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General properties of linear propagation of discretized light in homogeneous and curved waveguide arrays
are comprehensively investigated and compared to those of paraxial diffraction in continuous media. In par-
ticular, general laws describing beam spreading, beam decay, and discrete far-field patterns in homogeneous
arrays are derived using the method of moments and the steepest-descent method. In curved arrays, the method
of moments is extended to describe evolution of global beam parameters. A family of beams which propagate
in curved arrays maintaining their functional shape—referred to as discrete Bessel beams—is also introduced.
Propagation of discrete Bessel beams in waveguide arrays is simply described by the evolution of a complex-q
parameter similar to the complex-q parameter used for Gaussian beams in continuous lensguide media. A few
applications of the q parameter formalism are discussed, including beam collimation and polygonal optical
Bloch oscillations.
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I. INTRODUCTION

Linear and nonlinear propagation of “discretized” light in
arrays of evanescently coupled optical waveguides has re-
ceived a great and increasing interest in the past recent years
�see, for instance, �1,2� and references therein�. As compared
to diffraction or refraction in continuous �nonstructured� me-
dia, discrete diffraction and refraction in waveguide arrays
show rather uncommon effects which result from the evanes-
cent coupling among adjacent waveguides forming a one-
dimensional or a two-dimensional lattice. For instance, linear
propagation of light waves in homogeneous arrays may show
diffraction reversal and self-collimation effects �3,4�, anoma-
lous refraction �4�, the discrete Talbot effect �5�, and quasi-
incoherent propagation �6�, to name a few. Remarkably, dis-
crete diffraction can be tailored by properly introducing
inhomogeneities in the lattice or by varying its topology. In
particular, since the first proposals and demonstrations of op-
tical Bloch oscillations �7–9� and “diffraction management”
in zigzag arrays �3�, the use of waveguide arrays with curved
optical axis has been extensively investigated both theoreti-
cally and experimentally, with the demonstration of diffrac-
tion suppression via Bloch oscillations �1,7–11� or dynamic
localization �12,13�, polychromatic diffraction management
�14�, astigmatic diffraction control �15�, multicolor Talbot
effect �14�, and discrete soliton management �14,16�. Linear
and nonlinear light propagations at the surface or at the in-
terface of two waveguide lattices also exhibit a variety of
interesting properties which have been investigated in sev-
eral recent works �see, for instance, �2,17–19� and references
therein�. In spite of such a great amount of works, some
facets of discrete diffraction, even in the simplest linear
propagation regime, have been overlooked. Though in the
linear regime the impulse response �Green’s function� of the
array may be rather generally calculated analytically—in ei-
ther straight or curved geometries and in presence or absence
of boundaries—and its knowledge is enough to predict light
evolution for any assigned initial excitation condition �see,
for instance, �13,17��, some general issues of discrete diffrac-

tion, which are well known for paraxial propagation of
beams in continuous media, have not been comprehensively
addressed. These include: �i� a description of global beam
parameter evolution in a closed analytical form; �ii� far-field
discrete diffraction in homogeneous array �the analog of
Fraunhofer diffraction in homogeneous continuous media�;
�iii� the general scaling law of beam broadening and beam
decay, especially close to the self-collimation condition �also
referred to as subdiffraction�, which is commonplace for the
more general class of photonic crystal structures �see, for
instance, �20��; and �iv� the existence of shape-invariant dis-
cretized beams, i.e., special families of field distributions
which—like Gaussian beams in continuous lensguide
media—do propagate in straight or curved waveguide arrays
maintaining their functional shape. It is the aim of this work
to shed some light into such issues. In particular, it is shown
rather generally that: �i� the scaling law describing broaden-
ing of discretized light in homogeneous arrays is the same as
that of standard paraxial diffraction theory of homogeneous
continuous media �beam size asymptotically grows linearly
with propagation distance�, independently of the precise ar-
ray dispersion curve and even along self-collimation direc-
tions; �ii� in a homogenous array, the discrete far-field pattern
is not the �discrete� Fourier transform of the near-field distri-
bution, and the scaling law of beam decay may depend on
the observation angle; �iii� special field distributions, which
propagate in straight or curved waveguide arrays maintaining
their functional shape and referred to as “discrete Bessel
beams,” can be introduced for simple tight-binding wave-
guide models; and �iv� a discrete Bessel beam is defined by a
complex-q parameter, analogous to the one used for Gauss-
ian beams in continuous lensguide media, and propagation of
the q parameter along the array admits a simple geometric
interpretation.

The paper is organized as follows. In Sec. II general prop-
erties of discrete diffraction in homogeneous waveguide ar-
rays are presented, including the derivation of the general
scaling laws of beam broadening and beam decay, and far-
field discrete diffraction, with a note on self-collimation re-
gimes. In Sec. III, some general rules of beam propagation in
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curved waveguide arrays are derived within the nearest-
neighbor coupling approximation, whereas in Sec. IV the
family of shape-invariant discrete Bessel beams is intro-
duced, together with the complex-q parameter formalism.
Applications to beam collimation and polygonal optical
Bloch oscillations are also presented. Finally, in Sec. V the
main conclusions are outlined.

II. DISCRETE DIFFRACTION IN A HOMOGENEOUS
WAVEGUIDE ARRAY

A. Continuous model of discrete diffraction

The starting point of our analysis is provided by a rather
standard model describing linear propagation of monochro-
matic light waves along the z direction of a one-dimensional
or two-dimensional array of waveguides in the single-band
and tight-binding approximations. For instance, in a one-
dimensional array such conditions are satisfied when the tilt
of beams and waveguides at the input facet is less than the
Bragg angle, so that the lowest-order band of the array is
excited and beam propagation is primarily characterized by
coupling between the fundamental modes of the waveguides.
For a two-dimensional array, the relevant equations describ-
ing discrete diffraction in a single-band approximation read

iċn,m = − �
l,r

�n−l,m−rcl,r �1�

where cn,m�z� is the complex amplitude of the fundamental
waveguide mode at the lattice site rn,m=na+mb identified by
the indices �n ,m�, a and b are the lattice vectors of the unit
cell, the dot denotes the derivative with respect to z, and
�n,m=�m,n

� are the coupling rates. In order to derive a general
rule of beam broadening due to discrete diffraction, it is
worth introducing a continuous field envelope ��x ,y ,z� sat-
isfying the scalar Schrödinger-type equation

i�z��r,z� = H0�p���r,z� , �2�

where r= �x ,y�, p=−i�r,

H0�p� � − �
n,m

�n,m exp�− irn,m · p� , �3�

and rn,m=na+mb. Taking into account that
exp�−iR ·p���r ,z�=��r+R ,z�, it follows that the solution
cn,m�z� to discrete equation �1� can be identified with ��r
=na+mb ,z�. The formulation of the discrete light propaga-
tion problem �Eq. �1�� as a continuous problem �Eq. �3�� is a
well-established procedure in solid-state physics �21� which
enables the use of certain analytical techniques, such as the
method of moments, developed for the continuous
Schrödinger equation or for the paraxial wave equation �see,
for instance, �22,23��. In addition, the continuous model in-
cludes, as a particular case, the problem of paraxial diffrac-
tion in a homogeneous medium �e.g., in the vacuum�, which
is attained by simply assuming for the Hamiltonian H0�p�, in
place of Eq. �3�, the �normalized� parabolic form

H0�p� =
p2

2
. �4�

The normalization conditions �dr���r ,z��2=1 for Eq. �2� and
�n,m�cn,m�z��2=1 for discrete problem �1� will be assumed in
the following analysis.

B. General law for beam spreading: Moment analysis

Two global parameters describing beam propagation are
the beam center of mass 	r
= 	x
ux+ 	y
uy and the transverse
beam spot sizes wx�z� and wy�z� defined by

	r
 =� drr���r,z��2, �5�

wx�z� = �	x2
 − 	x
2, �6�

wy�z� = �	y2
 − 	y
2, �7�

where

	x2
�z� =� drx2���r,z��2, 	y2
�z� =� dry2���r,z��2.

�8�

Note that the above definitions hold for both continuous and
discrete diffraction models. In the latter case, assuming
��r ,z� to be a piecewise constant function in each cell of the
lattice and taking �a�b�=1 for the area of the unit cell, the
integral over r may be replaced by a double sum over the
cell indices n and m; i.e., in the discrete model one has
�dr→�m,n.

The evolution equations for r and wx,y can be readily ob-
tained in a closed form by writing a set of Eherenfest equa-
tions for the expectation values of r, x2, and y2, and of com-
mutator operators that arise in the calculation. The
expectation value 	A
��dr���r ,z�A�r ,p���r ,z� of any op-
erator A�r ,p� �not necessarily self-adjoint� evolves according
to

d	A

dz

= − i	�A,H0�
 �9�

and the commutation relations

�r, f�p�� = i�pf , �g�r�,p� = i�rg �10�

hold for any functions f�p� and g�r�. For A=r, one obtains

d	r

dz

= 	�pH0
,
d	�pH0


dz
= 0, �11�

i.e.,

	r
�z� = 	r
�0� + 	�pH0
z , �12�

which is the evolution equation of the beam center of mass.
Note that the path followed by any beam is always straight,
regardless of the specific form of H0 or initial field distribu-
tion which just determines the transverse drift velocity
	�pH0
 of the beam. To determine the evolution equation of
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the beam spot size wx, let us assume A=x2, so that the fol-
lowing cascade of Eherenfest equations �Eq. �9�� is obtained:

d	x2

dz

= x
�H0

�px
+

�H0

�px
x� , �13�

d

dz
x

�H0

�px
+

�H0

�px
x� = 2� �H0

�px
�2� , �14�

d

dz
� �H0

�px
�2� = 0. �15�

After integration, one obtains

	x2
�z� = 	x2
�0� + x
�H0

�px
+

�H0

�px
x�z + � �H0

�px
�2�z2,

�16�

where the expectation values on the right-hand side of Eq.
�16� are calculated at z=0, i.e., for the initial beam distribu-
tion. From Eqs. �6�, �12�, and �16� the following evolution
equation for the beam spot size wx is then obtained:

wx
2�z� = wx

2�0� + �xz + �x
2z2, �17�

where we have set

�x = �x − 	x
�
�H0

�px
+

�H0

�px
�x − 	x
�� , �18�

�x
2 = � �H0

�px
�2� − � �H0

�px
��2

. �19�

The expectation values are calculated at z=0. A similar ex-
pression for wy�z� can be obtained by replacing x with y in
Eqs. �17�–�19�. A major result expressed by Eq. �17� is that,
regardless of the particular form of H0, wx�z� �and similarly
wy�z�� asymptotically grows with z linearly, with a diffrac-
tion length given by �1 /�x. Therefore—and this one of the
major results of this section—the broadening law of a spatial
beam due to diffraction does not differ for discrete or con-
tinuous diffraction. In addition, for a beam carrying a finite
power and admitting finite moments 	x2
 and 	y2
, the coef-
ficient �x

2 given by Eq. �19� is always strictly positive and
does not vanish. This can be generally proven by observing
that �x

2 is the variance of the operator ��H0 /�px�, which is
always positive and vanishes solely when the initial field
distribution ��x ,y ,0� is an eigenfunction of ��H0 /�px�, i.e.,
of px=−i�x. Since such eigenfunctions are delocalized plane
waves, it then follows that the variance of ��H0 /�px� is
strictly positive for any initial beam distribution carrying a
finite power, regardless of the specific form of H0.

C. Self-collimation regime

Beam self-collimation �also referred to as beam subdif-
fraction� is a well-known phenomenon occurring in homoge-
neous arrays and, more generally, in photonic crystal struc-
tures with engineered band structure H0�p� showing points
of local flatness �see, for instance, �20��. The simplest ex-

ample of subdiffraction is the “arrest” of beam spreading in a
one-dimensional tight-binding lattice with nearest-neighbor
couplings, which was observed in Ref. �4� using relatively
broad Gaussian beams at an incidence angle set in correspon-
dence of an inflection point of the band dispersion curve.
Though it is well understood that in such a regime diffraction
is canceled solely at low orders, it was perhaps overlooked
the fact that self-collimation does not modify the beam
broadening scaling law �Eq. �17��. In other words, self-
collimation will correspond to a reduction in the coefficient
�x

2 for special initial field distributions, but not to a change in
the scaling law describing beam broadening. If we consider,
for the sake of simplicity, a one-dimensional lattice and as-
sume that the spectrum F�k� of the exciting beam, defined as
F�k�=1 / �2���dx��x ,0�exp�−ikx�, is narrow at around its
mean k0, the value of �x

2, as given by Eq. �19�, can be ex-
panded in series of moments Il=�dk�k−k0�l�F�k��2 �l
=2,3 ,4 , . . .� as

�x
2 = b2

2I2 + b2b3I3 +
1

12
�4b2b4 + 3b3

2�I4 −
b3

2

4
I2

2 + ¯ ,

�20�

where bl is the value of the derivative ��lH0 /�kl� evaluated at
k=k0. As Il rapidly goes to zero as the order l increases, Eq.
�20� shows that at the points k0 of the dispersion curve where
b2 �and possibly b3 ,b4 , . . .� vanishes beam broadening is re-
duced. We will refer to such points, where the dispersion
curve H0�k� is locally flat, to as self-collimation points �note
that the condition H0��k0�=0 is not requested�.

As an example, let us consider the simplest one-
dimensional waveguide array in the nearest-neighbor ap-
proximation, considered in Ref. �4� to demonstrate self-
collimation effects. The Hamiltonian H0 has the form
H0=−2� cos�p�, and the self-collimation points are located
at p= �� /2. From Eq. �19� one obtains

�x
2 = 2�2�1 − Re��

n

cn
�cn+2�� + �2��

n

cn
��cn+1 − cn−1��2

.

�21�

For a bell-shaped �e.g., Gaussian-shaped� and flat beam in-
cident onto the array at a given tilting angle � �normalized to
the Bragg angle�, we may write cn= �cn�exp�−i��n�, and one
obtains

�x
2��� = 2�2�1 − 	1

2 + �	1
2 − 	2�cos�2���� , �22�

where 	1 and 	2 are defined by

	1 = �
n

�cncn+1�, 	2 = �
n

�cncn+2� . �23�

Generally, it turns out that 	1
2
	2, so that the minimum of

�x is attained at �= �1 /2, i.e., at the self-collimation points
as expected from Eq. �20�. Conversely, the maximal diffrac-
tion �maximum value of �x� is attained at normal incidence
��=0�. The ratio between the minimum and maximum val-
ues of �x, given by
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� =
�x�� = 1/2�
�x�� = 0�

=�1 + 	2 − 2	1
2

1 − 	2
, �24�

may get very small for a broad input beam. To illustrate this
point, let us consider as an example the following beam dis-
tribution at the input plane: �cn�=N��n�, where the parameter
� �0���1� determines the spot size of the input beam ��
→0 for single waveguide excitation, and �→1 for a plane-
wave excitation�, and N= ��1−�2� / �1+�2��1/2 is a normal-
ization factor. For such a field distribution, the values of
coefficients 	1 and 	2 can be evaluated in a closed form, and
read

	1 =
2�

1 + �2 , 	2 =
�2�3 − �2�

1 + �2 . �25�

The ratio � between the diffraction parameters at subdiffrac-
tive ��=1 /2� and normal-incidence ��=0� regimes takes
then the form �see Eq. �24�� �= ��1−�2� / �1+�2��1/2. Note
that for a very broad beam excitation ��→1�, both 	1 and 	2
get close to 1, �x tends to vanish �see Eq. �22��, and the
diffraction length �1 /�x diverges independently of beam
tilting angle �, as expected for a very broad input beam.
However, in this case the ratio of diffraction lengths in the
normal ��=0� and subdiffractive ��=1 /2� regimes, which
scales as ��, tends to vanish as ���1−��1/2. Conversely,
for a very narrow input beam ��→0�, both 	1 and 	2 vanish
and the diffraction length �1 /�x turns out to be independent
of tilting angle and given by �1 / ��2�� �see Eq. �22�� as
expected for single waveguide excitation.

D. Discrete far-field pattern and anomalous beam decay

In spite of the fact that the asymptotic law describing
beam broadening due to diffraction is the same for discrete
and continuous media, a deep difference is found when ana-
lyzing the decay behavior of the field intensity versus propa-
gation distance and the far-field diffraction patterns. For the
sake of simplicity, we will consider the diffraction problem
in one dimension, though the results may be generalized to
the two-dimensional diffraction problem. We then rewrite
Eq. �2� as

i�z��x,z� = H0�p���x,z� , �26�

where p= px=−i�x. For the usual paraxial one-dimensional
diffraction problem in a homogeneous continuous medium,
one has H0�p�= p2 /2, whereas for discrete diffraction
in a one-dimensional waveguide array one has H0�−p�
=H0�p� �−� p��� and H0��p�=0 at p=0 and at the band
edges p= ��. The most general solution to Eq. �26� can be
written as

��x,z� =� dkF�k�exp�ikx − iH0�k�z� , �27�

where the spectrum F�k� is determined by the beam distribu-
tion at the input plane ��x ,0�,

F�k� =
1

2�
� dx��x,0�exp�− ikx� �28�

��dx→�n, x→n, and ��x=n�→cn in the discrete diffraction
problem�. Our aim is to calculate the decay behavior of the
field amplitude ��x ,z� as the propagation distance z in-
creases, either at a constant x position �for instance, at x=0�
or along a line x=�z, where � is a constant parameter defin-
ing the “observation angle” of the diffracted pattern. Note
that, as the observation angle � is varied, the function
�0�� ;z�=��x=�z ,z� corresponds, for large values of z, to
the far-field diffraction pattern. We need thus to calculate the
asymptotic behavior of the integral

�0��;z� =� dkF�k�exp�izg�k�� �29�

for z→�, where we have set

g�k� = �k − H0�k� . �30�

For this purpose, we may use the methods of stationary
phase or steepest descent �see, for instance, �24��, which pre-
dict that the asymptotic behavior of �0�� ;z� as z→� de-
pends on the existence and of the order of stationary points
of the phase g�k� inside the integration domain.

Let us first consider the continuous diffraction problem,
H0�p�= p2 /2, and rederive the well-known result that the am-
plitude �0�� ;z� decays as �1�z for any observation angle �
and the far-field pattern is proportional to the Fourier spec-
trum of the input �near-field� distribution. In this case, g�k�
=�k−k2 /2 has a unique saddle point at k=k0=�, with
g��k0�=−1�0. Therefore, provided that the spectrum F�k�
has a nonvanishing component at k=k0 and F�k0� does not
diverge �25�, according to the method of steepest descent one
has

�0��;z� � F����2�

z
exp�iz�2/2 − i�/4� �31�

as z→�. From Eq. �31� we obtain the well-known result of
paraxial diffraction theory that the amplitude �0�� ;z� of the
beam decays as �1�z for any observation angle � �25�, and
that the far-field diffraction pattern is shaped as the Fourier
spectrum F��� of the near-field distribution. This scaling law
may be referred to as the normal scaling law, in the sense
that the beam intensity I� ���2 decays as �1 /z, whereas the
beam spot size wx increases asymptotically as �z �see Eq.
�17��, the product Iwx being constant according to the power
conservation law.

For the discrete diffraction problem, we prove now that
the decay law is generally slower than �1 /�z at the obser-
vation angles corresponding to self-collimation, and that the
far-field pattern is peaked at such angles and does not repro-
duce the spectrum F of the near-field distribution. To this
aim, let us observe that, according to the steepest-descent
method, the slowest decay term in the integral of Eq. �29�
comes from the saddle points g��k0�=0 of largest order. In
particular, if k0 is a saddle point of order n�2, i.e., g�k�
�g�k0�+ �g�n��k0� /n!��k−k0�n for k close to k0 �g�n��k0��0�,
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the contribution of the saddle point to the integral in Eq. �29�
for large values of z is given by �24�

�0��;z� �
F�k0�

�zg�n��k0��1/n �n!�1/n��1

n
�exp�izg�k0� � i

�

2n
� .

�32�

Therefore, the decay law for �0�� ;z� scales as �z−1/n, where
n is the highest order of the saddle points of g�k�, provided
that F�k0��0. In the case of diffraction in a homogeneous
continuous medium, the order of saddle point is always n
=2. To determine n for the discrete diffraction problem, let
us note that the dispersion curve H0�k� admits at least a
couple of inflection points, say at k= �k0, at which H0��k0�
=0. These points correspond to the self-collimation direc-
tions introduced in Sec. II C. Since g��k�=�−H0��k�, the in-
flection points k= �k0 turn out to be also saddle points when
the observation angle � is chosen equal to H0���k0�. There-
fore, for the discrete diffraction problem the largest order n
of saddle points is at least n=3, and the decay law of
�0�� ;z�, at the two observation angles �= �H0��k0� corre-
sponding to the self-collimation directions �k0, is slowed
down—as compared to continuous diffraction—to �at least�
�z−1/3. More generally, if the dispersion curve H0�k� of the
lattice is engineered to achieve a very flat behavior near a
self-collimation point k=k0, with g��k0�=g��k0�= ¯

=g�n−1��k0�=0 and g�n��k0��0 �n�3�, the decay law of
�0�� ;z� scales as �z−1/n at the observation angle �=H��k0�.
This scaling law of beam decaying in the discrete diffraction
problem is therefore anomalous, in the sense that along the
self-collimation directions the intensity decays slower that
1 /z, i.e., of the characteristic decay law that one might ex-
pect from power conservation arguments. This seemingly
paradoxical circumstance may be solved by observing that
for an observation angle � different from any of the self-
collimation directions, the decay of �0�� ;z� may be either
normal �i.e., �1 /�z� or even faster. More precisely, for a
fixed value of � in modulus larger than �max=maxk�H0��k��,
the function g�k� given by Eq. �30� does not have saddle
points on the real axis, and �0�� ;z� decays as �1 /z. Con-
versely, for �����max the equation g��k�=�−H0��k�=0 ad-
mits at least one solution, with g��k��0 for a second-order
saddle point. In this case, according to the method of station-
ary phase the asymptotic behavior of �0�� ;z� for large val-
ues of z follows the normal law �1 /�z. To summarize,
�0�� ;z� scales as �F�k0�z−1/n at a self-collimation direction
�, where H0��k0�=� and k0 is a saddle point of order n�3; as
�F�k0�z−1 for an observation angle � outside the “diffraction
cone” ���
�max; and as �F�k0�z−1/2 inside the diffraction
cone region �����max but far from a self-collimation direc-
tion. The far-field pattern of discrete diffraction tends there-
fore to confine light inside the diffraction cone ����max
with asymptotic peaks at the propagation directions corre-
sponding to the angles of self-collimation.

This very general behavior may be illustrated more in
detail for the case of a tight-binding lattice in the nearest-
neighbor approximation considered in Sec. II C, for which
H0�k�=−2� cos k. In this lattice model one has g��k�=�
−2� sin k and g��k�=−2� cos k, so that the angle of diffrac-

tion cone is given by �max=2�. Two saddle points of second
order are found at k=k0= �� /2 for the observation angles
�= ��max, i.e., at the edge of the diffraction cone, at which
the far-field discrete diffraction pattern is thus expected to
show two peaks. For an observation angle � strictly inside
the diffraction cone �����2��, the equation g��k�=0 has two
solutions which are saddle points of first order since g��k�
�0. The main contribution to the integral on the right-hand
side of Eq. �29� comes from these two saddle points, and can
be calculated by the method of stationary phase, yielding
explicitly

���;z� �� i�

z��2 − ��/2�2
�− iF�k0�exp�i�k0z

+ 2i�z cos k0� + F�� − k0�exp�i�z�� − k0�

− 2i�z cos k0��, � 
 0,

���;z� �� i�

z��2 − ��/2�2
�− iF�− k0�exp�− i�k0z

+ 2i�z cos k0� + F�− � + k0�exp�i�z�− � + k0�

− 2i�z cos k0��, � � 0, �33�

where k0 is the solution to the equation sin k0= �� /2�� in the
interval 0k0�� /2. It should be noted that the far-field
discrete diffraction pattern given by Eq. �33� holds for ���
�2�. As ��� approaches 2� from below, the two saddle
points of second order coalesce into a single saddle point of
third order. This explains the divergence of Eq. �33� as ���
→2�, i.e., at the self-collimation directions, where the decay
is slower and scales as �z−1/3. For ���
2�, i.e., outside the
diffraction cone, there are no saddle points on the real axis
and the decay is faster and scales as �1 /z. An example of
far-field discrete diffraction for a beam with a Gaussian spec-
trum F�k��exp�−�k /wk�2� �−�k��� is shown in Fig. 1.
In Fig. 1�a� the intensity distribution ���x ,z��2, as obtained by
accurate numerical computation of the integral entering in
Eq. �27�, is plotted for a few propagation distances z. For the
sake of readability, at each propagation distance z the field
intensity has been normalized to its peak value. The diffrac-
tion cone and the emergence of two intensity peaks at the
self-collimation directions �= ��max are clearly visible just
after a propagation distance z of �10–20 times the coupling
length 1 /� �Fig. 1�a��. Inside the diffraction cone, the inten-
sity distribution at such propagation distances is very well
fitted by the analytical far-field distribution given by Eq.
�33�, as shown in Fig. 1�b�. At much longer propagation
distances, the self-collimation peaks become dominant, and
the appearance of three different scaling laws of beam decay
�fast decay outside the diffraction cone �x�
2�z; normal de-
cay inside the diffraction cone �x��2�z; and slower decay at
the self-collimation directions x= �2�z� is very clearly vis-
ible, as shown in Fig. 1�c�.

III. BEAM PROPAGATION IN CURVED WAVEGUIDE
ARRAYS

Discrete diffraction of light waves in linear optical wave-
guide arrays can be controlled by introducing transverse in-
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dex gradients or local phase slips, which may produce a kind
of refocusing or reimaging of beam distributions along the
propagation distances �see, for instance, �3,9,12,13,26��,
similar to what happens to light propagating in continuous
lensguide media. In particular, waveguide arrays with a
curved axis provide a particularly interesting setup for man-
aging discrete diffraction for both monochromatic and poly-
chromatic light �9,12–15�. It is therefore of major interest to
have general laws describing the global behavior of beam
propagation in curved waveguide arrays. In addition, it is
well known that for the problem of paraxial diffraction in
homogeneous continuous media or, more generally, of
paraxial propagation in elementary optical systems and lens-
guides, one can introduce special families of field distribu-
tions �such as the Gaussian beams� that propagate maintain-
ing unchanged their functional shape �shape-invariant
beams�, and that field propagation may be simply described
by means of algebraic equations ruling out the evolution of

some complex-valued beam parameters �such as the
complex-q parameter for Gaussian beams; see, for instance,
�27��. A natural question is whether one can similarly intro-
duce shape-invariant discrete beams, i.e., field distributions
that do not change their functional shape when propagating
along curved waveguide arrays. As the problem of discrete
diffraction in waveguide arrays with curved axis or trans-
versely imposed index gradients is analogous to the problem
of one-dimensional or two-dimensional Bloch oscillations of
electrons in periodic potentials with an applied electric field
or of cold atoms in optical lattices, some results are already
available in the literature. In particular, in recent works
�28–30� an algebraic approach has been developed, capable
of providing rather general results for wave-packet center-of-
mass evolution and wave-packet spreading in certain lattice
models. In this approach, after the introduction of a dynami-
cal Lie algebra, an explicit form of the evolution operator is
first derived, and then the expectation values of operators are
calculated in the Heisenberg picture. However, the question
of existence of shape-invariant discrete beams and of their
propagation in curved waveguide arrays does not seem to
have been addressed yet. In this section, we present a gener-
alization of Eqs. �12� and �17� describing the evolution of
beam center of mass and beam width in curved waveguide
arrays using the method of moments. Though similar results
were previously published in Refs. �28–30� using an alge-
braic operator approach, they are here rederived for the sake
of completeness using the method of moments, which does
not require the explicit calculation of the evolution operator
and the formulation of the problem in terms of a Lie algebra.
In Sec. IV a family of shape-invariant discrete beams will be
introduced, proving that their propagation in a generally
curved waveguide array is simply described by the evolution
of a complex-q beam parameter, which plays an analogous
role of, e.g., the complex-q parameter of Gaussian beams
propagating in paraxial continuous optical systems.

Let us consider monochromatic light propagation in a
two-dimensional waveguide array with a curved axis de-
scribed by the parametric equations x=x0�z� and y=y0�z�.
The coupled-mode equations describing light transfer among
coupled waveguides in the single-band and tight-binding ap-
proximations are an extension of Eq. �1� including fictitious
transverse index gradients induced by waveguide curvature
and read explicitly

iċn,m = − �
l,r

�n−l,m−rcl,r − E�z� · rn,m, �34�

where E�t�=Ex�t�ux+Ey�t�uy, Ex�z�=−�ns /��ẍ0�z�, Ey�z�
=−�ns /��ÿ0�z�, ns is the refractive index of the waveguide
substrate, and �=� / �2�� is the reduced wavelength of light.
It should be noticed that the transverse index gradient enter-
ing in Eq. �34� may be also realized by applying a thermal
gradient, or may describe lumped phase gradients �26� or an
abrupt tilt of waveguide axis direction �3�, cases in which
E�z� shows a deltalike behavior. After introduction of a con-
tinuous function ��r ,z� such that ��rn,m ,z�=cn,m�z�, one can
readily check that discrete diffraction equations �34� are
equivalent to the continuous Hamiltonian problem
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FIG. 1. �Color online� Beam propagation in a one-dimensional
tight-binding lattice with nearest-neighbor coupling terms, showing
far-field properties of discrete diffraction. In �a� the intensity distri-
butions ���x ,z��2 are plotted, in arbitrary units, for propagation dis-
tances z=0, z=5 /�, z=10 /�, z=15 /�, z=20 /�, and z=25 /�,
where � is the coupling rate between adjacent waveguides. The
inset of �a� shows the Gaussian spectrum F�k� of the beam �wk

=1.5�. In �c� the intensity distribution ���x ,z��2 is depicted for a
propagation distance z=20 /� as numerically calculated by Eq. �27�
�solid curve� and by approximate relation �33� �dotted curve, almost
overlapping with the solid one�. In �c� the beam intensity is plotted
at a propagation distance z=500 /�, clearly showing the dominance
of two peaks at the diffraction cone edges �self-collimation direc-
tions� and the onset of three different decay laws at ���
2�, �
= �2�, and ����2�.
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i�z��r,z� = H�r,p���r,z� , �35�

where p=−i�r, with Hamiltonian

H = H0�p� − E�z� · r , �36�

where H0 is the Hamiltonian of the homogeneous array de-
fined by Eq. �3�. The laws governing the evolution of beam
center of mass and beam variance can be obtained by extend-
ing the method of moments described in Sec. II B for the free
diffraction problem. In general, the cascade of equations that
one obtains by applying Eherenfest equation �9� to 	r
, 	x2
,
and 	y2
—and to the commutators found throughout the
calculations—turns out to be unlimited for a general form of
H0, and a closed set of equations are found solely for special
forms of H0. Such a special circumstance is encountered in
case of a one-dimensional waveguide array in the nearest-
neighbor approximation, and in case of a rectangular-lattice
waveguide array neglecting diagonal interactions. The first
model corresponds to the Hamiltonian

H�x,p� = − 2� cos p − Ex�z�x , �37�

where � is the coupling rate between adjacent waveguides,
and p= px=−i�x. The second model, which has been, for in-
stance, considered in the experiment of Ref. �31�, is de-
scribed by the Hamiltonian

H�r,p� = − 2�x cos�px� − 2�y cos�py� − Ex�t�x − Ey�z�y ,

�38�

where �x ��y� is the coupling rate between adjacent horizon-
tal �vertical� waveguides of the lattice �32�.

A. One-dimensional array

Application of the moment method to one-dimensional
Hamiltonian model �37� yields a set of closed coupled equa-
tions for the expectation values of operators x and �, and of
x2, �, and �, where

� = exp�ip� , �39�

� =
1

2
�1 − exp�− 2ip�� , �40�

� = i�x exp�− ip� + exp�− ip�x� . �41�

Successive applications of Eherenfest equation �9� yield for
	x
 and 	�
 the equations

d	x

dz

= 2� Im�	�
� , �42�

d	�

dz

= iEx�z�	�
 , �43�

and the following coupled equations for 	x2
, 	�
, and 	�
:

d	x2

dz

= 2� Re�	�
� , �44�

d	�

dz

= − 2iEx�z�	�
 + iEx�z� , �45�

d	�

dz

= 4�	�
 − iEx�z�	�
 . �46�

Equation �43� can be readily integrated, yielding the follow-
ing evolution equation for the beam center of mass:

	x�z�
 = 	x�0�
 + 2 Im�q0���z�� , �47�

where we have set

��z� � �
0

z

d�� exp�− i����� , �48�

��z� � �
0

z

d�Ex��� , �49�

q0 � �
n

cn
��0�cn+1�0� . �50�

Similarly, integration of Eqs. �45� and �46� yields

	��z�
 = exp�− 2i��z���	��0�
 +
1

2
exp�2i��z�� −

1

2
� ,

�51�

	��z�
 = exp�− i��z���	��0�
 + 4��z��	��0�
 −
1

2
�

+ 2���z�� . �52�

Taking into account that � exp�−i��z��=d� /dz and that
2 Re��0

zd�������d� /d���= ���z��2, substitution of Eq. �52�
into Eq. �44� yields

	x2�z�
 = 	x2�0�
 + 2���z��2 + 2 Re�q1��z� − q2�2�z�� ,

�53�

where we have set

q1 � i�
n

�2n − 1�cn
��0�cn−1�0� , �54�

q2 � �
n

cn
��0�cn−2�0� . �55�

The beam size wx is then given by

wx�z� = �	x2�z�
 − 	x�z�
2. �56�

For a given field distribution cn�0� at the input plane, the
evolutions of the beam center of mass 	x�z�
 and beam size
wx�z� are thus ruled by Eqs. �47�, �53�, and �56�. Note that
beam evolution depends on the input beam parameters q1, q2,
and q3—defined by Eqs. �50�, �54�, and �55�—and by the
complex amplitude ��z�, defined by Eqs. �48� and �49� and
accounting for bending of waveguide axis. Note also that for
straight arrays ��z�=�z, and one thus retrieves the results of
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discrete diffraction derived in Sec. II B, in particular the lin-
ear asymptotic increase in wx with z. The condition for dif-
fraction suppression, i.e., a nonsecular growth of wx�z� with
z, is that ��z� remain a limited function of z as z increases.
This condition is always satisfied for a constant value of Ex,
which corresponds to circularly curved waveguides and to
the onset of the optical analog of Bloch oscillations �9�.
Similarly, for periodic axis bending with spatial period �,
Ex�z� is a periodic function of z, and the condition of bound-
ness of ��z� is given by

�
0

�

d� exp�− i����� = 0, �57�

which is precisely the condition of “dynamic localization”
previously investigated in Refs. �12,13�.

B. Two-dimensional array

For two-dimensional waveguide array model �38�, the
moment equations turn out to decouple into two set of equa-
tions, similar to Eqs. �42�–�46�, separately acting onto the x
and y directions. The evolution equations for the beam center
of mass 	x
 , 	y
 are then given by

	x�z�
 = 	x�0�
 + 2 Im�q0x�x
��z�� , �58�

	y�z�
 = 	y�0�
 + 2 Im�q0y�y
��z�� , �59�

where we have set

�x,y�z� = �
0

z

d��x,y exp�− i�x,y���� , �60�

�x,y�z� = �
0

z

d�Ex,y��� , �61�

and

q0x = �
n,m

cn,m
� �0�cn+1,m�0� , �62�

q0y = �
n,m

cn,m
� �0�cn,m+1�0� . �63�

Similarly, the beam sizes wx and wy, defined as

wx�z� = �	x2�z�
 − 	x�z�
2, �64�

wy�z� = �	y2�z�
 − 	y�z�
2, �65�

are calculated using Eqs. �58� and �59� and the following
evolution equations for 	x2�z�
 and 	y2�z�
:

	x2�z�
 = 	x2�0�
 + 2��x�2 + 2 Re�q1x�x − q2x�x
2� , �66�

	y2�z�
 = 	y2�0�
 + 2��y�2 + 2 Re�q1y�y − q2y�y
2� , �67�

where we have set

q1x = i�
n,m

�2n − 1�cn,m
� �0�cn−1,m�0� , �68�

q2x = �
n,m

cn,m
� �0�cn−2,m�0� , �69�

q1y = i�
n,m

�2m − 1�cn,m
� �0�cn,m−1�0� , �70�

q2y = �
n,m

cn,m
� �0�cn,m−2�0� . �71�

IV. SHAPE-INVARIANT DISCRETE BEAMS

The existence of shape-invariant beams, i.e., families of
field distributions that propagate without changing their
functional shape, is well known for paraxial propagation in
Gaussian optics or in continuous lensguide media �see, for
instance, �27��. Here we address the related problem of in-
vestigating the existence of shape-invariant discrete beams,
i.e., field distributions that do not change their functional
shape when propagating along waveguide arrays with arbi-
trarily curved optical axis. This is a rather challenging prob-
lem because no general method capable of constructing
shape-invariant beams seems to be available. However, for
the simple waveguide array models considered in Sec. III, a
family of shape-invariant discrete beams can be introduced
in a simple manner. Owing to their functional form, such
beams are referred to as discrete Bessel beams.

A. Discrete Bessel beams in one-dimensional arrays

Let us consider a one-dimensional waveguide array with
an arbitrarily curved optical axis. In the tight-binding and
nearest-neighbor coupling approximations, light propagation
is described by the following set of coupled-mode equations:

iċn = − ��cn+1 + cn−1� − nf�z�cn, �72�

where f�z� describes the rate of transverse index gradient
induced by waveguide bending �13�, lumped waveguide tilt-
ing �3�, or locally imposed phase changes among adjacent
waveguides �26� as discussed previously. Let us first observe
that if cn�z� is a solution to Eq. �72� corresponding to a given
initial field distribution cn�0�, then for an arbitrary integer n0

gn�z� = cn−n0
�z�exp�in0�

0

z

d�f���� �73�

is the solution to Eq. �72� corresponding to the translated
initial field distribution gn�0�=cn−n0

�0�. Therefore, apart from
an unimportant phase change, shape-invariant beams remain
invariant for an arbitrary transverse translation on the lattice.

Let us tentatively search for a solution to Eq. �72� of the
form

cn�z� = Jn���exp�− i�n� , �74�

where Jn is the Bessel function of first kind of order n, and
�=��z� and �=��z� are unknown functions which depend
on propagation distance z, but not on lattice site n. Note that,
as �nn�Jn����2=0 and ��n�Jn����2n2�=�2 /2, the parameter �
is related to the beam size wx �Eq. �6�� by the simple relation
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wx=� /�2, whereas � defines a transverse tilt of the beam
“phase front.” Substitution of Eq. �74� into Eq. �72� and tak-
ing into account the identities of Bessel functions Jn+1���
+Jn−1���= �2n /��Jn��� and Jn−1���−Jn+1���=2Jn����, one
obtains that Eq. �74� is indeed a solution to Eq. �72� provided
that � and � satisfy the coupled equations

�̇ = − 2� sin � , �75�

�̇ = −
2�

�
cos � − f . �76�

Owing to the functional form of cn, we will refer such shape-
invariant beams to as discrete Bessel beams. Let us define a
complex-q parameter for discrete Bessel beam �74� accord-
ing to

q�z� = ��z�exp�i��z�� , �77�

so that the modulus of the complex-q parameter gives the
beam spot size at propagation distance z, whereas its phase
corresponds to the phase front gradient. From Eqs. �75� and
�76� one readily obtains for the complex-q parameter the
following simple evolution equation:

dq

dz
= − 2i� − if�z�q . �78�

The general solution to Eq. �78�, for a given initial value q�0�
at the z=0 input plane, is given by

q�z� = exp�− i��z���q�0� − 2i�
0

z

d�� exp�i������ ,

�79�

where

��z� = �
0

z

d�f��� . �80�

The propagation of a discrete Bessel beam along a curved
waveguide array is thus reduced to the propagation of its
complex-q parameter, which plays an analogous role of the
complex-q parameter for Gaussian beams in lensguide me-
dia. The propagation law of the q parameter admits a simple
geometrical interpretation in the complex-q plane. According
to Eq. �78�, for an infinitesimal propagation distance �z the
change in q�z� is given by the superposition of the two paths
AB and BC shown in Fig. 2�a�. Path AB, of length 2�z�,
accounts for discrete diffraction and corresponds to a change
in q�z� along the imaginary q axis. Path BC is due to the
transverse index gradient which produces a clockwise rota-
tion by the angle ��= f�z��z around origin O of the complex
plane. It is interesting to note that, since Jn�0�=�n,0, for
q�0�=0 the discrete Bessel beam �Eq. �74�� reduces to the
well-known impulse response of a tight-binding array with
nearest-neighbor couplings �see, for instance, �33��.

To appreciate the usefulness of the q-parameter descrip-
tion and some properties of discrete Bessel beams, let us now
discuss a few examples and applications.

Propagation of discrete Bessel beams in homogeneous ar-

rays. For a homogeneous array �f =0�, the propagation law of
the complex-q parameter is simply given by

q�z� = q�0� − 2i�z . �81�

If we assume, for the sake of definiteness, that at the input
plane z=0 the phase front of the beam is flat, i.e., q�0�
=��0�=�0 is real valued, the following propagation laws for
beam size � and beam phase tilt � are derived:

��z� = �0�1 + �2�z

�0
�2

, �82�

��z� = − arctan�2�z

�0
� . �83�

From Eq. �82� we may introduce, as for Gaussian beams
propagating in free space �27�, the Rayleigh range zR and
divergence angle �d such that ��zR�=�2�0 and �d
=limz→� ��z� /z, i.e.,

zR =
�0

2�
, �84�

�d = 2� . �85�

It should be noted that, as opposed to the case of Gaussian
beams in free space—for which the Rayleigh range zR is
proportional to the square of the spot size �0 at the beam
waist and the diffraction angle �d is inversely proportional to
�0—for discrete Bessel beams the Rayleigh range zR is pro-
portional to the spot size �0 at the beam waist, whereas the
divergence angle is independent of the beam spot size and
always equal to the diffraction cone angle introduced in Sec.
II D. This peculiar property is closely related to the very
general result, proven in Sec. II D, that the far field of dis-
crete diffraction in a homogenous waveguide array is peaked
at the observation angles corresponding to the flattest points
�self-collimation points� of the band dispersion curve.

Transformation of a discrete Bessel beam through a wave-
guide axis tilt. A tilt of the waveguide axis at z=z0 by a
�small� angle � corresponds to impressing a phase shift

(a)

Re( )q

Im
(

)
q

O

A

B

C��
q z+ z( )�

q z( )

Re( )q

Im
(

)
q

O

(b)

FIG. 2. �a� Geometric construction of the evolution of the
complex-q parameter for an infinitesimal propagation distance �z.
The length of segment AB is 2��z, whereas the rotation angle is
��= f�z��z. Points A and C correspond to q�z� and q�z+�z�, respec-
tively. �b� Geometric representation of a self-imaging array: the
path followed by the complex parameter q�z�, starting from origin
O, is closed.
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� =
2�

�
a�ns �86�

between adjacent waveguides, where a is the waveguide
spacing and ns is the effective index of propagating modes
�see Fig. 3�a��. Light propagation across the tilt can be thus
modeled by assuming f�z�=���z−z0� in Eq. �72�, and its
effect on the complex-q parameter is to produce a rotation
around the origin of the complex plane by an angle � �see the
inset of Fig. 3�a��.

A tilt of the waveguide axis may be used to “collimate” a
discrete beam, as schematically shown in Fig. 3�b�. Here a
single waveguide is initially excited at the input plane, and
after a propagation distance d the axis of the array is tilted by
an angle �=� / �4ans� such that �=� /2. The 90° rotation of
the q parameter in the complex plane due to axis bending
�see the inset of Fig. 3�b�� brings the q parameter on the real
axis, with a zero phase gradient �=0 and an enlarged beam
size �=2�d. The axis tilt thus plays a similar role of a col-
limating lens for a diverging Gaussian beam. Note however
that, contrary to a conventional lens, the tilting angle � for
achieving beam collimation is independent of the distance d
between source point �at z=0� and the lens plane �z=d�.
Figure 4 shows an example of beam collimation in a 6-cm-
long one-dimensional array as obtained by numerical analy-
sis of the scalar wave equation for the electric field envelope
E�x ,z� propagating in the structure based on a standard beam
propagation method. Figure 4�a� shows a pseudocolor map
of the intensity beam evolution �E�x ,z��2 along the structure
when a single waveguide is excited in its fundamental mode
at the input plane z=0 and the waveguide axis is tilted at a
distance d=2 cm from the input plane �horizontal dotted
curve in Fig. 4�a��. The refractive index profile n�x� used in
the simulations is depicted in Fig. 4�b�, and the values of
other parameters are �=1.55 �m, ns=1.52, and a=11 �m,
corresponding to a tilting angle �=� / �4ans��23.2 mrad.
For the sake of readability, the intensity distribution is plot-
ted with the waveguide axis z unfolded along a straight line.
Note that the numerical results provide a realistic behavior of
beam propagation beyond the coupled-mode equation ap-
proximation, accounting for radiation losses and coupling to
higher-order bands due to axis bending. These latter effects,
however, are very small for the parameter values adopted in

the simulations, and the coupled-mode equation model
works fine.

Geometric interpretation of the self-imaging condition
and polygonal Bloch oscillations. An array of length d shows
a self-imaging property �also referred to as diffraction
cancellation or dynamic localization� whenever �cn�d��2
= �cn�0��2 for any initial field distribution. The dynamic local-
ization condition has a rather simple geometric interpretation
in the complex-q plane. In fact, if the array is excited in
waveguide n=0, q�0�=0 and to achieve self-imaging after a
propagation distance d one necessarily has to have q�d�
=q�0�=0, i.e., the path described by the complex-q param-
eter, starting from origin O of the complex plane, should be
closed �see Fig. 2�b��. Owing to the translational invariance
of discrete Bessel beams �Eq. �73��, this condition is also
sufficient. From Eq. �79�, the closed-path condition q�d�
=q�0�=0 yields

�
0

d

dz exp�i��z�� = 0, �87�

which is precisely the condition for dynamic localization de-
rived originally by Dunlap and Kenkre in Ref. �33�.

An application of the geometric condition of dynamic lo-
calization is that of polygonal Bloch oscillations. Let us con-
sider a waveguide array whose axis forms an �open� polygo-
nal curve of large �mean� radius R made of a sequence of
straight segments of same length b and with tilt angle �, as
shown in Fig. 5�a�. The function ��z�, defined by Eq. �80�, is
thus a staircase function, which increases in steps of �
= �2� /��a�ns �see Eq. �86�� at z=b ,2b ,3b , . . . �the coordi-
nate z is measured along the polygonal curve�. After a propa-
gation d= �N+1�b from the input z=0 plane, where N is an
integer number, it then follows that

�
0

d

dz exp�i��z�� = b�
n=0

N

exp�i�n� . �88�

The sum of complex numbers �phasors� on the right-hand
side of Eq. �88� can be obtained analytically and has a well-
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FIG. 3. �Color online� �a� Schematic of a one-dimensional
waveguide array with a tilt of waveguide axis at z=z0, and the
transformation induced on the complex-q parameter by the tilt �in-
set�. �b� Principle of beam collimation via waveguide axis tilt �tilt
angle �=� / �4ans��, and path followed by the complex-q parameter
for single waveguide input excitation from z=0 to z=d+ �inset�.
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FIG. 4. �Color online� �a� Pseudocolor map of beam intensity
propagation in a waveguide array with one axis tilting as obtained
by numerical simulations, showing beam collimation. �b� Refractive
index profile of the waveguide array used in the numerical simula-
tions. The values of other parameters are given in the text.
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known geometric interpretation. In particular, if � satisfies
the condition �=2� / �N+1�, i.e., if the tilt angle � is given
by

� =
�

ans�N + 1�
, �89�

the sum on the right-hand side of Eq. �88� vanishes, and the
condition for self-imaging is attained. An example of the
self-imaging property of a polygonal waveguide array is
shown in Fig. 5�b� for the case N=5. The figure depicts a
characteristic breathing mode corresponding to a single
waveguide excitation at the input plane. The waveguide ar-
ray parameters are the same as in Fig. 4, and a sequence of
axis tilts are placed at distances b=1 cm one to the next. The
tilt angle �, chosen according to Eq. �89�, is ��15.5 mrad,
yielding a self-imaging plane at d= �N+1�b=6 cm, as
clearly shown in Fig. 5�b�. Note that in the limit b→0, N
→�, and b /�→R finite, the polygonal of Fig. 5�a� approxi-
mates an arc of a circumference of radius R, and condition
�89� for self-imaging is satisfied for a propagation distance

d = �N + 1�b →
�R

nsa
, �90�

which is the spatial period of Bloch oscillations on a curved
waveguide array �radius of curvature R� previously consid-

ered in Refs. �9,10�. The usual Bloch oscillations on a curved
waveguide array may be therefore viewed as a limiting case
of Bloch oscillations on a polygonal array.

B. Discrete Bessel beams in two-dimensional arrays

A simple extension of the analysis of Sec. IV A can be
done for a two-dimensional rectangular-lattice waveguide ar-
ray with nearest-neighbor coupling when the diagonal cou-
pling is neglected. This model is described by the coupled-
mode equation

iċn,m = − �x�cn+1,m + cn−1,m� − �y�cn,m+1 + cn,m−1� − fx�z�ncn,m

− fy�z�mcn,m, �91�

where fx,y�z� describe the rates of transverse index gradients
induced by waveguide bending or lumped waveguide axis
tilting along the x and y directions. Since Eq. �91� admits
separable solutions cn,m�z�=cn�z�cm�z�, with cn�z� and cm�z�
as solutions to one-dimensional problem �72� with �=�x,y
and f�z�= fx,y�z�, a two-dimensional discrete Bessel beam has
the form

cn,m�z� = Jn��x�Jm��y�exp�− i�xn − �ym� . �92�

The complex-q parameters of the beam along the x and y
directions are defined by

qx�z� = �x�z�exp�i�x�z��, qy�z� = �y�z�exp�i�y�z�� ,

�93�

and their evolution is ruled out by the equation

q̇x,y = − 2i�x,y − ifx,y�z� , �94�

which has a similar geometric interpretation as that discussed
in Sec. IV A. The propagation properties of two-dimensional
discrete Bessel beams in homogeneous arrays, across tilted
axis regions or polygonal curves, are the same as those in-
vestigated for one-dimensional beams, and are therefore not
further discussed here.

V. CONCLUSIONS

In this paper, a comprehensive study of discrete diffrac-
tion and linear propagation of light in homogeneous and
curved waveguide arrays has been presented. In particular,
general laws describing beam spreading, beam decay, and
discrete far-field patterns in homogeneous arrays have been
derived using the method of moments and the steepest-
descent method, and some remarks on the well-known self-
collimation regime have been pointed out. In curved arrays
and within the nearest-neighbor coupling approximation, the
method of moments has been extended to describe the evo-
lution of global beam parameters. This method provides an
alternative means to algebraic operator techniques recently
proposed in other physical contexts to study general proper-
ties of Bloch oscillations �28–30�. Finally, a family of shape-
invariant discrete beams—referred to as discrete Bessel
beams owing to their functional form—has been introduced.
It has been shown that propagation of such beams in curved
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FIG. 5. �Color online� �a� Schematic of a polygonal waveguide
array for the observation of Bloch oscillations. �b� Pseudocolor im-
age of beam intensity propagation in a 8-cm-long polygonal array
showing a Bloch oscillation breathing mode. The refractive index
profile of the waveguide array used in the numerical simulations is
the same as in Fig. 4�b�. The values of other parameters are given in
the text.
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waveguide arrays is simply described by the evolution of a
complex-q parameter, which plays a similar role to the
complex-q parameter used for Gaussian beams in continuous
lensguide media. A few applications of the q parameter for-

malism are discussed, including beam collimation via wave-
guide axis tilting, a geometric interpretation of the self-
imaging effect in waveguide arrays, and optical Bloch
oscillations on a polygonal array.
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