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In this paper, we make a few corrections to a paper by Zha and Ren �Phys. Rev. A 77, 014306 �2008��. The
Zha-Ren protocol for teleportation in principle is equivalent to Rigolin’s protocol �G. RigolinPhys. Rev. A 71,
032303 �2005�� and the associated Comment �F. G. DengPhys. Rev. A 72, 036301 �2005��. We feel that the
transformation operator is not well suited as a criterion for the faithful teleportation, but can be used as a means
to transform an arbitrary four-qubit entangled state into a tensor product state of two Bell states. We give all the
transformation operators.
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Recently, Zha and Ren �1� �ZR� introduced a transforma-
tion operator for teleportation �hereafter the ZR paper refers
to Ref. �1��. First, let us briefly review the ZR protocol for
teleportation and the transformation operator.

The sender Alice wants to transmit an unknown arbitrary
two-qubit state:

���12 = �x0�00� + x1�01� + x2�10� + x3�11��12, �1�

where x0, x1, x2, and x3 are arbitrary complex numbers sat-
isfying �i=0

3 �xi�2=1.
Alice and the receiver Bob share an arbitrary four-qubit

entangled channel:

���3456 = �a0�0000� + a1�0001� + a2�0010� + a3�0011�

+ a4�0100� + a5�0101� + a6�0110� + a7�0111�

+ a8�1000� + a9�1001� + a10�1010� + a11�1011�

+ a12�1100� + a13�1101� + a14�1110�

+ a15�1111��3456. �2�

The particles 1234 are in Alice’s possession, and the par-
ticles 56 belong to Bob. The protocol for teleportation in Ref.
�1� was expressed as

���123456 = ���12 � ���3456 =
1

4�
i=1

4

�
j=1

4

�13
i �24

j �56
ij ���56. �3�

Here, �56
ij =�56

11��5
i

� �6
j �, and �m

k = Im ,�mz ,�mx ,−i�my, where
m=5,6. Im is the two-dimensional identity; �mz, �mx, and
�my are the Pauli matrices. The transformation operator �56

11

is

�56
11 = 2�

a0 a8 a4 a12

a1 a9 a5 a13

a2 a10 a6 a14

a3 a11 a7 a15

	 �4�

and �mn
i and �mn

j �mn=13,24� are Bell states,

�mn
1 =

1

2

��00� + �11��mn, �mn
2 =

1

2

��00� − �11��mn, �5�

�mn
3 =

1

2

��01� + �10��mn, �mn
4 =

1

2

��01� − �10��mn.

It can be seen that in the ZR protocol for teleportation, Alice
performs two Bell-state measurements on particles 13 and
24, and Bob needs to perform ��56

ij �−1= ��5
i

� �6
j �−1��56

11�−1 on
particles 56 to recover the original state.

In addition, ZR gave a criterion for faithfully teleporting
an arbitrary two-qubit state via a four-qubit entangled state in
terms of the operator �56

ij . On one hand, �56
ij is invertible. If

�56
ij is not only invertible but also unitary ��56

11 is also uni-
tary�, an unknown two-particle entangled state can be tele-
ported perfectly. If �56

ij is not unitary but invertible ��56
11 is

also invertible�, Alice and Bob can realize the teleportation
with certain probability. On the other hand, if the transfor-
mation operator is not invertible ��56

11 is also not invertible�,
the unknown two-particle arbitrary entangled state cannot be
teleported.

In this Comment, we first show that there are some mis-
takes in Ref. �1�. We present the corrections here. From Eqs.
�2�–�5�, we calculate and find that the relation between the
�56

ij and the Bell base measurement is not �56
ij =�56

11��5
i

� �6
j �

�Eq. �13� in Ref. �1��, but �56
ij =�56

11��6
i

� �5
j �.

The protocol for teleportation is also not Eq. �3�, but

���123456 =
1

4�
i=1

4

�
j=1

4

�13
i �24

j �56
11��6

i
� �5

j ����65. �6�

In order to realize the ZR protocol for teleportation in Eq. �3�
via an arbitrary four-particle entangled channel, we propose
a transformation operator B1,
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B1 = 2�
a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

	 . �7�

When B1 is unitary, the ZR protocol for teleportation,

���123456 =
1

4�
i=1

4

�
j=1

4

�13
i �24

j B1��5
i

� �6
j ����56, �8�

can be completed perfectly.
Comparing with previous protocols, we find that the ZR

protocol for teleportation in principle is equivalent to
Rigolin’s protocol �2� and the associated Comment �3�. In
Ref. �1�, the receiver must perform additionally an operation
�B1�−1 which is not relevant to Alice’s operations. Thus, Bob
can first perform the operation �B1�−1 before teleportation
happens.

Theorem �4�. Let the matrix A= �aij�� Pn�n; then

�
i=1

n

aijAik = � jk�A�, j,k = 1,2, . . . ,n ,

�
i=1

n

ajiAki = � jk�A�, j,k = 1,2, . . . ,n ,

where

� jk = �1, j = k ,

0, j � k .
�

Aij denotes the cofactor of aij, and �A� is the determinant of
A.

Based on the above theorem, perform the operation �B1�−1

on the particles 56 of the state in Eq. �2�,

�B1�−1���3456 =
1

�B1�
�B1�����3456 =

1

2

1

�B1�
��00�56�B1��2�a0�00� + a4�01� + a8�10� + a12�11��34 + �01�56�B1��2�a1�00� + a5�01�

+ a9�10� + a13�11��34 + �10�56�B1��2�a2�00� + a6�01� + a10�10� + a14�11��34 + �11�56�B1��2�a3�00� + a7�01�

+ a11�10� + a15�11��34� =
1

2
��0011� + �0101� + �1010� + �1111��3456 = 
 1


2
��00� + �11��35� � 
 1


2
��00� + �11��46� ,

�9�

where �B1�� is the adjoint of B1.
It is clearly seen that the quantum channel is just a tensor

product state of two Bell states. Alice performs two Bell-
state measurements and Bob performs the appropriate Pauli
operation ��5

i
� �6

j �−1 to recover the original state ���56. Ob-
viously, this protocol for teleportation is equivalent to
Rigolin’s protocol �2� and the associated Comment �3�. The
main reason is that Bob is required to perform and can first
perform operation �B1�−1 which does not depend on Alice’s
measurement outcomes. Thus, the quantum channel in es-
sence has been transformed into a tensor product state of two
Bell states in the process of teleportation. Moreover, the
other operations performed by Alice and Bob are the same as
Rigolin’s protocol �2� and the associated Comment �3�.

As far as Eqs. �2� and �4� are concerned, we have

��56
11�−1���3456 = 
 1


2
��00� + �11��36� � 
 1


2
��00� + �11��45� .

�10�

The quantum channel is just a tensor product state of two
Bell states about particles 36 and 45.

Note that the evolution of a closed quantum system is
described by a unitary transformation �5�. When the transfor-
mation operator in Eq. �7� is invertible and unitary, a tensor

product state of two Bell states can be perfectly obtained.
When the transformation operator is invertible but not uni-
tary, Alice and Bob can take some strategies, for instance,
introduction of the auxiliary particle, to probabilistically ex-
tract a certain number of entangled Bell pairs.

It is well known that an arbitrary two-qubit state can be
perfectly teleported via a tensor product state of two Bell
states �2,3,6�. The invertible transformation operator can per-
fectly or probabilistically transform the four-qubit entangled
state as a quantum channel into a tensor product state of two
Bell states. When the transformation operator has no inverse,
Alice and Bob cannot share a tensor product state of two Bell
states. However, it is possible that there exist other protocols
for teleportation. So, we feel that the transformation operator
is not well suited as a criterion for faithful teleportation of an
arbitrary two-qubit state via a four-qubit entangled state. In
essence, the transformation operator only determines
whether the four-qubit entangled state can be transformed
into a tensor product state of two Bell states or not.

The tensor product state of two Bell states has 16 kinds in
all and can be divided into four groups �2,3�. As a means to
transform an arbitrary four-qubit entangled state into a tensor
product state of two Bell states, we find that there are many
transformation operators. The transformation operator �56

11

given in Ref. �1� is only one of them. Each of Alice and Bob
has 16 kinds of transformation operators which can trans-
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form an arbitrary four-particle entangled state into a tensor
product state of two Bell states about particles 35 and 46 or
about particles 36 and 45.

If columns 1 and i of the B1 are swapped and the other
two columns of the B1 are also swapped, the transformation
operator B4�i−1�+1 �i=2,3 ,4� can be obtained. If to the ele-
ments of columns 1 and j �or the other two columns� in
B4�i−1�+1 we add the minus, the transformation operator
B4�i−1�+j �i=1,2 ,3 ,4; j=2,3 ,4� can be obtained.

If the transformation operator B4�i−1�+j �i , j=1,2 ,3 ,4� is
invertible and we perform �B4�i−1�+j�−1 on the state of the
particles 56 in Eq. �2�, the jth state of group i �g4�i−1�+j� can
be obtained.

If columns 2 and 3 of the transformation operator B4�i−1�+j
�i , j=1,2 ,3 ,4� are swapped and the inverse of it is per-
formed on the state in Eq. �2�, the tensor product state of two
Bell states about particles 36 and 45 can be obtained. The
transformation operator �56

11 proposed in the ZR paper �1� is
to swap the columns 2 and 3 of the B1.

Certainly, Alice can also perform transformation operators
on particles 34 in her hand to obtain a tensor product state of
two Bell states. Let A1= �B1�T. �B1�T is the transpose of the
B1. Similarly, we can obtain the other transformation
operators.

For example, if we swap columns 1 and 4 of the A1 �the
other two columns 2 and 3 of the A1 must be swapped, too�,
and then add minus on elements of columns 1 and 3, we can
get the transformation operator A15,

A15 = 2�
− a3 a2 − a1 a0

− a7 a6 − a5 a4

− a11 a10 − a9 a8

− a15 a14 − a13 a12

	 . �11�

When the A15 is invertible, the operation �A15�−1 on the
particles 34 can transform the arbitrary four-qubit entangled
state in Eq. �2� into a tensor product state of two Bell states,

�A15�−1���3456 = 
 1

2

��01� + �10��35� � 
 1

2

��01� − �10��46� .

�12�

To summarize, we have made a few corrections to Ref.
�1�. Because the transformation operator is not relevant to
Alice’s measurement outcomes and can transform the quan-
tum channel into a tensor product state of two Bell states in
the process of teleportation, the ZR protocol in principle is
equivalent to Rigolin’s protocol �2� and the associated Com-
ment �3�. All protocols for teleportation utilized the transfor-
mation operator in principle are equivalent. In addition, we
feel that the transformation operator expression is not well
suited as a criterion for faithful teleportation, but can be used
as a means to transform an arbitrary four-qubit entangled
state into a tensor product state of two Bell states. All trans-
formation operators have been given.
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