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We have numerically calculated the resonance curve and the region of existence of high-energy dissipative
solitons in systems governed by the complex cubic-quintic Ginzburg-Landau equation. The calculations are
carried out for negative reactive quintic nonlinearity. This choice allows the resonance curve to be continued
into the region of positive net dispersion, thus showing that high-energy pulses can also be generated by lasers
operating in the anomalous dispersion regime.
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I. INTRODUCTION

High-energy ultrashort optical pulses are of great impor-
tance for a variety of applications �1–3�. The best apparatus
for generating them appears to be a passively mode-locked
laser system �4,5�. While progress in producing high-energy
pulses out of these lasers has been remarkable, most of the
results have only been obtained experimentally by using
“trial and error” techniques. We have to admit that there is no
general theory behind the achievements. The main problem
is that each particular laser design requires specific modeling
and numerical simulations �6,7�. There is not an “inverse
technique” to uncover a system that will produce a specific
required output pulse.

However, there is an approach, and it may be considered
rather general, which allows us to roughly predict the main
properties of pulses generated by these devices. It is based on
a single master equation derived using certain approxima-
tions �8�. The resulting equation is the complex Ginzburg-
Landau equation or a modification of it. The active nonlin-
earity in the equation must be at least quintic in order to
model the stable generation of pulses. Thus, the simplest
model that we can use is the complex cubic-quintic
Ginzburg-Landau equation �CGLE�. Depending upon the
particular device, and the phenomena that we want to de-
scribe, the model can be complemented with additional terms
in the equation. These could be higher-order dispersion
terms, step-wise change in parameters, etc. The additional
terms may modify the output pulse and the conditions for its
generation but do not destroy the solution completely. If a
certain effect is robust, it will persist despite all the modifi-
cations.

Specifically, using the CGLE model, the authors of �9�
were able to find conditions where the output pulse tends to
increase its energy to infinitely large values. This effect was
later labeled “dissipative soliton resonance” �DSR� �10�. It
turns out that the effect occurs over quite a large region of
the system parameters. Basically, there is a codimension-one
space of the full space of parameters which admits infinitely
large pulse energies. Remarkably, it was found that this sub-
space is located in the region where dispersion is negative
�normal�. The fact is in agreement with recent experimental
observations of high-energy pulses from passively mode-

locked lasers, both fiber �11� and solid-state ones �12�. In-
deed, the majority of these observations are in the normal-
dispersion regime of operation. Thus, the DSR effect has
predictive features and, in principle, can be used to design
laser systems for the generation of high-energy pulses.

Despite its apparent simplicity, the problem is highly
complicated. Even in the simplest model, the number of pa-
rameters �six� is beyond easy comprehension so the model
requires a significant number of numerical simulations to
describe the pulse shape and its parameters. This can take a
long time, even using modern computer equipment. More-
over, it is not trivial to make a correspondence between the
real experimental parameters and those used in the CGLE
model, and so this requires special derivations. While the net
cavity dispersion can, in a straightforward manner and after
certain normalizations, be represented by the dispersion pa-
rameter in the equation, the values of the rest of the coeffi-
cients in the equation are complicated functions of those la-
ser parameters which can be adjusted experimentally. This is
particularly true for the nonlinear ones.

In this work, we do not attempt to describe any particular
laser model. Rather, we consider the DSR effect at a phe-
nomenological level and try to expand our knowledge of the
space of parameters where it does exist. In particular, we
study the influence of the quintic �reactive� nonlinearity on
the resonance. The first question is “can we ignore it?” In
other words, can we put �=0 in Eq. �1� below? For example,
if we consider a fiber laser, the cubic reactive nonlinearity
comes mainly from the nonlinear susceptibility of the fiber
and can be considered to be positive although very small.
However, the quintic part of reactive nonlinearity results
from the combined effects of the fiber, mode locker, etc., and
we cannot, a priori, predict its value. In the case of Kerr-lens
mode locking, the net cavity nonlinearity can be an even
more complicated function that depends on the cavity design.
One thing that is certain is that, for high intensity pulses,
even if we do not need it to obtain stable pulses, we cannot
ignore it. Hence, in this work, we study the role of the quin-
tic part of the reactive nonlinearity in the DSR.

The second question that we try to answer is: does the
DSR effect exist in the anomalous dispersion region? In our
previous work �10�, we only found the resonance for nega-
tive dispersion. On the other hand, there is experimental evi-
dence that high-energy pulses can be generated even when
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there is positive net dispersion in the cavity �12,13�. A partial
answer to this paradox is also one of the results of the present
work.

II. MODEL

As in the work �10�, we are dealing with the complex
cubic-quintic Ginzburg-Landau equation

i�z +
D

2
�tt + ���2� + ����4� = i�� + i����2� + i��tt + i����4� ,

�1�

with the same notation as before. Active, or dissipative,
terms are on the right-hand side of the equation while all
reactive terms are on the left. The coefficients �, �, and � are
mainly determined by the gain in the system, cavity losses,
and transmission characteristics of the mode-locking device
while � roughly describes the main part of the spectral re-
sponse of the cavity. On the left-hand side, D is responsible
for the net dispersion in the cavity while � describes the
active part of the reactive nonlinearity. The cubic part is as-
sumed to be positive, normalized, and taken to be equal to
one. As mentioned, the model is purely phenomenological.
For each particular laser, the coefficients can be calculated in
a similar fashion to the case of the fiber laser in �7�. The
coefficients here could be very complicated functions of the
real laser parameters and specific design factors. However,
their exact representations are not really needed for under-
standing the laser operation at an intuitive level.

Finding sets of parameters for which the CGLE has soli-
ton solutions is a tedious task which has been carried out in
a few previous works �14,15�. This set is not necessarily a
single region. There could be several sets, with each one
having distinct soliton properties �16�. The regions can be
adjacent to each other �15� or separated in the space of pa-
rameters �16�. The structure of the regions is extremely com-
plicated and it is hard to imagine that all of them will ever be
known. However, the solutions with the most remarkable
features can be distinguished, of course. In particular, we
found a region of parameters of the CGLE which admits
solitons with extraordinarily high energy. We called this ef-
fect dissipative soliton resonance �10�.

We solved Eq. �1� using a split-step technique with fast
Fourier transform of the pulse applied for linear terms in the
equation and iterations for nonlinear terms. Stable stationary
solutions are found as a result of the convergence of local-
ized initial conditions to them. As stable solutions serve as
attractors in dissipative dynamical systems, they can be
found with relative ease, provided the initial conditions are
reasonably close to them. To accelerate the convergence, we
used solutions found for a certain set of parameters as initial
conditions for the next-nearest point in the parameter space.
This technique works well for points far from the resonances.
Then, the pulses at the nearby points are similar to each
other. When parameters are close to the resonance, the pulse
shapes change quickly with a change in parameters. In that
range, on moving from point to point, we have to change
step sizes, numerical windows, and the number of points in

the numerical grid. These procedures made the method more
time consuming but technically it is still relatively simple.
The only difficulty lies in the higher inaccuracies when the
soliton energy becomes high. At some point, we had to stop
further calculations, but of course this does not mean that
solitons with even higher energies cannot exist.

III. RESULTS

The role of the higher-order reactive nonlinearity term, �,
in the model requires special attention. Hence, first, we stud-
ied the dependence of the soliton energy on �. Curves of the
soliton energy, Q, versus � for three values of � are shown in
Fig. 1 on a log-log scale. The curves end at those values of �
where no stable solution is found. In these studies, we took
the net dispersion, D, to be zero as a transitional value be-
tween normal and anomalous dispersions. In fact, if we find
the resonance phenomenon for D=0, then it is very likely
that DSR will also exist in the anomalous dispersion region.
Indeed, we found that changing � from a positive to a nega-
tive value increases the maximum reachable soliton energy
and transforms the Q��� dependence into a resonance-like
curve. This can be clearly seen in Fig. 1. The curve for
�=−0.001 has the fastest energy increase in a small region of
� while the curve for �= +0.001 shows a very slow increase.
To show this difference clearly, the scale for � was also cho-
sen to be logarithmic. The curves for more negative values of
� show an even quicker growth of the energy with �.

The pulse profiles and their spectra at the points on these
curves with the highest energy, indicated by thick dots, are
shown in Fig. 2. The pulses for positive � are narrower and
higher than those for negative �. In the case of positive �, as
the cubic gain ��� increases, the pulses become narrower and
of higher intensity. The opposite happens for negative �,
where the increase in energy as � increases is mainly due to
the increase in the pulse width. This is particularly true as we
get closer to the resonance.

These observations mean that the region of existence of
high-energy solitons must be constructed for the case of
negative �. Although the value, and even the sign, of � for
laser systems are usually unknown, the comparison of pulse
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FIG. 1. �Color online� Energy, Q, of the pulse versus � for
negative �red solid line�, zero �green dotted line� and positive �blue
dashed line� values of �. The curve for negative � shows the reso-
nant increase in energy, Q.
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shapes and energies at the qualitative level could give an
indication of it. The results of extensive numerical simula-
tions are shown in Fig. 3. A significant amount of computa-
tional time was required to obtain each point in the plot. It is
a contour plot of the region in �� ,D� domain showing lines
of equal energy, Q. �In the online version of the paper, the
contours are shown in color. The highest energies are shown

in red�. The left upper edge of the region corresponds to the
highest energies found in the numerical simulations. This
upper edge extends to the region with zero and even positive
dispersion, D, in contrast to the case found for positive �
�10�. Several black contour lines shown inside the region of
existence correspond to selected values of energy. To be spe-
cific, the energy levels are Q=10, 50, 100 and 500. Natu-
rally, the line Q=500 is the closest to the upper edge of the
region, which is the resonance curve. Solitons have the
smallest energy, Q, at the lower edge of the region. Outside
the region of existence �white areas� stable stationary soli-
tons do not exist.

An analytic approximate expression for the resonance
curve, in terms of the system parameters, has been found
previously in �10�. Thus, using the generalized Gaussian trial
function

��t,z� = A exp�−
t2

w2 −
t4

w4�exp�ict2� , �2�

where A is the soliton amplitude, w is the soliton width, and
c is the soliton chirp, we obtained

D =
0.25k��1.319k� − 3.410��

��0.135k� − 1.793���
, �3�

where

k = 1.588� + �2.522�2 − 9.632�� . �4�

Equation �3� relates the parameters of the CGLE which ba-
sically provide the highest energy soliton. At any two-
dimensional projection of the complete parameter space, this
equation can be represented as a curve. This curve is shown
in Fig. 3 by the black dashed line above the region of exis-
tence. As trial function �2� is not a real solution of Eq. �1�,
the curve is located at an appreciable distance from the reso-
nance curve found numerically. However, it is very much
“parallel” to the upper boundary of the region of soliton
existence, thus showing good qualitative agreement with the
numerical simulations. We cannot expect quantitative agree-
ment due to the roughness of approximation �2�. Moreover,
when the dispersion, D, becomes positive, the agreement is
worse. It is likely that trial function �2� should be changed in
this region to have a better fit.

Figure 3 shows that the resonance effect is more pro-
nounced in the negative dispersion region. When moving to
the right-hand side of the region, the values of soliton energy
are lower. Nevertheless, the resonance does exist in the sense
that the energy goes up when the parameters reach the reso-
nance curve in the upper part of the region. In Fig. 4, we
show the curve for soliton energy, Q, versus D in the vicinity
of the resonance when the dispersion, D, is positive. We have
chosen the value �=1.0, which is near the upper limit of the
region of existence in Fig. 3. The curves for other values of
� near �=1.0 are similar to this one. The energy has a clear
tendency to increase, as can be seen from the figure. The
maximum shown in this figure is defined by the limitations
of the numerical simulations rather than by the actual energy
of the soliton. Thus, the resonance evidently does exist in the
positive dispersion regime. The correct choice of system pa-
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FIG. 2. �Color online� �a� Soliton spectra and �b� pulse profiles
of the solutions approaching the resonance. The common system
parameters are D=0, �=−0.1, �=0.08, and �=−0.002. The values
of � and � for each case are written in the figure for the pulse
amplitude �bottom row�. The three cases correspond to the three
solid dots shown in Fig. 1.
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FIG. 3. �Color online� Region of existence of stable solitons in
�-D plane. Color indicates the soliton energy which is highest at the
upper boundary of the region �red�. The contour lines drawn inside
this region correspond to fixed values of the soliton energy with the
highest value, Q=500, and the lowest value, Q=10. The rest of the
system parameters are fixed at �=−0.1, �=0.08, �=−0.001, and
�=−0.002. The dashed line plotted above the region of existence is
the resonance curve found using a simple approximation based on a
trial function �10�. Despite the rough approximation used, the curve
qualitatively describes the resonance quite well.
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rameters, and � in particular, is a necessary condition for its
appearance. These observations are in line with experimental
results �12,13� of high-energy solitons in the case of net posi-
tive dispersion in the cavity.

The pulse shapes and their profiles, for the same set of
parameters, are shown in Fig. 5. Three consecutive examples
for D=0.1, 0.05 and 0.0305 are given. When approaching the
resonance, the pulse profile widens and assumes a nearly
rectangular shape. The limit of D=0.0305 is again defined by
the limitations of numerical simulations. The spectra increase
their amplitudes and reveal two side maxima. This latter fea-
ture has been observed in most of the experiments dealing
with the generation of high-energy pulses �11,17–20�. The
pulses are highly chirped, as in previous studies �19,20�.
Dechirping allows us to compress them up to their transform
limits by using dispersion compensation lines �21–23�. Nu-
merical examples of pulse compression for solitons near the
resonance curve have been presented earlier in �24�.

IV. DISCUSSION

Originally, it was noted that solitons of the nonlinear
Schrödinger equation �conservative bright solitons� physi-
cally existed due to the balance between dispersion and re-
active nonlinearity �14�. For positive cubic nonlinearity, this
balance required the dispersion to be positive. When extend-
ing the notion of solitons to dissipative systems, we have to
admit that there must be a complex balance between disper-
sion, nonlinearity, gain and loss. For stationary solutions, the
balance between gain and loss has to be exact. This allows
the dispersion to be shifted into the negative region, thus
lifting the original balance in favor of the balance between
gain and loss. Moreover, it turns out that solitons in the nega-
tive dispersion region can reach higher energies than those in
the positive dispersion case. This observation leads to impor-

tant applications in the design of passively mode-locked la-
sers with net negative dispersion �11�.

On the other hand, the master equation that describes laser
systems has many parameters. It is not an easy task to study
the influence of all of them on the soliton properties. Our
present calculations were performed for the case of negative
quintic reactive nonlinearity. This choice allows for the reso-
nance curve for dissipative solitons to be continued into the
region with positive dispersion, thus showing that high-
energy pulses can be generated by lasers operating in the
anomalous dispersion regime. Clearly, more studies are
needed in order to optimize the parameters of the system that
generates pulses with the highest possible energies.

In conclusion, we have numerically calculated the reso-
nance curve and regions of existence of high-energy dissipa-
tive solitons in systems governed by the complex cubic-
quintic GLE. Our results can be useful for developing laser
systems with passive mode locking that can generate high-
energy short pulses.
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