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Complexity of two-dimensional quasimodes at the transition from weak scattering
to Anderson localization
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Quasimodes of an open finite-size two-dimensional (2D) random system are computed and systematically
characterized in terms of their spatial extension 7, complexity factor ¢, and phase distribution for a collection
of random systems ranging from weakly scattering to localized systems. A rapid change is seen in 7 and ¢ at
the crossover from localized to diffusive which corresponds to the emergence of 2D extended multipeaked
quasimodes analogous to the necklace states recently observed in one dimension. These 2D quasimodes are

interpreted in terms of coupled localized states.
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Transport in random media is driven by the nature of the
underlying eigenmodes. Propagation is diffusive when the
modes extend spatially, while spectral level overlap occurs in
transmission spectra. As the degree of the overlap decreases,
transport is inhibited and modes become spatially localized
[1]. The theory of Anderson localization predicts a transition
between localized and extended eigenstates for spatial di-
mensions larger than 2 [2]. Renewed interest in the localiza-
tion transition has been boosted by the active ongoing search
for localization of Bose-Einstein condensate in laser speckle
fields [3.,4], the recent observations of the slowing down of
diffusion in ultrasounds [5], microwave [6] and time-
resolved optical [7] experiments, and new theoretical
progresses [8,9] toward an analytical description of the
metal-insulator transition (MIT). The question of the spatial
extent of the modes near the Anderson transition is also cen-
tral in random lasers [10,11]. The threshold may vary by
orders of magnitude between localized systems where the
modes are spatially confined and diffusive systems where the
modes are extended. Besides their spatial extent, another
property of the modes in open random media is their com-
plexity. As their spatial extent is increased up to the sample
dimensions and their linewidth broadens with increasing
leakage through the boundaries, the decaying quasimodes or
resonances, which generalize the concept of mode to leaky
systems [12], become complex valued, with their standing-
wave component being progressively replaced with a com-
ponent traveling toward the opened boundaries [13]. This is
analogous to chaotic cavities with an increasing degree of
opening [ 14]. This is an important aspect rarely addressed in
the context of random media.

In this Rapid Communication, we use numerical simula-
tions to explore the nature of the quasimodes of two-
dimensional (2D) open random media when scattering
strength is increased. The spatial extension of the computed
quasimodes, their complexity factor, and their phase distri-
bution are calculated for a statistical ensemble of random
configurations for each value of the scattering strength.
These quantities reveal the change in regime and the cross-
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over from diffusive to localized. A detailed analysis of the
phase probability distribution for each mode shows multi-
peaked wave functions in the vicinity of the crossover when
the localization length is comparable to the sample size.
These extended multipeaked quasimodes are interpreted in
terms of coupling of localized isolated states, which hybrid-
ize to form 2D necklace states.

We consider a two-dimensional random collection of par-
allel dielectric cylinders with infinite extension, radius r
=60 nm, and refractive index n embedded in a background
matrix of index 1. The volume fraction is ¢=40% and the
system size is L>=5X5 um?. Maxwell equations for trans-
verse magnetic polarization are modeled using the finite-
difference time-domain method [15]. Open boundary condi-
tions are approximated by perfectly matched layer (PML)
absorbing boundaries [16]. The index of refraction n is var-
ied from 1.05 to 2.0, in step of 0.05, corresponding to scat-
tering mean-free path ranging from 50 to 0.1 um. For most
of this range, modes are short lived with strong spectral over-
lap, preventing individual excitation of a mode at its eigen-
frequency by a monochromatic source. To obtain the wave
function of such short-lived modes, we use recent results
[17] which show that, when operating just above threshold,
the first lasing mode of an active random system corresponds
to a quasimode of the passive system, even in weakly scat-
tering systems where modal overlap dominates. Introducing
gain and adjusting the pumping rate just above threshold is
therefore an alternative to select a quasimode of the passive
cavity. To model the gain, we couple the population equa-
tions of a four-level atomic system to the Maxwell equations
via the polarization equation [18]. The gain naturally selects
the mode with the longest lifetime and the best spectral over-
lap with the gain curve. All the parameters and initial condi-
tions used here have been already fully described in [19].

We study 150 random configurations, 10 on average per
value of refractive index n. The amplitude and phase spatial
distributions of the mode are obtained by integrating the in
and out of phase oscillating fields over a period. Examples of
spatial distributions of the magnitude are shown in Fig. 1 for
decreasing values of the refractive index n, illustrating dif-
ferent degrees of spatial extension of the wave functions
within the system. The corresponding phase probability dis-
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FIG. 1. Spatial distribution and wavelength of quasimodes cor-
responding to decreasing values of the refractive index of the scat-
terers; n=2.00 to n=1.05 (random configurations are not necessar-
ily identical). All modes are in a narrow spectral range around the
maximum of the gain curve; A=446.9 nm. Each frame shows in
inset the phase distribution between 0 and 27 of the corresponding
quasimodes. Note the double-peaked distribution for n=1.85.

tributions between 0 and 27 are shown in insets in Fig. 1.
The phase distribution is peaked around 0 and 7 when the
mode is localized (n=2), while it is more uniformly distrib-
uted in the extended case. Note that for values of the refrac-
tive index as low as 1.05, scattering is weak and the field is
rather concentrated at the edges of the system. In that case,
residual reflection either at the boundaries or from the PML
layers may not be negligible and may result in periodic pat-
terns, similar to those of a Fabry-Perrot cavity, as seen in the
bottom-right frame of Fig. 1. We checked that above n
=1.10, this effect is insignificant and lasing is solely due to
multiple scattering within the system.

As the scattering strength is reduced, the spatial expan-
sion of the eigenfunctions increases, as well as their imagi-
nary part resulting from leakage at the open boundaries. To
quantify these two characteristics, the quasimodes are de-
scribed in terms of their spreading factor 7 and their com-
plexity factor g>. We define the spreading factor as

7=3/ LA [APAG)|F-r'|PdPrd*, where the field ampli-
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tude A(7) is normalized, A(P)=A(P)/[[fA2(Pd*F]" The
normalizing factor 3/L* ensures that % is unity for uniform
distribution of the field amplitude. It measures the degree of
spatial extension of the energy within the system alike the
participation ratio for instance. However, due to the weight-

ing factor |F—r'|%, it also enables us to distinguish systems
with spatial localization of energy inside the system, as in
Fig. 1 for n=2, from concentration of energy at the bound-
aries of the system, as in Fig. 1 for n=1.05. Indeed, it can be
less than 1 for spatially localized modes or larger than 1
when energy is distributed near the system edges. This is
reminiscent of distributed feedback lasers [20] where, in the
overcoupled regime (corresponding to 7<<1), energy is con-
centrated inside the laser as a result of strong feedback from
scatterers, while in the undercoupled regime (7> 1), energy
is concentrated at the edges since the lasing modes result
from scattering at the boundaries in order to maximize
the gain volume [21]. The complexity factor
¢*=(Im(¥)?)/(Re(¥)?) [22] or equivalently the phase rigid-
ity p=(1-¢?)/(1+4¢*) [23] were introduced in the field of
quantum chaos to quantify the degree of complexity of the
eigenmode W(7)=A(P)e'””) and the mutual influence of
neighboring resonances [24]. The complexity factor varies
from O for real standing-wave functions—corresponding to a
phase distribution peaked at 0 and m—to 1 for purely trav-
eling waves—corresponding to a flat phase distribution. To
the best of our knowledge, it has never been used as a probe
to characterize the crossover from localized to extended
states in finite disordered systems.

The spreading factor and the complexity factor are com-
puted for each mode and averaged over sample configura-
tions for each value of n. They are shown in Fig. 2 as a
function of the scattering mean-free path € calculated using
Mie theory for infinite cylinders of refractive index n. The
complexity factor increases with the mean-free path, which
means that the traveling-wave component replaces progres-
sively the standing-wave component of the mode. While the
complexity factor explores values between 0.06 and 0.78, it
shows clearly two different regimes, with a crossover around
€=0.14 pum corresponding to n=1.8. A transition occurs
around the same value of € for the spreading factor, which
ranges between 0.16 and 1.23. This particular value of n
certainly is not universal and depends on the sample size, but
it should correspond to a localization length & on the order of
the sample size. We confirm this hypothesis by calculating &
directly from the value of the lasing threshold averaged over
sample realizations (P). Indeed, the spectral width of the
modes I', resulting from leakage at the boundaries is given
by I'=I"y exp(-L/¢) [25]. It is also directly proportional to
the lasing threshold P, since at threshold losses are compen-
sated by gain. Therefore &£=L/(In{Py)—In(P)), where (P)
designates the average over sample configurations for each
value of n and In{P)=20.15 is obtained by extrapolating (P)
at n=1. The dependence of ¢ on refractive index n is shown
in the inset in Fig. 2 and is compared to the theoretical ex-
pression in the limit of independent scattering, as given in
[25] by &n=1 exp[m Re(k.)€/2], where € is the mean-free
path and k. is the effective wave number. Both curves (full
lines in inset of Fig. 2) approach in the crossover region
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FIG. 2. (Color online) Complexity factor (dots) ¢ and spread-
ing factor (circles) 7 averaged over sample configuration versus
scattering mean-free path €. The fluctuations around the average
+(q>—{(g*))""* are represented by the bars. Inset: averaged com-
plexity factor ¢* (dots) and localization length £ versus index of
refraction n calculated from the averaged lasing threshold (crosses)
and from independent scattering theory [full line where relevant
(¢€=L/2); dotted line otherwise]. The dashed line represents the
mean-free path €. The horizontal dotted line corresponds to
&=L/2.

around n=1.8, which corresponds to &~L/2=2.5 um,
where the two expressions for £ and &, start to be valid [26].

Also shown in Fig. 2 are the fluctuations of the complex-
ity factor *=(g*>—{g*))"%. A significant increase in these fluc-
tuations is seen at the crossover. We find that these large
fluctuations are correlated with the occurrence of peculiar
phase distributions around n=1.8, such as the one shown in
the inset of Fig. 1 for n=1.85. Two narrow peaks are dis-
tinctly seen in the phase distribution at 0.947 and 1.067. The
spatial distributions of the phase for values comprised in a
/10 window around each of these two peaks are shown in
Figs. 3(a) and 3(b). These two distributions delimitate two
distinct spatial regions associated with standing components
of the mode, which oscillate at the eigenfrequency of the
mode but with a phase lag d¢=0.127. This phase lag sug-

FIG. 3. Binary plots showing in black where the phase is valued
(a) between 0.897 and 0.997 and (b) between 1.0l7and 1.117r,
i.e., two narrow phase ranges around the two peaks at 0.947 and
1.067r seen in phase distribution in the inset of Fig. 1 for n=1.85.
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FIG. 4. (Color online) Spatial distribution of the magnitude of
the quasimodes together with their phase distribution (lower insets)
for two different local perturbations of the original random system
of Fig. 1 for n=1.85. The locations of the removed scatterers are
shown by the circles. Upper inset: spectral lines of modes (a) (dots),
(b) (dashed line), and mode n=1.85 in Fig. 1 (full line). Wave-
lengths and linewidths of the modes are given in the text.

gests that this mode results from the coupling between two
distinct modes localized on each of the regions of Fig. 3.
This would be the analog of the symmetric or antisymmetric
solution to the coupled oscillator problem in the presence of
leakage which introduces a phase lag different from O or 7
between the components of the hybridized mode. To identify
each of the two components of the double-peaked mode of
Fig. 1 (n=1.85), we remove a scatterer in a spot where the
field is high in one of the two regions displayed in Fig. 3 to
selectively separate the two contributions. Each perturbed
system is excited at the resonant frequency of the original
unperturbed mode. The corresponding field distributions are
shown in Figs. 4(a) and 4(b). They reproduce the local fea-
tures of each peak of the mode of Fig. 1, but extend far
beyond. The corresponding phase distributions are now
single peaked. Note that layers of randomly distributed scat-
terers (not shown) were added at the boundaries of the per-
turbed system in order to increase the lifetime of the mode of
Fig. 4(a), which would be impossible to excite otherwise due
to its strong leakage. The resemblance between the normal-
ized original mode W and the normalized complex linear
combination of the two modes of Fig. 4, ¥,=aW +¢'V¥,, is
measured by the spatial cross correlation, [[|W|W,|d*F,
which is equal to 91% for «=0.78 and ¢=0.667. The two
quasimodes composing the double-peaked state have also
been identified by introducing gain in the perturbed systems.
The wavelengths of the corresponding lasing modes are
A,=4479 nm and \,=446.8 nm, to be compared with
A=447.1 nm (Fig. 1) for the original state. The linewidths of
the passive modes are, respectively, o\,=1.0 nm, O\,
=0.6 nm, and SA=0.8 nm. The corresponding spreading
factors are 7,=0.36, 7,=0.29, and 7=0.45. This supports
the picture of two coupled quasimodes with distinct wave-
lengths, overlapping both spectrally and spatially, to form a
hybridized double-peaked state. All other identified multi-
peaked quasimodes [27] (about 50% of the modes) arise
around n=1.85, in the vicinity of the crossover.

These multipeaked states are analogous to necklace states
recently observed in nominally localized optical [28] and
microwave [29] one-dimensional (1D) layered systems.
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Modes overlapping both in space and frequency may couple
and form multipeaked extended states even in the localized
regime [30]. Although scarce, they are predicted to play an
outsized role in transport [31] in contrast to isolated localized
states [32]. This is to be compared with the filamentlike frac-
tal picture of the modes at the transition suggested by Aoki
[33]. Pendry [31] argued that the picture of 1D necklace
states should generalize to 2D and three-dimensional local-
ized random media. However, besides earlier calculations in
a percolation model, no observations of necklace states for
classical waves in dimensions larger than 1 were reported
[34,35]. Our results point out to the existence of necklace
states in 2D and show that they should occur preferentially at
the transition.

In conclusion, our numerical simulations provide with a
detailed description of the quasimodes of open 2D random
systems ranging from weakly scattering to strongly localized

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 79, 041802(R) (2009)

systems in terms of their spatial extension, but also in terms
of their complexity factor. We find multipeaked quasimodes
in the vicinity of a well-marked crossover between localized
and extended states. Two mechanisms, which may coexist,
were proposed to describe the transition [36]. The first one is
a gradual spatial expansion of the mode as scattering strength
is diminished, with a progressive increase in the localization
length. Our results suggest a second mechanism, analogous
to a percolation process, where the coupling of localized
states lead to extended structures that form necklace states
[37-39].
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