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We discuss a protocol for efficient and quick transfer of population between nearly one-dimensional Rydberg
states by a chirped train of half-cycle pulses. The chirp refers both to the time interval and relative strength
between subsequent pulses. The most spectacular result obtained by the use of this protocol is the transfer of
over 10% of the initial population from the high-Rydberg state of n=50,80 to much lower ones of n��10 in
a short time of the order of 1 ns.
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In recent years there has been increasing interest in the
generation and control of the Rydberg wave packets because
of their possible use, e.g., for data storage and processing �1�.
Since 1996 �2,3�, creation, manipulation, and sampling of
Rydberg wave packets have been realized with the use of
unidirectional half-cycle electric-field pulses �HCP�, usually
formed in a train with each pulse of a duration much shorter
than the Kepler period Tn=2�n3 �in atomic units �a.u.�� of
the n Rydberg state �n�1�. A question of particular interest,
in this context, is to find an efficient protocol for transporting
a Rydberg packet from the initial to the target state by the
HCP train. Such a protocol could be used, e.g., for deexcita-
tion of antihydrogen atoms produced in ATRAP and
ATHENA experiments �4,5�. The atoms produced in these
experiments are known to be left in their high-Rydberg
states, n�30, while precise spectroscopic studies of funda-
mental properties of matter, e.g., CPT invariance, require an-
tihydrogen atoms in their extremely low-lying states �6�. As
antihydrogen quickly annihilates, it imposes the restriction
for the protocol of deexcitation to be very quick.

In this Brief Report we present the idea of such an effi-
cient and quick deexcitation protocol exploiting an appropri-
ate HCP train. To simplify the presentation we use the one-
dimensional �1D� model of the Rydberg atom. The
conditions for such a model are known �7,8� to be well sat-
isfied by selected states only, e.g., the extreme blue and red
members of the Stark manifolds. As an approximation, the
1D model is not expected to give quantitatively exact results
for fully three-dimensional �3D� atoms. According to �9–11�,
this model is, however, able to predict some qualitative ten-
dencies in real 3D Rydberg atoms exposed to HCPs. The
other approximation we apply is the widely used impulse
approximation for the atom-pulse interaction �12,13�. With
these two approximations, the transition amplitude from the
initial state �n� to a given state �n�� under the action of a HCP
is provided by the form factor �in a.u.� Tn�n

= �n��exp�iqx��n� in the following explicit form �14�:
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where q is the momentum transferred to the Rydberg electron
by HCP, F�a ,b ,c ,y� is the hypergeometric function, �=n−1

+n�−1− iq, and z=−4n�n��n−n��2+ �qn�n�2�−1. The Rydberg
wave packet created by a single HCP from the initial state �n�
is written as ���=�n�Tn�n�n��, where the summation runs
over all states left populated after HCP. If, instead of a single
HCP, one uses a train of HCPs with different q, in general,
and subsequent pulse delays �1 ,�2 , . . . ,� j, where � j stands for
the delay after the jth HCP, the Rydberg wave packet at the
end of the train of K HCPs reads
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Here, � j are the state eigenfrequencies �−1 /2nj
2 in a.u.�,

bnK
—the amplitudes of the states that remained populated

after the Kth pulse, and the exponential functions describe
free evolution of the states in between two subsequent HCPs.
In the following, we assume pulses that transfer the negative
momentum to the electron in the 1D atom, thus pushing the
electron toward the nucleus. To take into account the possi-
bility of ionization, Eq. �1� needs to be adapted in the fol-
lowing way. First, we replace 1 /�n� before the brace by
�2�k / �1−exp�−2� /k�� / �ik�, and then, replace all other n�
by 1 / �ik�, where k	0 stands for the momentum �in a.u.� of
the continuum-state electron. The use of Eq. �1� means that
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we treat the problem in a way different than by other authors
�15,16�.

A series of detailed calculations, exploiting Eqs. �1� and
�2�, has led us to the conclusion that Rydberg wave packet
exposed to an appropriately chirped train of equal-
momentum pulses tends to be localized around the Rydberg
state whose Kepler period is equal to the delay between sub-
sequent pulses. We shall show this by assuming the momen-
tum transfer by a single HCP in the amount q=−0.1 /n and
the chirping of delay between pulses in the form

�K = �1 − K/�nr��3Tn, �3�

where Tn stands for the Kepler period of the initial state n.
Under the action of such a train, the Rydberg wave packet is
shown in Fig. 1 to be concentrated around the most occupied
state n�=n−K /r of the Kepler period close to Tn�=Tn−K/r
=�K. By different colors we present in Fig. 1 the calculated
Rydberg-state distribution, �bn��

2, after K pulses of the train,
for two chosen values of parameter r �r=1 in parts �a� and
�b�, and r=2 in parts �c� and �d��. Parts �a� and �c� are the
distributions from the initial state n=50 while parts �b� and
�d� are those from n=80. The chosen principal quantum
numbers correspond to those observed in the production of
antihydrogen atoms �4�. Each part includes the black line
corresponding to the target Rydberg states nC=n�=n−K /r
with their Kepler periods Tn�=�K. In all cases shown in Fig.
1, the packet, until some number of HCPs, is moved almost
monotonously toward low-lying states, and the compatibility
between the most populated state �the brightest points� and
nC is very good—the largest-population state is really that
close to nC. As seen, the main population moves down from
the initial state n=50 to n�=28 after 24 pulses for r=1, and

to n�=20 after 60 pulses for r=2. For the initial state n=80,
the main population is deexcited to n�=35 after 47 pulses for
r=1 and to 26 after 108 pulses for r=2, respectively. For a
given n, the parameter r is, thus, responsible for the speed of
deexcitation and, by Eq. �3�, it can be understood as the
number of pulses the electron needs to be moved one state
down. Figure 1 shows that deexcitation stops for a train long
enough. The packet submits then delocalization in the sense
that it includes many states of comparable populations.
These states have diverse Kepler periods, different from the
delay between the pulses and, therefore, the packet can no
longer be efficiently deexcited. In Fig. 1, we straightfor-
wardly see the difference between state distributions for K
located in the area of efficient deexcitation and K outside this
range. For K outside the efficient area, the populations of the
preferred states, nC, are seen to be clearly lower. As seen, the
higher the r the lower the n� at which the breakdown of
deexcitation occurs, which translates into more efficient pro-
cess of deexcitation for higher r. The disadvantage of higher
r is, however, an increase in the length of the train. In the
moment of the breakdown of deexcitation, the length
amounts to 8.8�106 a.u.=0.21 ns for r=1 and 1.9
�107 a.u.=0.45 ns for r=2 if the initial state is n=50, and
5.7�107 a.u.=1.4 ns for r=1 and 1.3�108 a.u.=3.0 ns
for r=2 if the initial state is n=80. A possible source of
cessation of deexcitation for large enough K is increasing
anharmonicity of level separation when approaching the
nucleus. In Fig. 2, we show Rydberg-state distribution, �bn��

2,
after K pulses in the train of Eq. �3�, for the initial state n
=80 and r=2, but with momentum q transferred by each
pulse different than that in Fig. 1�d�. By comparison with
Fig. 1, we see that the increase in q, when all pulses in the
train are identical, results in diminishing the amount of de-
excited population. Moreover, the lack of yellow points in
Fig. 2�b� can be attributed to an increase in the ionization.

The way to overcome the disadvantageous effect of in-
creasing anharmonicity in energy separation of low states is
suggested, to some extent, by the behaviors of the amplitudes
Tn�n� versus decreasing n� and n� for the fixed pulse strength
q=−0.1 /n. The surviving amplitude Tn�n� of the state n� is
found to become more and more dominant one when ap-
proaching the lower states n�. The two other amplitudes of
jumping up �n�=n�+1� and down �n�=n�−1�, respectively,
remain nearly the same when n��1 but for diminishing n�
the former amplitude gets higher with respect to the latter

FIG. 1. �Color online� Rydberg-state distribution, �bn��
2, versus

the number K of identical HCPs �each of q=−0.1 /n� in the train of
spacing �K= �1−K / �nr��3Tn, with r=1 �parts �a� and �b�� and r=2
�parts �c� and �d��, for the initial states n=50 �parts �a� and �c�� and
n=80 �parts �b� and �d��. The black lines indicate the comparative
states nC= �n−K /r�.

FIG. 2. �Color online� Rydberg-state distribution, �bn��
2, versus

the number K of identical HCPs in the train of spacing �K

= �1−K / �nr��3Tn, with r=2, for the initial states n=80. Momentum
of each pulse is q=−0.3 /n �part �a�� and q=−0.6 /n �part �b��. The
black lines indicate the comparative states nC= �n−K /r�.
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one. These behaviors disturb the process of deexcitation and
when the deexcitation stops the Rydberg packet stays in
nearly the same level, as seen in Fig. 1. However, one can
enhance the deexcitation process by increasing slightly the
strength of subsequent pulses, still chirping the delay be-
tween them in the way given by Eq. �3�, because the increas-
ing �q� makes the down transitions more effective than the up
transitions. Thus, the improved protocol of deexcitation
reads

�K = �1 − K/�nr��3Tn,

qK = −
0.1

n�1 − K/�nr��
. �4�

Figure 3 shows the Rydberg-state distribution as a function
of K, for the train with � and q chirped as in Eq. �4�. We have
retained the same values for r and n as in Fig. 1. As com-
pared with Fig. 1, we see an improvement in the deexcitation
process—now efficient deexcitation maintains for higher K,
and the state with the largest population at the moment of the
breakdown of deexcitation is lower than before. As follows
from Fig. 3, for the initial state n=50, the packet stops its
deexcitation after K=37 for r=1 and after K=80 for r=2. In
these cases the states with the highest population are n�
=14 and n�=11, respectively. For the initial state n=80, the
state with the highest population is n�=17 after 64 pulses for
r=1 and n�=13 after 136 pulses for r=2. The deexcitation
from the state n=80 to the state n�=13 means that the mean
lifetime of the Rydberg atom drops down from 30 ms to
5.4 
s �17�. In this case, the deexciting train lasts 1.3
�108 a.u.=3.2 ns only. These deexcitation results are better
than our previous ones �18� obtained with chirping � only.

An appropriately chirped train can be used not only as a
tool for the deexcitation but also for the controlled excitation
of Rydberg states. Figure 4 shows the Rydberg-state distri-
bution as a function of the number K of pulses in the train
acting on the initial state n=80, with � and q being chirped
as

�K = �1 − K/�2 � 80��3T80,

qK = −
0.1

n�1 − K/�2 � 80��
for K � 100,

�K = �1 + �K − 100�/�2 � 30��3T30,

qK = −
0.1

n�1 + �K − 100�/�2 � 30��
for 100 � K � 200,

�K = �1 − �K − 200�/�2 � 80��3T80, �5�

qK = −
0.1

n�1 − �K − 200�/�2 � 80��
for K � 200.

As compared with Eq. �4�, r=2 now. The above train shifts
the population from the initial state n=80 to the surroundings
of n�=30 for the first 100 pulses �nC=80−K /r�; for the next
100 HCPs it excites the population to the surroundings of
n=80 �nC=30+ �K−100� /r�, and for the last 100 pulses it
deexcites the population to n�=30 again �nC=80− �K
−200� /r�. However, during the excitation step, a part of the
population is seen separating from the rest and becomes
trapped in low-lying states. We have compared the results
of Fig. 4 with those for the train with q kept constant
�q=−0.1 /n� and only � being chirped as in Eq. �5�. In the
latter case, we have observed narrower distribution for a
given K and weaker excitations in the middle step. The re-
versibility of the population-transfer process, shown in Fig.
4, agrees with the recent result of Mestayer et al. �16� found
by a different method for the much higher quasi-1D initial
state exposed to a different HCP train with only � being
chirped.

FIG. 3. �Color online� Rydberg-state distribution, �bn��
2, versus

the number K of HCPs in the train of spacing �K= �1−K / �nr��3Tn

and the momentum transferred by the Kth pulse qK=−0.1 / �n
−K /r�. The initial states and parameters r as in Fig. 1. The black
lines indicate the comparative states nC= �n−K /r�.

FIG. 4. �Color online� Rydberg-state distribution, �bn��
2, versus

the number K of pulses in the chirped train given by Eq. �5�, for the
initial state n=80. The black line indicates the comparative state.
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In summary, we have presented a protocol enabling effi-
cient and quick transfer of population between Rydberg
states in the 1D model atom exposed to a HCP train. Crucial
for the protocol was the appropriate chirping of the train. We
have shown that, by changing the interval between subse-
quent identical pulses, the Rydberg packet evolves in such a
way that the most populated state in it is that whose Kepler
period matches the interval between pulses. Therefore a
shortening of this intervals leads to deexcitation. The initial
states n=50 and n=80 were transferred to states n�=20–30
with the efficiency higher than 10% in a short time of the
order of 1 ns. Even better results were obtained when chirp-

ing referred to both intervals between the pulses and the
momentum transferred by subsequent pulses to the Rydberg
electron. By this way, the electron initially in the state n
=50 was deexcited to the state n�=11, and the initial state
n=80 was deexcited to n�=13, with efficiency higher than in
the case when the chirping concerned the delay between the
pulses only. Because of the employed 1D approximation, the
above results cannot be directly compared with those of
other authors �19–21� considering different methods of deex-
citation of 3D atoms. However, our results are expected to
indicate how to improve the deexcitation process in real
atoms.
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