves� dimensionless amplitudes after
the excitation of the soliton channel near resonance. Equations �4�
and �8� are solved numerically with �p=0.2 and values of
��Cs�0��2 /4 as indicated in the boxes. Values of kd correspond to �a�
qres�0.02 and �b� qres�0.003.
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ear beating between “+” and “−” eigenmodes. Smaller values
of the coupling qres result in higher �res and smaller parts of
the energy transferred to the plasmon.

V. DISCUSSION

To summarize, we have shown the possibility of resonant
interaction between a plasmon polariton at a metal surface
and a parallel self-focusing beam in a nonlinear dielectric. A
simple two-level model reveals hybridized plasmon-soliton
eigenmodes and their complex nonlinear dynamics which of-
fers plasmon excitation and control using spatial solitons.

An effective soliton-to-plasmon coupling and energy con-
version can be achieved in the far-infrared frequency range
�the wavelength in vacuum is �0�5–10 �m�, by using a
gold interface with a nonlinear dielectric �e.g., a chalcogen-
ide glass, �0�5–10�. In this range, plasmons are character-
ized by the propagation constant close to unity

�p�10−3 and relatively small dissipation �p�0.1. Solitons
with �s=��cs�2 /4�10−3 can be produced with typical Kerr
nonlinearities. Transverse evanescent tails of plasmon and
soliton are determined by �p��s�0.1 �m−1, and propaga-
tion of the soliton at the distance d�20–40 �m
�kd�50–100� from the metal surface yields the coupling
coefficient qres�10−1–10−2. Although the plasmon dissipa-
tion is large enough �p�qres �18�, we have found, by nu-
merical simulations of Eq. �4� with Eq. �10�, that our conclu-
sions on the plasmon-soliton coupling and dynamics �e.g.,
Fig. 4�b�� remain qualitatively true at these realistic param-
eters.
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