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We study the properties of the Fraunhofer diffraction patterns produced by Gaussian beams crossing spiral
phase plates. We show, both analytically and numerically, that off-axis displacements of the input beam
produce asymmetric diffraction patterns. The intensity profile along the direction of maximum asymmetry
shows two different peaks. We find that the intensity ratio between these two peaks decreases exponentially
with the off-axis displacement of the incident beam, the decay being steeper for higher strengths of the optical
singularity of the spiral phase plate. We analyze how this intensity ratio can be used to measure small
misalignments of the input beam with a very high precision.
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I. INTRODUCTION

Optical vortices �OVs� appear in light beams carrying
screw wave-front dislocations �vortex beams� �1�. The sur-
face of constant phase of a vortex beam has an helical struc-
ture and presents phase singularities endowed with topologi-
cal charge. Beams harboring OVs carry also a quantity of
orbital angular momentum �OAM� �2� associated to the pre-
cession of the Poynting vector around the vortex axis �3�.

OVs have attracted an increasing interest in applied phys-
ics �4–9� and also for astronomical applications �10–15�. In
fact, they can be easily produced in light beams with the help
of specific optical devices that have a central optical singu-
larity. Among these optical elements, the most efficient ones
are fork holograms �FHs� �16� and spiral phase plates �SPPs�
�17�. Laguerre-Gaussian �L-G� modes have been often used
to describe the beams produced with such devices. However,
a more precise description of the diffraction patterns pro-
duced by an SPP �18� or a FH �19,20� is provided by hyper-
geometric �Kummer� functions. We shall use this approach in
this paper.

Consider an input beam with an amplitude distribution
symmetric about the propagation axis. When such a beam
intersects an SPP or a FH perpendicularly and exactly on
axis, it produces a circularly symmetric beam with a central
dark region, where the field amplitude is zero. Any misalign-
ment with respect to the central discontinuity would then
produce an asymmetry of the observed intensity distribution
�21� and the topological charge of the correspondent off-axis
OV may have a noninteger value �22�. This changes also the
OAM originally carried by the beam �23�, thus producing an
OAM spectrum �24,25�.

The sensitivity of a vortex beam to displacements of the
input beam has been proposed as an indicator of nanometric
shifts in a speckle pattern �26� or to be used as a noninter-
ferometric method for the correction of small surface devia-
tions on spatial light modulators �27�. Similar results could
be obtained from the analysis of the mean-square value of

the resulting OAM spectrum �28�. We also proposed a
method to measure very small displacements based on the
degree of asymmetry of the intensity pattern of an off-axis
vortex beam �13,29�. However, detailed analytical studies of
the actual structure of off-axis OV produced with SPPs of
FHs were initiated only very recently �30�. In this paper, we
extend the analysis of the intensity distribution of an off-axis
vortex beam generated under Fraunhofer diffraction condi-
tions. We then derive a more convenient formalism of our
method for the detection of off-axis displacements, in view
of future applications with optical imaging devices.

II. FRAUNHOFER DIFFRACTION OF A GAUSSIAN BEAM
INTERSECTING A SPIRAL PHASE PLATE ON AXIS

In this section we revisit the problem of the Fraunhofer
diffraction of a monochromatic Gaussian beam intersecting
an SPP exactly on axis �31�. The geometrical configuration
adopted here is sketched in Fig. 1. The SPP is placed in the
�x ,y� plane and the central optical singularity coincides with
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FIG. 1. The geometrical configuration adopted to study the
Fraunhofer diffraction of a Gaussian beam beyond a spiral phase
plate �see text for details�.
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the origin of the �x ,y� coordinate system. To take advantage
of the circular symmetry of the geometry, in the following
we will use the circular coordinates �r ,�� defined by x
=r cos � and y=r sin �. Thus, the transmission function of
the SPP is a complex function of the azimuthal angle �,

T���� = ei��, �1�

where � represents the strength of the optical singularity. We
consider a Gaussian beam propagating along the z axis �that
is also its symmetry axis� perpendicular to the SPP plane.
This choice is important for practical applications, i.e., laser
beams or starlight beams affected by atmospheric turbulence.
We then assume that the field amplitude distribution in the
SPP plane is

AG�r� = ce−r2/w2
, �2�

where c is a complex factor, eventually dependent on the z
coordinate, and w is related to the beam width. The observa-
tion plane �x� ,y�� is located at a distance f →� beyond the
SPP or, better, at the focal plane of a lens placed just behind
the SPP �in this case, f would coincide with the focal length
of the lens�. The scalar field of the beam in the observation
plane can be obtained from the Fourier transform of the
product between the amplitude of the input beam and the
SPP transmission function,

u���,�� = const� � AG�r�T����e−ikr� cos��−��/frdrd� , �3�

where k=2� /� is the wave vector, � is the wavelength, and
�� ,�� are the circular coordinates in the observation plane.
To simplify the calculations, the SPP is considered as infi-
nitely extended in the �x ,y� plane. In addition, we use the
scaled radial coordinate r�=kr / f and introduce the quantities
w0= f / �kw� and c0, the latter containing all the multiplicative
constants. In this way, Eq. �3� becomes

u���,�� = c0�
0

2� �
0

�

e−w0
2r�2

ei��e−ir�� cos��−��r�dr�d� . �4�

The integral involving the angular coordinate � can be evalu-
ated by using the definition of the Bessel function of the first
kind Jn�z�. Thus, the integral involving the spatial coordinate
becomes a particular case of the Weber-Sonine formula �32�.
The final result of the integration can be expressed in terms
of the confluent hypergeometric function of the first kind.
However, a more useful expression of the amplitude distri-
bution of the output beam is obtained by using the modified
Bessel function of the first kind I	�z�. By introducing the
quantity 
=� / �2w0�, the final result is �19�

u���,�� = c0i−��3/2

2w0
2 ei��e−
2/2
�I��−1�/2�
2

2
� − I��+1�/2�
2

2
�	 .

�5�

The presence of the phase factor ei�� implies that the output
beam has an �-charged OV nested inside.

Beams of this kind, also known as “Kummer beams” �20�,
are different from the commonly used Laguerre-Gaussian
beams �33,34�. If �=0, the Bessel functions of half-integer

index in Eq. �5� can be expressed in terms of the hyperbolic
functions and combined together to give an exponential. In
this case, the amplitude distribution of the output beam is
still Gaussian, i.e., u0
e−
2

. If ��0, we can derive a useful
approximation for 
→0 by using the series expansion of
I	�z� �32�,

I	�z� = � z

2
�	

�
m=0

�
�z/2�2m

m ! ��	 + m + 1�
. �6�

We can recognize that, near the z axis, the amplitude of an
on-axis Kummer beam carrying an OV with topological
charge � could be represented by a superposition of ampli-
tudes of L-G modes with p=0,

u� 
 e−
2/2
�� 1

��� + 1

2
� −


2

22��� + 3

2
� +


4

24��� + 3

2
�

−

6

26��� + 5

2
� + O�
8� . �7�

The dominant term is represented by an L-G mode with in-
dex �, while higher order terms are L-G modes with indices
�+2m �m=1,2 , . . .�.

A. Properties of the intensity distribution

The intensity distribution of an on-axis Kummer beam is
axially symmetric around the z axis and is described by

I���,�� � �u���,���2

= c0
2 �3

4w0
4e−
2


2�I��−1�/2�
2

2
� − I��+1�/2�
2

2
�	2

.

�8�

As for L-G modes, the intensity pattern of a Kummer beam
has an annular shape, with a central dark region where the
intensity is zero. However, there are some fundamental dif-
ferences between the two analytical descriptions. For a Kum-
mer beam the behavior of the intensity at large distances
from the z axis is 

−4, while for an L-G mode it decreases
exponentially. Moreover, the radius of maximum intensity of
an L-G mode is �max
�� /2, where the intensity attains the
value I��max�
��e−� /�!, while for a Kummer beam �max is
found by numerically solving the transcendental equation,

�� + 2
2�I��+1�/2�
2

2
� + �� − 2
2�I��−1�/2�
2

2
� = 0. �9�

The calculation of the radii of maximum intensity obtained
for a set of values of the topological charge �=0,1 , . . . ,10
�see Fig. 2�a�� suggests that �max is linearly dependent on �,

�max

2w0
= �0.37 � 0.01� + �0.470 � 0.002�� . �10�

A similar result was found also for OVs produced by a plane
wave intersecting a finite circular phase mask �6�. Figure

ANZOLIN et al. PHYSICAL REVIEW A 79, 033845 �2009�

033845-2



2�b� shows the intensity calculated at �max for the same set of
topological charges.

B. Effects of off-axis displacements

When the input Gaussian beam is displaced off axis, so
that its symmetry axis does not coincide with the z axis of
Fig. 1, the intensity pattern produced in the observation plane
is modified. The misalignment of the input beam can be de-
composed into a translation in the �x ,y� plane and an incli-
nation angle  with respect to the z axis. However, if  is
small, the modifications induced in the intensity pattern of
the output beam are negligible �30�. For this reason, in our
calculations we will consider only lateral displacements of
the incident beam. Let us then assume that the Gaussian
beam intersects the SPP in the position �roff ,�off�, as shown
in Fig. 1. The field of the output beam resembles that of Eq.
�5� obtained under on-axis conditions,

u���,�� = c0i−��3/2

2w0
2 ei��e−w0

2roff�2
e−�2/8w0

2 �

2w0

��I��−1�/2� �2

8w0
2� − I��+1�/2� �2

8w0
2�	 . �11�

Here, roff� is the scaled radial coordinate obtained from roff,
while the quantities � and � are defined as �30�,

��2 = �2 + 4iw0
2roff� � cos�� − �off� − 4w0

4roff�2

tan � =
� sin � + 2iw0

2roff� sin �off

� cos � + 2iw0
2roff� cos �off

� . �12�

In this case, the additional exponential factor and the com-
plex value of �2 produces a phase singularity which is lo-
cated neither on the beam axis, nor in the origin of the
�x� ,y�� plane, but shifted in a position �� ,��= �2w0

2roff� ,�off
+� /2�. As a result, the intensity distribution of the output
beam becomes asymmetric �35�, showing two different peaks
along the direction of the vortex core in the �x� ,y�� plane.
Figure 3�a� shows an example of an off-axis OV produced
with an �=2 SPP. The lower and the higher peaks are labeled
with A and B, respectively.

Now, since it is difficult to find analytical solutions of
Eqs. �11� and �12�, we decided to perform numerical simu-

lations. The width w of the input Gaussian beam was param-
etrized in function of the full width at half of the intensity
maximum, 2a, such that a=w�ln 2 /2. We used values of the
topological charge induced by the SPP in the range �
=0,1 , . . . ,10, since with higher values we get misleading
results using the two-dimensional fast Fourier transform al-
gorithm. For each �, we considered a number of off-axis
displacements roff /a of the input beam ranging from 0 to 1
and computed the intensity patterns of the resulting beams.

We checked the consistency of our numerical simulations
by comparing them to the analytical models �Eq. �11�� for a
number of values of � and off-axis positions. To this aim, we
previously normalized the intensities of both the simulated
and the analytical patterns to the corresponding maximum
values. Therefore, the B peak always has a normalized inten-
sity equal to one �obviously, both the peaks A and B will
have the same unity intensity if roff /a=0�. The residuals of
the subtraction of the theoretical intensity patterns from the
simulated ones are typically within 10−4 for positions close
to peaks A and B. We will then assume this quantity as the
intrinsic error of our numerical simulations.

For all the numerically simulated OVs we obtained the
intensity values at the two peaks and calculated the quantity
R defined as the ratio between the intensity IA of the lower
peak and the intensity IB of the higher peak. We find that R
rapidly decreases as the off-axis displacement increases for
all the topological charges considered. The graphs showing
the dependence of R on roff /a for �=1,2 ,3 ,4 ,5 are plotted
in Fig. 4. All the curves are well represented by a simple
exponential function,

R = k1e−k2roff/a, �13�

where parameters k1 and k2, obtained by best fitting the
simulated curves, are listed in Table I. From these results, it
appears that k2 depends on the topological charge � as

k2 = �4.64 � 0.05� − �2.9 � 0.2�e−�0.47�0.05��, �14�

while k1 seems to remain equal to unity.

FIG. 2. Properties of the intensity distribution of on-axis Kum-
mer beams having �=0,1 , . . . ,10. �a� Plot of the radius of maxi-
mum intensity �max �in units of w0� vs �. �b� Plot of the intensity
calculated at �max for different values of �. The maximum intensity
for �=0 has been set to unity.

FIG. 3. Example of the far-field intensity pattern of a numeri-
cally simulated off-axis vortex beam produced by an �=2 SPP. The
two diamonds indicate the positions of the two different intensity
peaks A and B. �a� Contour plot of the intensity distribution ob-
tained in the observation plane. �b� Intensity profile of the off-axis
beam extracted along the x� direction. � is the difference between
the intensities calculated in B and A. Examples of error bars are
reported for both the intensity peaks �see text�.
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III. SENSITIVITY OF THE METHOD TO REVEAL
OFF-AXIS DISPLACEMENTS

The off-axis displacement of the input Gaussian beam
with respect to the central singularity of an SPP results in an
asymmetry of the far-field intensity pattern. Equation �13�
reveals that the parameter R represents an extremely sensi-
tive tool to detect such very small displacements.

Let us suppose to have an input Gaussian beam which
symmetry axis is perpendicular to the surface of an SPP and
observe the correspondent far-field image with a photoelec-
tric detector such as a charge-coupled device. In this way, if
the beam is displaced off axis, we can measure the intensity
ratio R of the two different peaks, as defined in Sec. II B. The
precision of this measurement is mainly limited by the
signal-to-noise ratio �SNR� achieved in the observation,
while additional errors might be introduced by construction
imperfections of the SPP. The latter issue results in inhomo-
geneities of the observed intensity distribution. For this rea-
son, efforts are currently made to improve the production
quality of SPPs �36–38�. However, here we assume to use an
ideal SPP so that the only limitations are due to the SNR.

The noise of a CCD detector is mainly represented by the
photon shot noise �39�. Assuming a pure Poissonian distribu-
tion of the collected photons, the uncertainties associated to
the intensities IA and IB of the two peaks can be approxi-
mated by the square root of the signals, i.e., �A=�IA and
�B=�IB. We may then recognize IA� IB at the n� confidence
level when �= IB− IA�n�A+n�B �see Fig. 3�b��, that means

� � n��IA + �IB� . �15�

If we introduce parameter R, this equation can be rewritten
as a function of the only SNR associated to the intensity of
the highest peak �RSN�B��. We find that the maximum peak
intensity ratio measurable at the n� confidence level is

R � �1 −
n

RSN�B�
�2

. �16�

As useful examples, in Fig. 4 we draw three horizontal lines
corresponding to the maximum R values 0.44, 0.81, and 0.98
detectable at the 1� level for RSN�B�=3, 10, and 100, respec-
tively. By combining Eq. �13� with Eq. �16�, we finally ob-
tain the expression for the minimum off-axis displacement
detectable at the n� confidence level,

roff

a
� −

1

k2
ln� 1

k1
�1 −

n

RSN�B�
�2	 . �17�

One general outcome is that, for a fixed RSN�B�, OVs with
higher � values allow the detection of smaller off-axis dis-
placements. This effect is more significant at low SNR re-
gimes, when the maximum measurable R is small and the
curves in Fig. 4 are more spatially separated. As RSN�B� in-
creases, the advantage obtained by using high values of the
topological charge becomes negligible. In fact, if we assume
RSN�B� above 10, we might reveal off-axis displacements
�0.1a for all � values. Instead, considering the lowest ac-
ceptable value RSN�B�=3 for signal detection, we can detect
off-axis displacements of 
0.3a for �=1 at the 1� confi-
dence level.

IV. CONCLUSIONS

In this paper we have analyzed the properties of the
Fraunhofer diffraction pattern produced by a Gaussian light
beam crossing an SPP. When the input beam is perfectly
aligned with the central singularity of the SPP, the resulting
beam is a Kummer beam with a symmetric annular intensity
distribution. Instead, an off-axis displacement of the input
beam produces an asymmetry in the far-field intensity pat-
tern. In particular, the intensity profile along the direction of
maximum asymmetry shows two different peaks. We have
found that, for all the values of the topological charge con-
sidered, the ratio R of their intensities changes exponentially
with the off-axis displacement of the input beam. We have
quantitatively analyzed how the SNR associated to the high-
est peak affects the sensitivity of the ratio R in revealing very
small misalignments of the input beam. In particular, we
have found that higher values of the topological charge �
generally provide better resolutions, especially for low SNR
regimes. We suggest that this method could find interesting

FIG. 4. Plot of the peaks intensity ratio R vs the off-axis dis-
placement of the input Gaussian beam obtained for different values
of the topological charge induced by the SPP. Horizontal lines are
drawn at the maximum values of R detectable at the 1� confidence
level for three values of the SNR of the B peak.

TABLE I. Best-fit values of parameters k1 and k2 in Eq. �13�
obtained from least-square fits of the simulated curves of Fig. 4.
The associated errors are given at the 1� confidence level.

� k1 k2

1 1.002�0.001 2.808�0.006

2 1.0012�0.0007 3.534�0.004

3 1.0004�0.0005 3.928�0.003

4 0.9995�0.0008 4.259�0.005

5 0.9990�0.0009 4.338�0.006

6 0.999�0.001 4.432�0.008

7 0.998�0.001 4.456�0.008

8 0.998�0.001 4.509�0.009

9 0.998�0.001 4.573�0.01

10 0.998�0.002 4.756�0.02
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applications in high-precision positioning systems. Note that
similar results can be obtained also by using other spatial
properties of transverse laser modes �40�. Finally, the sensi-
tivity of OVs could be used in astrometry by placing an SPP
at the focal plane of a telescope.
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