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We address the estimation of the loss parameter of a bosonic channel probed by arbitrary signals. Unlike the
optimal Gaussian probes, which can attain the ultimate bound on precision asymptotically either for very small
or very large losses, we prove that Fock states at any fixed photon number saturate the bound unconditionally
for any value of the loss. In the relevant regime of low-energy probes, we demonstrate that superpositions of
the first low-lying Fock states yield an absolute improvement over any Gaussian probe. Such few-photon states
can be recast quite generally as truncations of de-Gaussified photon-subtracted states.
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I. INTRODUCTION

Suppose an experimenter is given different stations con-
nected by channels manufactured before he or she joined the
laboratory. Assume that he or she is allowed to routinely
transmit light beams prepared, e.g., in coherent, squeezed, or
number states through these channels with the purpose of
implementing some communication network. Given the state
at one station, one finds out that in general the state has been
altered at the next node. The problem is then to determine
what sort of noise is affecting the transmissions. This is a
typical issue of quantum parameter estimation, whose solu-
tion is clearly of direct interest to practical situations such as
the one described. The experimenter wishes to determine the
optimal probe state that has to be sent through the channel
and the optimal measurement that needs to be performed at
the output in order to estimate �after repeating the process N
times� the loss parameter with the maximum possible preci-
sion. In the case of amplitude damping bosonic channels,
Monras and Paris �1� provided a solution to the problem in
the particular case of Gaussian input probe states �displaced
and squeezed vacuum states�. Gaussian states are easier to
engineer by quantum optical means than more sophisticated
non-Gaussian states. On the other hand, the optimal mea-
surement needed for loss estimation involves manipulations
such as displacement and squeezing of the output signal and
photon counting, which is a non-Gaussian measurement not
belonging to the standard toolbox of linear optics. At a fun-
damental level, using Gaussian probe inputs allows to satu-
rate the ultimate bound on precision only asymptotically in
the unphysical limits of infinitesimal or infinite losses, while
in the realistic regime of intermediate loss the Gaussian-
based estimation is clearly suboptimal �1�. Therefore consid-
ering Gaussian inputs does not solve the important problem
of optimal estimation of loss in bosonic channels, both on
theoretical and practical grounds.

In this work, we study the estimation of loss in bosonic
channels probed by arbitrary non-Gaussian states. For any

energy of the probes, we show that there exist non-Gaussian
states improving the estimation compared to Gaussian states
in all regimes of loss. Specifically, we prove that Fock states
�n� �which can be produced deterministically in the labora-
tory �2�� are the truly optimal probes that attain the ultimate
quantum limit exactly, for any n and any value of the loss.
The optimal estimation then requires only photon counting,
resulting in a technological simplification compared to the
Gaussian case. For low-energy probes �mean photon number
smaller than 1�, we construct optimal superpositions of the
first k low-lying Fock states which improve the estimation
over the Gaussian case already for k=2,3 and approach the
ultimate limit in a much broader range of losses. Interest-
ingly, we find that the optimal superpositions for k=2 corre-
spond to qutritlike two-photon truncations of photon-
subtracted states, showing that de-Gaussification procedures
generally allow enhanced performance in the task of loss
estimation in quantum channels. This result adds to the di-
verse existing instances of non-Gaussianity as a “powerup”
for quantum information encountered in the optimal cloning
of coherent states �3�, continuous variable teleportation �4�,
nonlocality tests �5�, and entanglement distillation �6�.

II. BOSONIC CHANNELS AND QUANTUM ESTIMATION

We consider a bosonic channel described by the master
equation d� /dt= �� /2�L�a�� for quantum states �, where
L�a��=2a�a†−a†a�−�a†a, a being the annihilation opera-
tor on the Fock space of a single bosonic mode. The aim of
our study is the optimal estimation of the loss parameter � or
equivalently of �� �0,� /2� defined by tan2 �=exp��t�−1.
In terms of �, the master equation reads as d� /d�
=tan �L�a��, whose general solution is of the form

�� = �
n=0

�
�sin2��n

n!
�cos ��a†aan�0�a†�n�cos ��a†a. �1�

Let us recall the basic elements of the quantum estimation
theory �7,8� and the relevant tools of interest for the present
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case �1,9�. The optimal estimation of � is achieved asymp-
totically by sending N independent and identically distrib-
uted optimal probe states �0 into the channel and performing
at each run the optimal measurement on the output signals
��, in order to construct an estimator �̂ to infer the true value
of � with minimal variance. For any given �0, the optimal
output measurement can be exactly determined in terms of
the symmetric logarithmic derivative �SLD� ���� defined
implicitly as the Hermitian operator that satisfies d�� /d�
= �1 /2��������+�������. Using the spectral decomposition
��=�k�k��k���k�, one finds for the SLD

���� = 2 tan ��
pq

��q�L�a����p�
�p + �q

��q���p� . �2�

The resulting minimum variance saturates the quantum
Cramér-Rao bound Var���̂��1 / �NH����, where the quan-
tum Fisher information �QFI� H��� reads as H���
=Tr�������2�. The problem is thus recast in the determina-
tion of the optimal single-mode pure input states with a
given finite mean energy �or mean photon number n̄�, such
that the QFI of the corresponding output states is maximal.
The ultimate quantum limit on the precision that is comput-
able in the ideal assumption that the experimenter may have
access also to the degrees of freedom of the environment
�i.e., to the oscillators internal to the channel� is achieved for
estimators with �1� Var���̂��1 / �4n̄N�. This means that a
truly optimal estimation requires input probes which yield at
the output a QFI exactly equal to 4n̄ �for any single run�. If
the ensemble of input signals is limited to Gaussian states
�1�, the estimation is never optimal: the ultimate limit is at-
tained only asymptotically for � approaching 0 or � /2,
while H��� for the best Gaussian probes can get as low as
	2n̄ for intermediate losses �see Fig. 1�. Here we show that
non-Gaussian probes, Fock states, and low-lying superposi-
tions thereof are indeed optimal for the estimation of loss in
bosonic channels with the maximum precision allowed by
laws of quantum mechanics.

III. FOCK STATES

Let us consider, as input probes, Fock states
�0= �n��n� �n̄=n�. The evolved state, according to Eq. �1�,
reads as ��=�k=0

n �sin2 ��k� n
k ��cos2 ���n−k��n−k��n−k�. The

SLD for this case is ����=tan ��k=0
n �gk / fn−k��k��k�,

where gk=2�fn−k−1�k+1��1−	k,n�− fn−kk� and fk

= � n
k ��sin2 ��k�cos2 ��n−k. The QFI reads as H���

=tan2 ��k=0
n �gk

2 / fn−k�=4n. Fock states thus enable the opti-
mal unconditional estimation of loss regardless of the actual
value of the parameter to be estimated �see Fig. 1�. This
makes an adaptive estimation scheme unnecessary �unlike
the Gaussian case �1��. Moreover, the measurement that has
to be performed obtained by projecting onto one-dimensional
eigenspaces of ���� �9� can be implemented only by the
simple photon counting. Given the recently achieved degree
of control in this measuring technique �10� and in the high-
fidelity engineering of Fock states with a small number
n
10 of photons �conditionally for running optical fields
and even deterministically in microwave cavity or circuit
QED� �2�, with n=2 standing as an ideal work point, our
results might pave the way for an experimental verification
of the quantum theory of optimal estimation and a measure-
ment of the SLD to infer the value of such a relevant param-
eter as the loss factor in dissipative channels. While one may
argue that in practice it is easier to produce and manipulate
“classical” fields, i.e., coherent states obtained from attenu-
ated laser beams, than nonclassical resources such as
squeezed �Gaussian� and Fock states, we remark that—as
shown in Fig. 1—the performance of coherent probes for the
loss estimation is quite far from optimality. In particular in
the regime of small and intermediate losses ���� /4�, cor-
responding to routinely available good quality fiber channels,
the precision achieved by—say—a two-photon Fock state
would be matched by that of a coherent field with much
higher mean photon number �e.g., n̄=26 for �=� /16 and
n̄=105 for �=� /32�, an increase in energy which may be
not worth paying in terms of efficiency of the estimation. In
fact, in actual implementations it is very desirable to have
probes of low energy in order not to alter the channel sig-
nificantly �11� and to enable repeatability of the input-and-
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FIG. 1. �Color online� Quantum Fisher information H��� versus the loss parameter � for different values of the input energy n̄. Solid
black line: optimal Gaussian probes �1�; thin gray line: coherent states; dashed �blue� line: Fock states �n̄�; dotted �magenta� line: qubitlike
states ��0

�1��; dotted-dashed �orange� line: optimal qutritlike states ��0
�2��; and dot-dotted-dashed �cyan� line: optimal quartetlike states ��0

�3��.
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measure scheme. In this respect, it appears crucial to identify
classes of non-Gaussian states which may attain the ultimate
precision for any value of the input energy, especially in the
relevant regime of 0� n̄�1.

IV. PHOTONIC QUBIT STATES

The simplest candidate probe state in the low-energy re-
gime is the superposition of the vacuum and the one-photon
Fock state, �0= ��0

�1����0
�1��, ��0

�1��=cos 
�0�+ei� sin 
�1� char-
acterized by a mean photon number n̄=sin2
. It is rather
straightforward to obtain the evolved state �� and to diago-
nalize it in order to compute the SLD. The resulting expres-
sion for the QFI is found to be independent of the phase �
and given by H�1����=4n̄�1− �1− n̄�cos2 ��. We notice �see
Figs. 1 and 2� that the considered simple example of the
non-Gaussian superposition state �with no free parameter left
for optimization� yields a significant improvement over the
best Gaussian estimation for intermediate-high losses, al-
though in the regime of small losses and small energies
Gaussian states �which in this limit are simply squeezed
states �1�� remain better probes.

V. PHOTONIC QUTRIT STATES

Next, we consider superpositions of the vacuum
and the first two Fock states �0= ��0

�2����0
�2��, with ��0

�2��
=cos ��0�+ei� sin � sin ��1�+ei� sin � cos ��2�. Here � can
be fixed as a function of � and n̄, �=arcsin�
 2n̄

cos�2��+3 �. The
evaluation of the SLD involves the diagonalization of the
3�3 matrix corresponding to the output state. The QFI has
to be optimized, for a given n̄, over the phases � and � and
over the weight � �the latter ranges from �=0, correspond-
ing to a superposition of �0� and �2�, to �=� /2, correspond-
ing to the previously considered qubitlike state superposition
of �0� and �1��. Maximization over the phases yields
�=�=�. The optimal � can instead be found numerically
for each n̄, �, and is reported in Fig. 3. The resulting
optimal QFI is shown in Figs. 1 and 2. The photonic
qutrit states improve over the qubitlike state and, more re-
markably, over the optimal Gaussian probes with the same
mean energy in the whole range of parameters �i.e., for any
value of the loss�. In the limit of vanishing probe energy
n̄→0, the optimal Gaussian probe is a purely squeezed
vacuum �1� with QFI H�G����=4n̄�1+z2� / �1+2z�1+ n̄�+z2�
�where z=tan2 ��, while the optimal qutritlike state is
a pure superposition of �0� and �2� ��=0� with QFI H�2����

=4n̄�1+z2� / �1+z�2− n̄+z��H�G�����. In the limit n̄→1, the
weight � increases up to � /2 and the qutritlike state con-
verges to the optimal Fock state �1�.

VI. RELATION TO DE-GAUSSIFIED STATES

A very important and natural question concerns the nature
of such an optimal qutritlike state, in particular, whether such
state can be interpreted as a finite-dimensional truncation of
an infinite-dimensional non-Gaussian state and how to deter-
mine the latter. To this aim, we consider de-Gaussified
photon-subtracted, displaced, and squeezed states �0

�nG�

=N−1aD���S�r��0��0�S†�r�D†���a† and study their projec-
tions on the subspace spanned by the vacuum and the first
two Fock states. The choice for comparison is inspired by the
fact that the strategies of photon addition and subtraction are
the current royal avenues to the experimental production of
optical non-Gaussian resources �12�. Truncation of the
photon-subtracted displaced squeezed state �0

�nG� yields the
state ���nGtr��=c0�0�+c1�1�+c2�2�, where the coefficients cj
=kj / �k0

2+k1
2+k2

2�1/2, with k0=��tanh r+1�, k1=k0
2−tanh r,

and k2=2−1/2k0�k0
2−3 tanh r�. The coefficients kj are func-

tions of the modulus of the displacement � and the real
squeezing amplitude r �the relative phase can be set to zero
in order to maximize the QFI�. Remarkably, we find that for
any � and r such that 0� n̄�1, the pure states �0

�nG� and
�0

�nGtr�= ���nGtr�����nGtr�� always possess a high-fidelity over-
lap F=Tr��0

�nG��0
�nGtr���92%. Adding one or few further
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FIG. 2. �Color online� Quantum Fisher information H��� versus the input energy n̄ for different values of the loss parameter �. Solid
line: optimal Gaussian probes �1�; dotted �magenta� line: qubitlike states ��0

�1��; dotted-dashed �orange� line: optimal qutritlike states ��0
�2��;

and dot-dotted-dashed �cyan� line: optimal ququartetlike states ��0
�3��. The thin dashed line depicts the ultimate quantum limit H���=4n̄.

FIG. 3. �Color online� Shaded surface: attainable values in the
space of the coefficients � and n̄ of qutritlike states, as functions of
the parameters r and � associated to the truncation of photon-
subtracted states. Dashed lines: optimal � as a function of n̄, corre-
sponding to the maximum quantum Fisher information among all
qutrit states, for different values of the loss parameter � �ranging
from � /16 to � /2 from bottom to top�.
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terms in the superpositions quickly rises the fidelity well
above 99%. The mean photon number n̄ is a highly nonlinear
function of � and r. Thus, in order to visualize the maximi-
zation of H over these two resource parameters, at fixed n̄,
we let � and r vary in the real space and depict as a shaded
region in Fig. 3 the achievable range of � �characterizing the
originally introduced parametrization of fixed-energy qutrit
states� versus the values of n̄ that are spanned by the varia-
tion in the parameters. We find that there exist combinations
of values of � and r for the truncated photon-subtracted
states such that the angle � can take almost any value in the
range �0,� /2� for each n̄� �0,1�. Superimposing the para-
metric region with the curves of the optimal � as a function
of n̄ yields the maximum QFI among all qutrit states, for
different values of the loss parameter �. Apart from a small
range of extremely high losses and low energies �in which
practically all states, such as nontruncated Gaussian states,
qubit states, qutrit states, etc., yield the same optimal perfor-
mance close to the ultimate limit�, there always exist values
of the displacement � and of the squeezing r such that the
truncated photon-subtracted state reproduces exactly the op-
timal qutrit state �pictorially, the dashed lines fall in the at-
tainable shaded region in Fig. 3�. On the other hand, this
conclusion does not apply to finite truncations of Gaussian
states, which are never optimal among all pure qutrit states in
many ranges of values of energies and losses, although they
can still perform better than the original Gaussian states. This
clearly shows that de Gaussification be it implemented by
means of truncation, of photon subtraction, or both generally
enhances the task of estimating the loss in bosonic Gaussian
channels. It is reasonable to conjecture that there exist par-
ticular families of non-Gaussian states �e.g., non truncated
photon-subtracted states� that represent optimal resources for
the considered task in the regime of low energy, attaining the
ultimate quantum limit also for intermediate losses, where
superpositions of the first low-lying Fock states do not satu-
rate the 4n̄ scaling of H���.

VII. HIGHER-ORDER SUPERPOSITIONS

The previous conclusions can be confronted by investigat-
ing the effect of adding terms of higher order in the super-
positions. Consider states of the form �0= ��0

�3����0
�3�� with

��0
�3��=�n=0

3 cn�n�, i.e., superpositions of Fock states up to n
=3. The optimal QFI can be obtained by optimizing numeri-
cally the complex weights cn for each n̄ and � �see Figs. 1
and 2�. This yields a further improvement over the optimal
qubit and qutrit states as well as over the Gaussian states.
The succession of curves of H�k���� thus appears to converge
to 4n̄ for k→�. It is certainly true that the best possible
performance requires non-Gaussian states in every energy
range and for any value of the loss. Obviously, not all non-
Gaussian states improve over Gaussian ones. For instance,
the QFI for catlike superpositions of coherent states is almost
always smaller than that of the optimal Gaussian probes, but
for n̄
2 and �
� /8.

VIII. DISCUSSION

Estimating the loss factor of a channel is an important
theoretical issue of direct practical relevance. In the case of
purely dissipative bosonic channels, we have shown that
proper nonclassical non-Gaussian states, such as Fock states
and superpositions thereof, need to be employed as probes in
order to achieve the most precise estimation. The optimality
of Fock states can be understood on intuitive grounds by
realizing that the parameter subject to estimation is essen-
tially the decay rate of the field energy, and Fock states are
eigenstates of the energy observable thus having zero energy
uncertainty in their preparation.

The present work provides strong support for the need of
going beyond the Gaussian scenario in applied quantum
technology and quantum metrology and motivates further re-
search to realize advanced tools of non-Gaussian quantum
state engineering, manipulation, and detection.
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