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The use of entanglement renormalization in the presence of scale invariance is investigated. We explain how
to compute an accurate approximation of the critical ground state of a lattice model and how to evaluate local
observables, correlators, and critical exponents. Our results unveil a precise connection between the multiscale
entanglement renormalization ansatz and conformal field theory �CFT�. Given a critical Hamiltonian on the
lattice, this connection can be exploited to extract most of the conformal data of the CFT that describes the
model in the continuum limit.
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I. INTRODUCTION

The study of quantum critical phenomena through real-
space renormalization-group �RG� techniques �1,2� has tradi-
tionally been obstructed by the accumulation, over succes-
sive RG transformations, of short-range entanglement across
block boundaries. Entanglement renormalization �3� was re-
cently proposed as a technique to address this problem. By
removing short-range entanglement at each iteration of the
RG transformation, not only can arbitrarily large lattice sys-
tems be considered but the scale invariance characteristic of
critical phenomena is also seen to be restored �3,4�.

In this Rapid Communication we explain how to use the
multiscale entanglement renormalization ansatz �MERA� �5�
to investigate scale invariant systems �3–7�. It has been
showed that the scale invariant MERA can represent the
infrared limit of topologically ordered phases �6�. Here we
focus instead on its use at quantum criticality. We present the
following results: �i� given a critical Hamiltonian, an adap-
tation of the algorithm of Ref. �8� to compute a scale invari-
ant MERA for its ground state; then, starting from a scale
invariant MERA, �ii� a procedure to identify the scaling
operators/dimensions of the theory and �iii� a closed expres-
sion for two-point and three-point correlators; �iv� a connec-
tion between the MERA and conformal field theory �CFT�,
which can be used to readily identify the continuum limit of
a critical lattice model; and finally �v� benchmark calcula-
tions for the Ising and Potts models.

We note that result �ii� was already discussed by Giovan-
netti et al. in Ref. �7� using the binary MERA of Ref. �5�.
Our derivations are conducted instead with the ternary
MERA of Ref. �8� �see Fig. 1�, in terms of which results �iii�
and �iv� acquire a simple form.

We start by considering a finite one-dimensional �1D� lat-
tice L made of N sites, each one described by a vector space
V of dimension �. The �ternary� MERA is a tensor network
that serves as an ansatz for pure states ����V�N of the
lattice, see Fig. 1. Its tensors, known as disentanglers and
isometries, are organized in T� log3 N layers, each one
implementing a RG transformation. Such transformations
produce a sequence of lattices,

L0 → L1 → ¯ → LT, L0 � L , �1�

where lattice L�+1 is a coarse graining of lattice L� and the
top lattice LT is sufficiently small to allow exact numerical

computations. Let o denote a local observable supported on
two contiguous sites of L, and let �T be the density matrix
that describes the state of the system on two contiguous sites
of LT. Then the ascending and descending superoperators A�

and D� �8�,

o� = A��o�−1�, ��−1 = D����� , �2�

generate a sequence of operators and density matrices,

o0→
A1

o1→
A2

¯ →
AT

oT, o0 � o , �3�

�0←
D1

�1←
D2

¯ ←
DT

�T, �0 � � , �4�

where o� and �� are supported on two contiguous sites of the
lattice L�. Equation �3� allows us to monitor how the local
operator o transforms under successive RG transformations,
whereas its expected value 	o�=tr��o� can be evaluated by
computing � in Eq. �4�.

II. RG FIXED POINT

The scale invariant MERA corresponds to the limit of
infinitely many layers, T→�, and to choosing the disentan-
glers and isometries in all layers to be copies of a unique pair
u and w �3,5�. In this case we refer to the ascending super-
operator A�, which no longer depends on �, as the scaling
superoperator S �see Fig. 1�, and to its dual D� as S�. Notice
that S is a fixed-point RG map. Then, as customary in RG
analysis �9,10�, the scaling operators �	 and scaling dimen-
sions 
	 of the theory,

S��	� = �	�	, 
	 � − log3 �	, �5�

are obtained by diagonalizing this map,

S�•� = 

	

�	�	 tr��̂	•�, tr��̂	��� = 	�, �6�

where �̂	 are the eigenvectors of the dual S�, S���̂	�
=�	�̂	. Equation �6� was first discussed in Ref. �7� by Gio-
vannetti et al. �11�. It formalizes a previous observation �see
Eq. �5� of Ref. �5�� that the scale invariant MERA displays
polynomial correlations. By construction, S is unital, S�I�
= I, so that the identity operator I in V�2 is a scaling operator
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with eigenvalue �I=1; and contractive, meaning ��	��1
�12�. Here we will assume, as it is the case in the examples
below, that only the identity operator I has eigenvalue �=1.

Then the operator �̂� Î is a density matrix that corresponds
to the unique fixed point of S�, S���̂�= �̂, and since

lim
T→�

�S� � ¯ � S�

T times

���T� = �̂

�7�

for any starting �T, it follows that �̂ is the state of any pair of
contiguous sites of L. �Consistent with scale invariance, �̂ is
also the state of any pair of contiguous sites of L� for any
finite �.� The computation of the expected value of the local
observable o is then straightforward,

	o� = tr��̂o� , �8�

which for the scaling operators reduces to 	�	�=	I.

III. CORRELATORS

Let us now diagonalize the one-site scaling superoperator
S�1� of Fig. 2,

S�1��•� = 

	

�	
�1��	

�1� tr��̂	
�1�•� , �9�

where the scaling dimensions 
	
�1��−log3 �	

�1� coincide with

	 �13�. The correlator for two scaling operators �	

�1� and
��

�1� placed on contiguous sites reads as

C	� � 	�	
�1��1���

�1��0�� = tr„��	
�1�

� ��
�1���̂… . �10�

Suppose now that �	
�1� and ��

�1� are placed in two special sites
x ,y as in Fig. 2, where rxy �x−y is such that �rxy�=3q for q
=1,2 , . . .. Then after q=log3�rxy� iterations of the RG trans-
formation, �	

�1� and ��
�1� become first neighbors again. Notice

that each iteration contributes a factor �	
�1���

�1�. Using the
identity alog b=blog a we find

��	
�1���

�1��log3�rxy� = �rxy�log3��	
�1�

��
�1�� = �rxy�−
	

�1�−
�
�1�

and obtain a closed expression for two-point correlators,

	�	
�1��x���

�1��y�� =
C	�

�rxy�
	
�1�+
�

�1� . �11�

For three-point correlators we define the constants

�	�
� � 
	

�1� + 
�
�1� − 
�

�1�, �12�

C	�� � 2��	
�

tr„��	
�1�

� ��
�1�

� ��
�1���̂�3�

… , �13�

where the trace corresponds to the correlator on three con-
secutive sites and �̂�3� is obtained from �̂. For �rxy�= �ryz�
= �rxz� /2=3q, analogous manipulations lead to

	�	
�1��x���

�1��y���
�1��z�� =

C	��

�rxy��	�
�

�ryz����
	

�rzx���	
� . �14�

IV. CONFORMAL FIELD THEORY

The continuous limit of a quantum critical lattice system
�scale invariant case� corresponds to a CFT �9,10�. A CFT
contains an infinite set of quasiprimary fields �	

CFT, with
scaling dimensions 
	

CFT. The correlators involving two or
three quasiprimary fields have expressions analogous to Eqs.
�11� and �14�, and the �symmetric� coefficients C	��

CFT for
three-point correlators coincide with those in the so-called
operator product expansion �OPE�. Moreover, quasiprimary
fields are organized in conformal towers corresponding to
irreducible representations of the Virasoro algebra. Each
tower contains one primary field �p at the top, with confor-
mal dimensions �t , t̄� �such that its scaling dimension is 
p

FIG. 1. �Color online� �i� Two lowest rows of disentanglers u
and isometries w of the ternary MERA. They map the original
infinite lattice L0�L into increasingly coarse-grained lattices L1

and L2. Notice that three sites of L�−1 become one site of L�, hence
the use of log3 throughout the Rapid Communication. �ii�–�iv� Un-
der the coarse-graining transformation defined by the MERA, two-
site operators supported on three different pairs of sites of L�−1

become supported on the same pair of sites of L�. �v� Accordingly,
the scaling superoperator S is the average of three contributions,
each of which �and thus also their average� is unital and contractive
thanks to the isometric character of u and w �5�.

FIG. 2. �Color online� �i� One-site operators on special sites are
coarse grained into one-site operators. �ii� Scaling superoperator for
one-site operators. �iii� In computing correlators on specific sites x
and y �or x, y, and z�, one-site operators are coarse grained indi-
vidually according to S�1� until they become nearest neighbors
�which in this case occurs at lattice L2 and q=2�.
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� t+ t̄�, and its infinitely many descendants, which are qua-
siprimary fields with scaling dimension 
=
p+n for some
integer n�1.

A CFT is completely specified by its symmetries once the
following conformal data has been provided: �i� the central
charge c, �ii� a complete list of primary fields with their
conformal dimensions, and �iii� the OPE for these primary
fields. For instance, the Ising CFT in 1+1 dimensions has
central charge c=1 /2, three primary fields identity I, spin �,
and energy � with conformal dimensions �0,0�, � 1

16 , 1
16�, and

� 1
2 , 1

2 �, and OPE coefficients,

C	�I
CFT = 	�, C���

CFT =
1

2
, C���

CFT = C���
CFT = C���

CFT = 0.

�15�

The present analysis readily suggests a correspondence
between the scaling operators �	 of the scale invariant
MERA, defined on a lattice, and the quasiprimary fields �	

CFT

of a CFT, defined in the continuum. Together with the algo-
rithm described below, this correspondence grants us numeri-
cal access, given a critical Hamiltonian H on the lattice, to
most of the conformal data of the underlying CFT, namely, to
scaling dimensions and OPE coefficients. The central charge
c can also be obtained, e.g., �14� from the von Neumann
entropy S����−tr�� log2 ��, which for a block of L sites
scales, up to some additive constant, as S= c

3 log2 L �15�. We
then have S��̂�−S��̂�1��= c

3 �log2 2−log2 1�= c
3 or simply

c = 3„S��̂� − S��̂�1��… . �16�

V. ALGORITHM

Given a critical Hamiltonian H for an infinite lattice, we
obtain a scale invariant MERA for its ground state ��� by
adapting the general strategy discussed in Ref. �8�. Recall
that tensors �disentanglers u and isometries w� are optimized
so as to minimize the energy E�	��H���. After lineariza-
tion this reads as

E = tr�u�u� + k1 = tr�w�w� + k2, �17�

where �u and �w are known as environments and k1 ,k2 are
two irrelevant constants. In the translation invariant case �8�
the environment for, say, an isometry w at layer � of the
MERA, �w= f�u� ,w� ,�� ,h�−1�, is a function of the disentan-
gler u� and isometry w� of that layer, a two-site density ma-
trix ��, and a two-site Hamiltonian term h�−1. In the present
case, we replace the above with the unique pair �u ,w�, the

fixed-point density matrix �̂, and an average Hamiltonian h̄
�
�ht /3�, where the weights 1 /3� account for the relative
number of tensors in different layers of the MERA. Then,
starting from some initial pair �u ,w� and the critical Hamil-
tonian H made of two-body terms h, the following steps are
repeated until convergence:

�A1� Given the latest �u ,w�, compute ��̂ , h̄�.
�A2� Given �u ,w , �̂ , h̄�, update the pair �u ,w�.
In step �A1�, the scaling superoperator S is built as indi-

cated in Fig. 1. We compute the fixed-point density matrix �̂

by sparse diagonalization of S and the average Hamiltonian

h̄ by using h�=S�h�−1� and h0�h �16�. Step �A2� is decom-
posed into a sequence of alternating optimizations for u and
w as in the generic algorithm of Ref. �8�, where each tensor
is updated by computing a singular value decomposition of
its environment.

VI. EXAMPLES

We illustrate the above ideas and the performance of the
algorithm by considering the Ising and three-level Potts
quantum critical models in one dimension,

HIsing = 

r

���z
�r� + �x

�r��x
�r+1�� ,

HPotts = 

r

��Mz
�r� + Mx,1

�r� Mx,2
�r+1� + Mx,2

�r� Mx,1
�r+1�� , �18�

where �z and �x are the Pauli matrices and

Mz = �2 0 0

0 − 1 0

0 0 − 1
�, Mx,1 = �0 1 0

0 0 1

1 0 0
� , �19�

and Mx,2= �Mx,1�2. Notice that sites have a vector space of
dimension d=2 or d=3. In order to use a scale invariant
MERA with ��d, we allow the disentanglers and isometries
of the first few �typically one to five� layers to be different
from u and w. We iterate steps �A1� and �A2� about 1000
times. With a cost per iteration that scales as �8 and using a
3 GHz dual core desktop with 8 gigabytes of random access
memory �RAM�, simulations for �=4,8 ,16,22 take of the
order of minutes, hours, days, and weeks, respectively. The
following results correspond to �=22.

From Eq. �16� we obtain an estimate for the central
charge, namely, cIsing=0.5007 and cPotts=0.806, to be com-
pared with the exact results 0.5 and 0.8. Figure 3 shows the
smallest scaling dimensions 
	 of the scaling superoperator
S �13�. We obtain remarkable agreement with those expected
from CFT, as shown in Table I. Recall that all the critical
exponents of the model can be obtained from the scaling
dimensions of primary fields. For instance, for the Ising
model the exponents � and � are �=2
� and �= 1

2−
�
,

whereas the scaling laws express the critical exponents
	 ,� ,� , in terms of � and � �10�. Further, the OPE coeffi-
cients for primary fields of, say, the critical Ising model are
computed as follows. The matrix C	� in Eq. �10� is diagonal
for the scaling operators corresponding to I, �, and �, which
we normalize so that C	�=	�. With this normalization, we
then compute the coefficients C	�� using Eq. �13�. We repro-
duce all the values of Eq. �15� with errors bounded by 3
�10−4.

VII. DISCUSSION

In this Rapid Communication we have explained how to
compute the ground state of a critical Hamiltonian using the
scale invariant MERA and how to extract from it the prop-
erties that characterize the system at a quantum critical point.
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Our results, which build upon those of Refs. �3–8�, also un-
veil a concise connection between the scale invariant MERA
and CFT. This correspondence adds significantly to the con-
ceptual foundations of entanglement renormalization. The
scale invariant MERA can be regarded as approximately re-
alizing an infinite dimensional representation of the Virasoro
algebra �9,10�. The finite value of � effectively implies that
only a finite number of the quasiprimary fields of the theory
can be included in the description. Fields with small scaling
dimension, such as primary fields, are retained foremost. As
a result, given a Hamiltonian on an infinite lattice, we can

numerically evaluate the scaling dimensions and OPE of the
primary fields of the CFT that describes the continuum limit
of the model. This approach differs in a fundamental way
from and offers an alternative to the long-established tech-
niques of Refs. �17�, based instead on finite-size scaling.

We conclude by noting that most of our considerations
rely on scale invariance alone and can be applied to study
also critical ground states in two-dimensional systems �18�.
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FIG. 3. �Color online� Scaling dimensions 
	 obtained from the
spectrum of the scaling superoperator S. Circles indicate primary
fields. Left: For the Ising model we can identify the scaling dimen-
sions of the three primary fields, the so-called identity I, spin �, and
energy �, together with several of their descendants. Right: The
spectrum of S for the three-level Potts model shows some of its
primary fields, including its primary fields with multiplicity two,
namely, the spins �1 and �2 and the pair Z1 and Z2 �10�.

TABLE I. Comparison of scaling dimensions of primary fields
of the Ising and Potts models calculated using MERA
�
�MERA �=22�� with exact results known from CFT �
CFT�.


CFT 
�MERA �=22� Rel. error �%�

Ising

� 1 /8=0.125 0.124997 0.002

� 1 1.0001 0.01

Potts

�1 2 /15=0.13̂ 0.1339 0.4

�2 2 /15=0.13̂ 0.1339 0.4

� 4 /5=0.8 0.8204 2.5

Z1 4 /3=1.3̂ 1.3346 0.1

Z2 4 /3=1.3̂ 1.3351 0.1
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