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We give the optimal bounds on the phase-estimation precision for mixed Gaussian states in the single-copy
and many-copy regimes. Specifically, we focus on displaced thermal and squeezed thermal states. We find that
while for displaced thermal states an increase in temperature reduces the estimation fidelity, for squeezed
thermal states a larger temperature can enhance the estimation fidelity. The many-copy optimal bounds are
compared with the minimum variance achieved by three important single-shot measurement strategies. We
show that the single-copy canonical phase measurement does not always attain the optimal bounds in the
many-copy scenario. Adaptive homodyning schemes do attain the bounds for displaced thermal states, but for
squeezed states they yield fidelities that are insensitive to temperature variations and are, therefore, suboptimal.
Finally, we find that heterodyne measurements perform very poorly for pure states but can attain the optimal
bounds for sufficiently mixed states. We apply our results to investigate the influence of losses in an optical
metrology experiment. In the presence of losses squeezed states cease to provide the Heisenberg limited
precision, and their performance is close to that of coherent states with the same mean photon number.
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I. INTRODUCTION

Since the early work of Dirac �1� the problem of measur-
ing the phase imprinted on a state of light has been a subject
of great debate. The problem was to find the quantum coun-
terpart to the classical phase observable. The observable
should be the conjugate variable of the number operator n̂,
and the corresponding uncertainty relation could be derived.
From a quantum measurement point of view the lack of such
a self-adjoint observable was overcome with a different ap-
proach based on quantum estimation theory �2–4�, which
gives a precise and operational meaning to “measuring” the
phase �without resorting to the notion of observable� and
provides reasonable uncertainty relations. On top of this fun-
damental motivation, phase estimation is at the heart of
many quantum metrology �5� applications, such as improve-
ment of frequency standards �6�, gravitational-wave detec-
tors �7,8�, and clock synchronization �9,10�, and is strongly
related to quantum computation �11� and quantum cryptog-
raphy �12�. It is therefore an essential task to compute the
efficiency and ultimate bounds on the precision of phase es-
timation. Optical implementations of quantum metrology ap-
plications are within reach of current technology �see, for
example, recent experimental achievements �13–17��.

Here we study optimal protocols to estimate the phase
encoded in states of light. In particular, we will deal with two
families of continuous variable �CV� states that are described
by a Gaussian characteristic function: displaced thermal
states and squeezed thermal sates. Gaussian states are math-
ematically easy to handle and very relevant experimentally
because they provide a very good description of the states
available in the laboratories: laser fields manipulated with
passive and active linear optical elements. Although there is
some previous work in the case of pure states �see �18� and
references therein�, very little is known about estimation in
mixed states, which are present in realistic unavoidably noisy
scenarios. This is the issue we tackle in this work.

In Sec. II we present the general framework, introduce
our figures of merit, and show that the maximum value of the

average fidelity can be achieved by the single-seed covariant
generalized measurement. In Sec. III we apply the techniques
introduced in Sec. II to estimate the phase encoded in a
single copy of a displaced thermal state �also known as co-
herent thermal states�. In Sec. IV we proceed by analyzing
the problem for squeezed thermal states of a specific class:
those that emerge when a squeezed vacuum state is sent
through a lossy channel. Contrary to intuition and in contrast
with the case of coherent thermal states, we find that for
squeezed thermal states the estimation precision improves
with the temperature of the encoding state. In Sec. V we
compute the maximum fidelity when many copies of the
state are available and study the performance of three par-
ticular single-shot strategies that only use individual mea-
surements on each copy. Finally in Sec. VI we use our results
to evaluate the effect of losses in metrology experiments. We
end with the main conclusions of our work.

II. GENERAL FRAMEWORK

In this section we introduce the general problem of esti-
mating a phase. In our setting a system evolves under a uni-
tary transformation,

���� = U����U���†, �1�

where � is a general Gaussian state and U��� is the unitary
operator U���=ei�n̂ �with �� �0,2�� and n̂=a†a is the num-
ber operator, and a† and a are the creation and annihilation
operators that satisfy the bosonic commutation relations
�a ,a†�=1 and �a ,a�= �a† ,a†�=0�. Although our focus here is
on phase-shifted Gaussian states, the results in this section
can be applied also to non-Gaussian states, in particular also
to finite-dimensional states, i.e., generic qudits �see however
the comment after Eq. �8��.

Information on the phase is obtained through a measure-
ment specified by a positive operator-valued measure
�POVM�, i.e., by a set of operators �O�� that are positive
semidefinite and add up to the identity. The outcome prob-
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abilities depend on the measured state through Born’s rule
p�� ���=tr�O���. Estimation is thus inherently not perfect,
and we need a figure of merit to quantify how close is our
guess ��, based on outcome �, to the real value of �. We
will take the usual function

f l��,��� = cos�l�� − ���� , �2�

where l=1 for displaced states and l=2 for squeezed states.
The factor of 2 in the second case takes into account the
symmetry of squeezed states under a phase shift of � due to
their double-photon structure �see below�. We will loosely
refer to f l as the estimation fidelity. The corresponding aver-
age fidelity is given by

Fl = �
�
	

0

2� d�

2�
f l��,���tr�����O�� . �3�

Next we prove that the maximum average fidelity can be
attained with a covariant POVM and reads as

Fl = �
n=0

�

��n,n+l� . �4�

In fact we can derive the maximum average fidelity for
a rather general family of merit functions: f�� ,���
=�lalf l�� ,���=�lal cos�l��−����, with al�0. This, of
course, includes the above choices as well as most of the
commonly used figures of merit. To this end we write the
input state and POVM elements in the Fock basis,

���� = � �n,n�e
i��n−n���n
�n�� , �5�

On�,n
� = �n��O��n
, and develop the expression for the average

fidelity to arrive to the following upper bound:

F = �
�,n,n�

	 d�

2�
f��,���ei��n−n���n,n�On�,n

�

= �
�,n,n�,l

	 d�

2�
al cos�l�� − ����ei��n−n���n,n�On�,n

�

= R �
�,n,n�,l

al	 d�

2�
ei��n−n�+l�e−i��l�n,n�On�,n

�

= R �
�,n,n�,l

al�n�,n+le
−i��l�n,n�On�,n

�
� �

l,n,�
al��n,n+l��On+l,n

� � .

�6�

The inequality is saturated if and only if the following rela-
tion between the phases 	m,n

� =arg Om,n
� and 
m,n=arg �m,n

holds:

	n,m
� = 
n,m + ���n − m� ∀ n,m . �7�

Now, from the positivity of O� and the fact that the geomet-
ric mean is bounded from above by the arithmetic mean, it
follows �On,m

� ���On,n
� Om,m

� �1 /2�On,n
� +Om,m

� �, which to-
gether with the POVM completeness relation ��On,m

� =�n,m
leads to

F � �
l

al�
n

��n,n+l� . �8�

This bound can be attained if and only if �Om,n
� �= �Om,m

� �
= �On,n

� � for all m, n, and �. This is precisely satisfied by the
well-known �canonical� phase measurement �3�. This is
given by a continuous POVM �labeled by 	� �0,2�� instead
of a discrete index �� with elements O	=1 / �2���	
�	�, where
�	
=�nei	n�n
. Condition �7� on the phases is automatically
met if the density matrix � has positive entries in the Fock
basis, i.e., 
n,m=0, and the phase 	 is guessed whenever the
measurement outcome O	 occurs. If � does have nonzero
phases of the form 
n,m=��n�−��m�, i.e., they can be re-
moved by a unitary transformation U=�nei��n��n
�n�, the
phase measurement given above needs to be corrected by the
corresponding unitary, i.e., �	
=�nei�n	+��n���n
. For more
general phases of �n,m, the bound holds if condition �7� does
not conflict with the positivity condition on the POVM ele-
ments. For any dimension d�2 one can easily find examples
of seed states ��0� with arbitrary phases for which the bound
cannot be attained. However, for the Gaussian states under
study here, phases can always be unitarily cancelled, and
therefore Eq. �4� does indeed give the maximum fidelity. In
fact, for the figures of merit that we use in this paper, and in
general for those that only have a single Fourier component
�only one nonzero coefficient al�, the bound can always be
attained since any arbitrary phase 
n,n+l can be unitarily re-
absorbed by the POVM, i.e., �	
=�nei�n	+�n���n
, where the
phases satisfy the recursion relation �n+ l�=�n�+
n,n+l,
with �n�=0 for n� l.

Note that the phase measurement is optimal not only for a
large family of input states but also for a very wide class of
figures of merit. A remarkable exception occurs for the state
estimation fidelity f��� ,���= �tr����

�����2, where �� is the
state “guessed” on measurement outcome �. This optimal
guess state is not necessarily one of the possible input states
�19�, and the figure of merit cannot always be written as a
Fourier series with positive coefficients. Therefore the above
derivation does not hold. In fact, in state estimation of phase-
covariant states there are examples where the phase measure-
ment is known to be suboptimal �19�.

Equation �8� provides the ultimate bounds in phase esti-
mation; however the phase measurement saturating this
bound may be very difficult �if not impossible� to implement
experimentally in a single-shot �or single-copy� measure-
ment �20�. However, as we will see in Sec. V, when a large
number of copies are available there exist known measure-
ment schemes that attain the optimal bounds in some particu-
lar cases.

The remaining of this section is devoted to Gaussian
states of light. The Gaussian states are those that are fully
characterized by the first and second moments of the field
quadratures, i.e., by the displacement vector d=tr�R��
and the covariance matrix �kl=tr���Rk−dk ,Rl−dl�+�, where
R1=1 /�2�a+a†� and R2= i /�2�a†−a� are �conjugated�
quadratures.
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An equivalent, perhaps more operational, definition can
be given in terms of the action of the squeezing operator
S�r�=exp� r

2 �a2−a†2��, and the displacement operator D���
=e�a†−��a on a thermal state

�� = �1 − e−���
n

e−�n�n
�n� , �9�

namely,

��,�,r��� = U���D���S�r���S�r�†D���†U���†. �10�

For a general Gaussian state the mean photon number can be
easily seen to be

�n
 = ���2 + n� + �2n� + 1�sinh2 r , �11�

where n�= �e�−1�−1 is the thermal mean photon number. The
covariance matrix of a thermal state is simply ��=��1, with
��=tanh−1�� /2�=2n�+1. The squeezing operator S�r� de-
creases the fluctuations in one quadrature and increases them
by the same factor in the second quadrature,

�r,� = �2n� + 1�e−2r 0

0 e2r � . �12�

The displacement D��� does not change the second mo-
ments, instead it only induces a displacement d
=�2�Re � , Im ��T. Finally the phase operator U��� produces
a rotation in phase space which induces the corresponding
transformation on the displacement vector and covariance
matrix: d�=O�d and ��=O��O�

T , with

O� = cos � − sin �

sin � cos �
� . �13�

We will next concentrate on two classes of Gaussian
mixed states: displaced thermal states, also called coherent
thermal states, and squeezed thermal states.

III. COHERENT THERMAL STATES

Coherent states, defined as

��
 = D����0
 = e−���2/2�
n=0

�
�n

�n!
�n
 , �14�

are very relevant in CV implementations of quantum infor-
mation protocols since they provide a very good description
of the states produced by a laser: they are states with a well-
defined amplitude and phase and with minimal fluctuations
in both quadratures �see however �21,22� for some caveats
on this description of the output of a laser�. A displaced
thermal state ��,�=D�����D���† is also well represented by
an amplitude and a phase but fluctuations are larger.

In order to calculate the maximum fidelity �Eq. �4�� it is
convenient to write the thermal state in the P-function rep-
resentation

�� =
1

�n�
	 d2��e−����2/n����
���� . �15�

One can check that this is indeed a thermal state just by
computing the matrix elements in the Fock basis

�n����m
 =
1

�n�
	 d2��e−����2/n��n���
����m


= �nm

n�
n

�1 + n��n+1 . �16�

In the Fock basis the coherent thermal state reads as

��,� =
1

�n�
	 d2��e−����2/n���� + �
��� + ��

= �
k,l
	 d2��

�n�

e−����2/n�e−��� + ��2 ��� + ��k��� + ���l

�k!�l!
�k
�l� .

�17�

Equation �4�, for l=1, gives the maximum fidelity, which
reads as

F1 = �
k
	 d2��

�n�

e−����2/n�e−��� + ��2 ��� + ��2k��� + ���

k ! �k + 1
.

�18�

At this point we use the following integral representation,

1
�k + 1

=
1

��
	

0

� dt
�t

e−t�k+1�, �19�

that allows us to evaluate the sum. The integral over �� can
then be easily evaluated: the imaginary part is trivially zero
and the real part is a Gaussian integral that is equal to

F1 =
���
��
	

0

1/�1+n��

dy
e−y���2

�− ln�1 − y/�1 − n�y��
, �20�

after the change in variable y= �1−e−t� / �1+n��1−e−t��. This
expression can be evaluated numerically with arbitrary pre-
cision for different thermal photon numbers n�. Figure 1
shows the average fidelity as a function of the field ampli-
tude for different temperatures. As one could expect, higher
temperatures increase the fluctuations without changing the
field amplitudes and therefore decrease the precision of the
estimation.

The asymptotic behavior of the fidelity at large field am-
plitudes can be computed analytically from Eq. �20� by ex-
panding the nonexponential factor of the integrand up to sec-
ond order,

F1 � 1 −
2n� + 1

8n�

, �21�
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where n�= ���2 is the mean photon number of a coherent state
��
, or the contribution of the displacement D��� to the mean
photon number of a coherent thermal state n̄=n�+ ���2. In the
limit of zero temperature, n�=0, we recover the result for
pure states F1�1−1 / �8n̄� derived in �23�.

We next turn to the opposite regime. In order to compute
the fidelity for low-field amplitudes ��→0�, we write the
thermal state in the Fock basis and expand D��� up to first
order in �, D����1−��a−a†�. With this one can easily ob-
tain a closed expression for the fidelity up to first order in ���.
For simplicity here we only give its asymptotic behavior at
high and low temperatures:

F1 = ���

2
� n�

2n� + 1
for n� � 1

�n��1 − �2 − �2�n�� for n� � 1.
� �22�

IV. SQUEEZED THERMAL STATES

Squeezed vacuum states are defined as

�r
 = S�r��0
 = �1 − �2�1/4�
n=0

� −
�

2
�n��2n�!

n!
�2n
 , �23�

where � is related to the squeezing parameter r and the mean
photon number nr=sinh2 r by �=tanh r=�nr / �nr+1�.
Squeezed states are those for which the uncertainty �or fluc-
tuations� on a given quadrature is reduced below the standard
quantum limit �the quantum fluctuations of vacuum� at the
expense of increasing the uncertainty in the conjugate
quadrature. One can therefore expect an enhanced perfor-
mance of squeezed states in phase estimation or in other
high-precision applications �8,24,25�. This states exhibit very
nonclassical features, such as sub-Poissonian statistics or the
ability to generate entanglement �26,27�, which allows for a
variety of applications in quantum information theory �28�.

Squeezed states have been successfully produced in the labo-
ratories for some time now �29,30� reaching squeezing of up
to 10 dB �corresponding to r�1.15 or nr�2� in current ex-
periments �15–17�. Squeezed thermal states are those ob-
tained by squeezing an initial thermal state �instead of the
vacuum�,

��,r = S�r���S�r�†. �24�

Therefore one expects quantum features to be less pro-
nounced. At high enough temperatures �for e−2r�2n�+1��1�
the state will even become classical �31�, i.e., a mixture of
coherent states, loosing its entanglement potential �32� and
other quantum features.

In order to obtain the maximum fidelity �Eq. �4�� for
squeezed thermal state we only need to sum the outer diag-
onal elements ��n,n+2�. A closed form expression for the ma-
trix elements �m�S�r��n
 can be found in �33� for arbitrary
Fock states, but it is highly nontrivial and turns the evalua-
tion of the fidelity into a very hard computation. Let us hence
consider a much more tractable, but still very relevant, fam-
ily of squeezed thermal states.

Most sources of noise in quantum optical experiments
�e.g., mode mismatch, misalignment, absorption of optical
elements, and nonunit detector efficiencies� can be cast in
terms of linear losses. The family that we will study here
consists of the mixed states that arise when a squeezed
vacuum undergoes losses during the course of an experi-
ment. Since linear losses can be modeled by a beam splitter
�BS� of transmittance T, this family has the following simple
characterization:

��,r��� = trb�B	Ua����r00
ab�r00�Ua���†B	
†� ,

where B	=exp�	�a†b−ab†��, with T=1−R=cos2 	, is the BS
transformation that acts on both the system �mode a� and the
environment �mode b, with �b ,b†�=1�, which is initially in
the vacuum state. Notice that the effect of losses commutes
with the phase operation, and therefore, the states under con-
sideration are of form �1�, i.e., ����=U����U���†. In what
follows we find how the input squeezing parameter r0, and
the transmittance of the channel, T, are related to the inverse
temperature, �, and squeezing parameter r of the output
state.

The covariance matrix associated with the two-mode ini-
tial state, �r0
a � �0
b, is given by �in=�r0,0 � 1. The action of
the BS transforms the quadratures according to the symplec-
tic operation,

V	 =�
cos 	 0 sin 	 0

0 cos 	 0 sin 	

− sin 	 0 cos 	 0

0 − sin 	 0 cos 	
� , �25�

leading to the two-mode covariance matrix,

F1

|α|0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. �Color online� Average fidelity for coherent thermal
states for different n�: n�=0.1 �solid�, n�=0.5 �dashed�, n�=1.5
�dotted�, and n�=2.5 �dash-dotted�.
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�out = V	
T�inV	 =�

e−2r0T + R 0 �e−2r0 − 1��TR 0

0 e2r0T + R 0 �e2r0 − 1��TR

�e−2r0 − 1��TR 0 e−2r0R + T 0

0 �e2r0 − 1��TR 0 e2r0R + T
� . �26�

If we consider only mode a we obtain

�out
a = e−2r0T + R 0

0 e2r0T + R
� . �27�

That is, the effect of losses turns the initial squeezed vacuum
�r0
 into a squeezed thermal state ��,r. Equating the covari-
ance matrix �Eq. �27�� to its general form for squeezed ther-
mal states �Eq. �12�� we find the following equations relating
input and output parameters:

2n� + 1 = tanh−1�

2
= �T2 + 2TR cosh 2r0 + R2,

e2r =� e2r0T + R

e−2r0T + R
. �28�

Note that Eqs. �28� do not have solutions for all values of n�

and r. That is, not all squeezed thermal states can be viewed
as a squeezed vacuum that has degraded through a lossy
channel.

Now we can write the density matrix in the Fock basis for
this family of squeezed thermal states by sending a squeezed
vacuum �r0
 �Eq. �23�� through a BS �Eq. �24�� and tracing
out mode b,

��,r��� = �1 − �0
2 �

n,m=0

� −
�0

2
�n+m

e2i�n−m��

�
��2n�!�2m!

n ! m! �
k

�pT
2n�k��pT

2m�k��2n − k
�2m − k� ,

�29�

with �0=tanh r0 and with the binomial distributions pT
2n�k�

and pT
2m�k� given by

pT
N�k� =

N!

�N − k� ! k!
RkTN−k. �30�

Using Eq. �4� the maximum fidelity can be written as

F2 = �1 − �0
2�

n,k
�0

2
�2n+1

�
�2n� ! �2n + 2� ! RkT�2n+1−k�

n ! �n + 1� ! k ! �2n − k� ! �2n + 2 − k�2n + 1 − k
.

�31�

At this point, we use the integral representation �Eq. �19�� for
both 1 /�2n+2−k and 1 /�2n+1−k, which read as

1
�2n + 2 − k

1
�2n + 1 − k

=
1

�
	

0

� dx
�x

e−x�2n+2−k�	
0

� dy
�y

e−y�2n+1−k�. �32�

This enables us to perform the sum over n and k explicitly.
After the change in variables x=ut and y= �1−u�t one easily
identifies the integral representation of the Bessel function,

I0�t� =
1

�
	

0

1 du
�u�1 − u�

et�1−2u�,

and the fidelity can be cast in the compact form

F2 = �0
�1 − �0

2	
0

� dte−�3/2�tI0�t/2�T
�1 − �0

2�R + Te−t�2�3/2 . �33�

From Eq. �28� relating r and n� with r0 and T it is
straightforward to calculate the fidelity for states that have
the same squeezing parameter r but different temperature. In
Fig. 2 we show the fidelity as a function of r for a pure state,
�r
, and for a mixed state. The latter is taken to be the state
that results from sending �r0=2r
 through a 50:50 BS �T
=1 /2�, which indeed has a squeezing parameter equal to r.
We see that the mixed states �nonzero temperature� allow for
better phase estimation than pure states �zero temperature�.
This behavior is a bit puzzling at first sight and opposite to
what we found for coherent states. It is true that noise per se
increases the uncertainty in any estimated quantity. However,
increasing the temperature has a second effect that goes in

F2

r
0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2. �Color online� Fidelity for pure squeezed state �r
 �solid�
and for states with the same squeezing parameter emerging from a
50:50 BS �dashed�. We also show the fidelity for a pure squeezed
state �r̃
 with the same energy as the former thermal states, i.e.,
�n
=sinh2 r̃=1 /2 sinh2 2r �dotted line�.
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the opposite direction. When the squeezing operator acts on a
thermal state the number of photons increases in a nonlinear
fashion,

�n
 = n� + �2n� + 1�sinh2 r . �34�

This boosted increment gives rise to an improvement on the
phase sensitivity that outweighs the adverse effects of the
temperature. In the case of coherent states, the action of dis-
placement adds the same amount of energy independently of
the temperature, and hence the detrimental effect of thermal
noise is not counterbalanced by the energy increase. Figure 2
also shows �dotted line� the fidelity of a pure squeezed �r̃

state with the same mean energy of the squeezed thermal
state, i.e., nr̃=sinh2 r̃=1 /2�2r�n̂�2r
=1 /2 sinh2�2r�, where
we have used that the BS is balanced and half of the photons
are lost. We find that, given a fixed mean energy, it is clearly
more advantageous to increase the squeezing parameter
rather than the temperature.

The fidelity behavior in the asymptotic limit when the
squeezing parameter is large can be computed analytically.
With the change in variables t=−ln w, Eq. �33� becomes

F2 = �0
�1 − �0

2T	
0

1 dw�wI01

2
ln w�

�1 − �0
2�R + Tw�2�3/2 . �35�

Note that in the limit we are interested in, �0 approaches
unity and the dominant contribution to the fidelity comes
from the region w�1. It is, therefore, convenient to separate
this contribution by writing the numerator of Eq. �35� as 1
− �1−�wI0� 1

2 ln w�� and integrating the two terms separately.
The integral corresponding to the first term �unity� is
straightforward and contributes to both leading and sublead-
ing orders. The term in square brackets goes as 1−w for w
�1 and is subleading; thus we can safely put �0=1 in the
corresponding integral, as the neglected terms will give even
higher order contributions to F2. The result can be cast as

F2 = 1 −
�T�
�n0

, �36�

where

�T� =
R

�T�1 + R�
+ T	

0

1

dw

1 − �wI01

2
ln w�

�1 − �R + Tw�2�3/2 . �37�

The remaining integral can be computed numerically to
arbitrary accuracy for any value of the channel transmittance
T. For T=1 �pure squeezed state� we obtain �1�=0.55, in
agreement with �23�. We further note that, as expected,  is a
decreasing function of T. Thus, e.g., �1 /2�=1.20 and
�1 /3�=1.62. By interpolating �T� between the two regimes
where it can be analytically computed �T→1 and T→0� one
can check that to an accuracy of more than 98%, one has

�T� �
R

�T�1 + R�
+

c1

�2T
+ c2T , �38�

where c1=0.54 and c2=0.17.

Let us now consider the opposite limit of low energy,
which is relevant because the amount of squeezing available
in laboratories is often quite limited. For �0�1 we can take
�0��n0 and retain only the first term �n=0� in the sum �Eq.
�31�� to get

F2 ��n0

2
T �39�

or F2�Tr0 /�2�r /�2 in terms of the squeezing parameter.
This explains the linear behavior shown in Fig. 2 for small
values of r.

V. MANY COPIES

The calculation of the fidelity when several copies N are
available is in general a hard task. The case of pure states has
only been solved recently �23� by computing the matrix ele-
ments of ��n,n+l

�N � in a nondegenerate eigenbasis of n̂t
=�i=1

N ai
†ai. The case of mixed states becomes further in-

volved since the basis that spans ��N is degenerate with re-
spect to n̂t. Here we will follow a different approach to cal-
culate the asymptotic behavior of the fidelity in the limit of
large number of copies.

We first notice that in this limit the estimation becomes
very accurate ��−�� will be typically small�, and therefore
we can relate the estimation fidelity �Eq. �4�� to the variance:
F1=1−Var��� /2 for coherent states, and F2=1−2 Var���
for squeezed states. The Cramér-Rao bound �34�, a well-
known result in classical statistics, gives a lower bound on
the variance of an unbiased estimator in terms of the Fisher
information I���, which is a functional of the parametric
family of probability distributions p�� ��� from where the
samples are drawn,

I��� =	 d�p����� � ln p�����
��

�2

. �40�

For a large number of samples N and under some regularity
conditions, the Cramér-Rao bound is attained, and we have
that Varopt���= �NI�−1. In their seminal paper Braunstein and
Caves �35� made use of this result to proof that if N copies of
a state ���� are available, the optimal estimation of � based
on the most general quantum measurement is given by

Varopt��� = d�2/�4NdsBU
2 � , �41�

where the Bures metric dsBU
2 can be obtained from the Bures

distance between two infinitesimally close states: dsBU
2 =1

−F�� ,�−d��, where F��1 ,�2�=tr����1�2
��2�2 is the quan-

tum fidelity �36�. Closed expressions for this fidelity have
been computed in �37–39� for general Gaussian states.
Therefore, in order to obtain the maximum estimation fidel-
ity we only need to compute F���0� ,��d��� for infinitesi-
mally close Gaussian states.

For displaced thermal states, ��,�, we find

Varcoh
opt ��� =

1

4N

1

���2tanh �/2
=

1

4N

2n� + 1

n�

. �42�

For pure coherent states we recover the known results �18�
which agree with the standard quantum limit or shot-noise
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limit �Var����n−1�. We notice here that for pure states the
N-copy result follows straightforwardly from the single-copy
case since an N-copy coherent state ��
�N is unitarily equiva-
lent to a large amplitude coherent state ��N�
. The unitary
can be simply implemented by a linear multiport device
that realizes a linear mode transformation such that a0
=1 /�N�a1+a2+ ¯ +aN�. For mixed states the error increases
linearly with the size of the quadrature fluctuations, i.e., the
phase variance scales linearly with the number of thermal
photons n�. We also notice that although the above strict
equivalence between the single-copy and many-copy re-
gimes does not hold for mixed states, the variance at large
field amplitudes has exactly the same behavior in both re-
gimes �compare Eq. �42� with Eq. �21��.

For squeezed thermal states, ��,r, we find,

Varsq
opt��� =

1

2N

1

�1 + cosh−1��sinh2 2r

=
1

16Nnr�nr + 1��1 +
1

�2n� + 1�2� , �43�

where we used that sinh2�2r�=4nr�nr+1�. Again, for pure
states we recover the well-known result in �18,40�, which has
the scaling of the so-called Heisenberg limit Var����n−2.
Here, as in the single-copy scenario, we find that even
though the phase-space distribution clearly shows that tem-
perature increases the size of the fluctuations, a higher tem-
perature prior to squeezing does in fact improve the estima-
tion fidelity. Notice that this behavior appears at all
temperatures and persists even for classical states, i.e., when
�2n�+1��exp�2r� �see above�.

Finally, we would like to write the minimal variance in
terms of the parameters of the lossy channel described in
Sec. IV, i.e., the squeezing parameter r0 of the initial
squeezed vacuum and the transmittance T of the channel.
Using relation �28� the optimal variance can be written after
some algebra as

Varsq
opt��� =

1 + 2T�1 − T�sinh2 r0

2NT2 sinh2�2r0�
, �44�

or in terms of the input’s mean photon number n0=sinh2 r0,

Varsq
opt��� =

1 + 2T�1 − T�n0

8NT2n0�n0 + 1�
, �45�

which in the limits of high and low squeezing gives

Varsq
opt��� =

1 − T

4NTn0
for n0 � 1, �46�

Varsq
opt��� =

1

8NT2n0
for n0 � 1. �47�

This shows that the Heisenberg limited precision cannot be
attained in the presence of losses.

The results we have presented so far for the many-copy
scenario are again theoretical bounds on the optimal variance
based on relation �41�. The proof of this relation is construc-

tive in the sense that it provides a particular single-copy
measurement and an estimator that saturate the bound. How-
ever, this optimal measurement is given in terms of an ob-
servable called symmetric logarithmic derivative �35�, which
typically cannot be implemented experimentally. In Secs.
V A–V C we study three particular single-shot measure-
ments and compare their performance with the optimal
bounds.

A. Heterodyne measurements

Heterodyning is one of the first and most common detec-
tion schemes for state reconstruction in CV systems for it
yields direct information about the phase-space distribution
�Q-function� that is enough to completely reconstruct the
state. The POVM of an ideal heterodyne measurement is
given by �1 /���
����.

The overlap between two arbitrary Gaussian states �A and
�B is given by

tr��A�B� = 2�det��A + �B��−1/2e−�t��A + �B�−1�, �48�

where � is the difference between the displacement vectors
of the two states �=dA−dB, and �A and �B are the covariance
matrices of each state. Therefore, a heterodyne measurement
on a squeezed thermal state ��,r��� will yield outcome �� or
more precisely its real and imaginary parts ��x� ,�p��
= �Re���� , Im�����, with probability,

p������ =
1

�
tr����
������,r� =

e−dtO��S
−1O�

t d

��V+V−

, �49�

where d=�2��x� ,�p��, O� is defined in Eq. �13�, and

�S = V− 0

0 V+
� , �50�

with V�=1+ �2n�+1�e�2r. The Fisher information can be
computed from its definition in Eq. �40� by taking the loga-
rithmic derivative of the Gaussian �49�,

I =	 d��2e−dtO��S
−1O�d

��V+V−

����dtO��S
−1O�d��2. �51�

The derivative in the integrand is given by

�O��S
−1O�

t

��
= − iO���y,�S

−1�O�
t =  1

V−
−

1

V+
�O��xO�

t ,

where we have used O�=exp�−i��y� and �x and �y are the
Pauli operators. Making the change in variable ��→��ei�,
which corresponds to d→O�

t d, Eq. �51� becomes

I =	 d��216�x�
2�p�

2

��V+V−
 1

V−
−

1

V+
�2

e−�2�x�
2/V−�−�2�p�

2/V+�

=
�V− − V+�2

V−V+
=

4nr�nr + 1��2n� + 1�2

nr�2n� + 1� + �1 + n��2 . �52�

For pure states the phase variance is given by
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Varsq
het��� =

1

4Nnr
for n� = 0, �53�

which has a shot-noise O�n−1� scaling, instead of the Heisen-
berg O�n−2� scaling that a squeezed vacuum state can pro-
vide: Eq. �43�. However, from Eq. �52� we also notice that,
as in the case of the optimal measurement, the Fisher infor-
mation increases with temperature. In particular, in the limit
of very high temperature we find

Varsq
het��� =

1

16Nnr�nr + 1�
for n� → � , �54�

which coincides with the optimal bound �Eq. �43��. So, het-
erodyning performs very poorly �suboptimal scaling� for
high-purity states; but quite surprisingly it attains the optimal
bounds at high temperature.

Using Eqs. �28� and �52� we can give the phase variance
for an initial pure squeezed state of mean photon number n0
that is sent through a lossy channel of transmittance T:

Varsq
het��� =

�1 − R2�n0 + 1

4NT2n0�n0 + 1�
, �55�

where we recall that R=1−T.
In the limits of high and low initial squeezing we find,

Varsq
het��� =

2 − T

4NTn0
for n0 � 1, �56�

Varsq
het��� =

1

4NT2n0
for n0 � 1. �57�

Comparing with the optimal results in these regimes �Eqs.
�46� and �47��, we see that in the low squeezing regime het-
erodyning performs a factor 2 worse than the optimal strat-
egy, but the difference becomes even more pronounced for
high squeezing.

To calculate the heterodyne variance for coherent states
we proceed along the same lines. The outcome probabilities
are now given by

p������ =
1

�
tr����
������,����� =

e−���� − � exp�i���2�/�n�+1�

��n + 1
.

�58�

From this the Fisher Information and the minimum variance
can be readily computed:

Varcoh
het ��� =

n� + 1

2N���2
=

n� + 1

2Nn�

, �59�

which again is suboptimal for pure states �although only by a
constant factor of 2� and approaches the optimal bound �Eq.
�42�� at high temperatures.

B. Canonical phase measurement

In the one-copy case we saw that the phase measurement,
defined after Eq. �8�, was optimal. Although somewhat a
theoretical exercise, it is interesting to study the accuracy of

such measurement in the multicopy scenario. For pure
squeezed states it is known that, although it is suboptimal,
the scaling of the variance with the mean photon number is
the same as that for the optimal protocol: Var����1 / �Nn2�.
Here we would like to study its performance in the presence
of losses. The computation for arbitrary squeezing is quite
involved, but we can obtain analytical expressions in the two
limiting cases of large and low initial squeezing. From Eq.
�29� it is straightforward to get the expression of the prob-
ability,

p�	��� = p��̄�

=
�1 − �0

2

2�
�

n,m=0

� �0

2
�n+m

e2i�n−m��̄

�
��2n�!�2m!

n ! m! �
k=0

min�n,m�

�pT
2n�k��pT

2m�k� , �60�

where �̄=�−	 and pT
2n�k� are defined in Eq. �30�. For large

squeezing the sum above is dominated by large values of n
and m. Then the binomial distribution pT

2n�k� is well approxi-
mated by a Gaussian distribution centered at 2nT and with
variance 2nTR, and the sum over k can be easily performed
as an integral �for that we can extend the limits of integration
to be ���. The remaining factorials can be approximated
using the Stirling formula as ��2n�! /n ! �2n�n��−1/4. We ob-
tain

p��̄� �
�1 − �0

2

2�
�

n,m=0

�

e2i�̄�n−m��0
n+m

�� 2

�m + n��
e−��n − m�2/2�m+n���R/T�. �61�

At this point it is convenient to define the variables s=m
+n and u=m−n and rewrite Eq. �61� as

p��̄� �
�1 − �0

2

2�
�
s=0

�

�0
s� 2

s�
	

−�

�

due−�u2T/2sR�e2i�̄u

=
�1 − �0

2

�
�T

R�
s=0

�

�e−2�T/R��̄2
�0�s, �62�

where we have considered u as a continuous variable and
have extended the integration range from �−s ,s� to �−� ,��.
This is legitimated as it amounts to neglecting terms that fall
off exponentially in u. The last sum can be trivially per-
formed and yields

p��̄� �
�0

�1 − �0
2

�

�T/R

e�2T/R��̄2
− �0

. �63�

Now we can compute the Fisher information from Eq. �40�
by noticing that for large squeezing ��0→1� the angular
integral is dominated by small values of �̄ and, there-
fore, exp�2�T /R��̄2��1+2�T /R��̄2. Extending to �� the
range of the integral over � and recalling that in this limit
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�0�1−1 / �2n0�, the Fisher information finally reads I
�2�T /R�n0. Thus, the variance is

Varsq
can��� �

1 − T

2NTn0
. �64�

This value is again twice as large as the optimal variance in
Eq. �46� and coincides with that of the heterodyne scheme.

We next focus on the phase measurements in the opposite
limit: n0�1. Here the computation is much less involved.
One just needs to keep terms up to order �0

2 in Eq. �60�,
compute the Fisher information, and take its linearized ex-
pression to the same order �0

2. After performing the trivial
angular integration, we obtain I�4T2�0

2�4T2n0 �recall that
in this limit �0��n0�. Therefore the variance is

Varsq
can��� �

1

4NT2n0
. �65�

Note that this value is twice the optimal variance in the same
limit �47�.

For coherent thermal states we proceed in a similar fash-
ion. We first compute the phase-measurement outcome prob-
abilities starting from the representation of displaced thermal
states �Eq. �17�� for high-field amplitudes ���1�,

p��̄� =
1

�n�
	 d��2e−����2/n��S��ei���2, �66�

where we have implicitly defined �ei����+���ei�̄, and
where

S��ei�� =
1

�2�
�

n

e−�2/2 �n

�n!
ei�n

�
1

�2��2��2�1/4	
−�

�

due−��2 − u�2/4�2
ei�u

= 2�2

�
�1/4

e−�2�2
ei�2�. �67�

In the second equality we have used the Gaussian approxi-
mation to the Poissonian photon distribution of a coherent
state and extended the lower limit of integration from zero to
−�. In the limit of large amplitudes ����1, and hence, the
distribution �S��ei���2 is strongly peaked at ��0. Thus, the
following approximation holds:

�� � � sin � = Im��� + ���ei�̄� = �� + �x��sin �̄ + �y� cos �̄ .

�68�

With this we can and easily perform the integral in Eq. �66�
since it becomes Gaussian. We obtain

p��̄� =� 2�2

��2n� + 1�
e−2�2�̄2/�2n�+1�. �69�

It is now straightforward to perform the �̄ integral in the
definition of the Fisher information, Eq. �40�, and obtain the
variance for the phase-covariant measurement,

Varcoh
can��� =

2n� + 1

4N���2
=

2n� + 1

4Nn�

, �70�

which agrees with the optimal bound.

C. Homodyne measurements

For pure states the standard quantum limit is known to be
attained by homodyne measurements with a simple two-step
adaptive protocol �18�. These measurements are very rel-
evant from the practical point of view since they can be
readily implemented in optical experiments �20,41�. It seems
natural to expect that homodyne measurements are also as-
ymptotically optimal for thermal states, i.e., that they satu-
rate bound �43�. Let us anticipate that this is not the case.

In the limit of strong local oscillator, a homodyne mea-
surement is described by the set of projectors ��x
	�x��, where
��x
	� are the eigenstates of the quadrature operator x̂	

= �aei	+a†e−i	� /�2. The probability of obtaining outcome x
upon measuring a shifted squeezed thermal state ��,r��� is
given by �42�

p	�x��� = �x�U�� − 	�S�r���S�r�†U�� − 	�†�x


=
1

�2��2�	 − ��
exp�−

x2

2�2�	 − ��� , �71�

where

�2�	� = �2n� + 1��e2r cos2 	 + e−2r sin2 	� . �72�

The Fisher information can be easily computed from its
definition in Eq. �40�. One obtains

I	��� =
1

2
 sin�2�	 − ����e2r − e−2r�

e2r cos2�	 − �� + e−2r sin2�	 − ���
2

. �73�

At this point it is readily apparent that the temperature de-
pendence has disappeared from the expression of the Fisher
information. The maximum of the I	��� is achieved for an
homodyning angle,

	� = � � arctan�e2r� , �74�

and the maximum Fisher information reads as

I� = 2 sinh2�2r� = 8nr�nr + 1� . �75�

Upon using the Cramér-Rao bound we obtain that the maxi-
mum precision that can be achieved with homodyning mea-
surements is

Varsq
hom��� =

1

8Nnr�nr + 1�
. �76�

The above maximum of the Fisher information can only be
attained if some previous information on the phase is avail-
able. It can be argued �18� that one can use a vanishingly
small fraction of copies to perform a �perhaps� suboptimal
rough estimation of the phase and then use the remaining
number of copies to nail down its precise value. The final
estimation fidelity is dominated by this second stage, and
therefore the above bound can be asymptotically attained. A
similar analysis leading to the same results was recently car-
ried out by Mitchell et al. �43�.
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Several comments are in order when comparing Eq. �76�
with the optimal variance �43�. First, we observe that homo-
dyning protocols are suboptimal, they yield the optimal vari-
ance only for pure states. Second, we see that the variance
�76� is independent of the temperature of the thermal state.
We can understand this result as follows. For squeezed
states, the effect of temperature is the same as rescaling the
phase-space. At the same time, homodyne measurements can
be understood in phase space as projections of the distribu-
tion on one quadrature. Therefore, the effect of temperature
in the measurement statistics can be accounted for by a
simple rescaling, thus the final precision is independent of
the temperature.

The variance �Eq. �76�� for a squeezed state that emerges
from a lossy channel of transmittance T can be calculated by
using Eq. �28�,

Varsq
hom��� =

1 + 4n0T�1 − T�
8NT2n0�n0 + 1�

, �77�

where we recall that n0=sinh2 r0 is the mean photon number
of the initial squeezed vacuum that is sent through the chan-
nel. Of course, for T=1 one recovers the value of the vari-
ance for pure states �18,40�. For large squeezing, n0�1, one
has

Varsq
hom��� =

1 − T

2NTn0
, �78�

while for n0�1,

Varsq
hom��� =

1

8NT2n0
. �79�

So, in the presence of losses and for low squeezing, adaptive
homodyning provides a variance a factor of 2 smaller than
the variance of heterodyning and attains the optimal bound
�Eq. �46��, while for high squeezing homodyning provides
half the precision of the optimal strategy but still outper-
forms heterodyning by a factor which depends on the amount
of losses.

For coherent thermal states, the same scaling argument we
used for squeezed states does not hold because the displace-
ment is not affected by an increase in temperature, while it is
obviously affected by phase-space rescaling. It is however a
straightforward exercise to check that the Fisher information
for displaced thermal states is

I	��� =
4���2sin2�� − 	�

2n� + 1
. �80�

Therefore, the optimal variance �Eq. �42�� for displaced ther-
mal states can be attained with a one-step adaptive homo-
dyne measurement by taking 	�=��� /2, even for states
with nonzero temperature,

Varcoh
hom��� =

1

4N

2n� + 1

n�

. �81�

We notice here that the Fisher information or the minimum
variance for that matter is the same for a coherent state ��


than for a displaced thermal state D������D����†, with
����2= ���2�2n�+1�, which can be understood in terms of the
scaling argument used above.

We note that the performance of adaptive homodyne mea-
surements is as good as, or better, than that of the single-shot
canonical phase measurement for both displaced and
squeezed thermal states. It still remains an open problem to
find optimal and practical strategies that attain the bound for
general squeezed thermal states.

VI. FREQUENCY ESTIMATION

Sub-shot-noise parameter estimation is one of the most
important applications brought by the field of quantum infor-
mation. Since the work of Huelga et al. �6� it is well known
that the use of exotic quantum states provides a dramatic
improvement on the estimation precision of several metro-
logically relevant parameters. It was immediately recognized
that states that provide this enhancement can be specially
fragile in the presence of decoherence or losses and that it is
therefore mandatory to assess whether the quantum advan-
tage persists in noisy environments �6,44�. Recently, there
have been several in-depth studies on this issue in discrete
systems, especially oriented to the so-called maximally path-
entangled state ��N ,0
+ �N ,0
� �NOON� state �45–47�.

Here we want to approach the problem for CV systems. In
particular we will use the previous minimum values for the
phase estimation variance to study a model for frequency
estimation in the presence of losses �which is the dominant
source of errors in optical experiments�. We will study a
scenario where the phase is imprinted at a given rate �=�t
on a Gaussian state, in a time interval t during which the
system suffers losses also at a constant rate �. Long times t
will increase the accumulated phase and hence improve the
sensitivity of the measurement. However, the unavoidable
losses will clearly limit the duration of the experiment. Our
goal here is to find the optimal time t� to estimate the fre-
quency � with the highest precision.

As stated above, a BS can be used to model a lossy chan-
nel. In our scenario the input state, a pure squeezed or dis-
placed state, is sent through a BS with a time-dependent
transmittance T, T=e−�t. So, we can use the above results,
Eqs. �42� and �43�, to optimize the time by taking into ac-
count that now the variance for a fixed number of copies N is
given by

Var��� = �Nt2I�−1. �82�

The case of coherent states can be solved analytically.
When a coherent state ��
 is sent to a BS, the transmitted
state is nothing but �T1/2�
. So, we only have to optimize
over time the following expression:

Varcoh��� =
1

4N���2e−�tt2 , �83�

where we have replaced ���2 by ���2e−�t and taken the limit
�→� in Eq. �42�. We find that the optimal time is t�=2 /�,
which gives the minimum variance
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Varcoh��� =
e2�2

16N���2
. �84�

For squeezed input states we recall that the squeezing
parameter and the temperature of the state at a given time t
depend on T�t�=e−�t and on the initial squeezing r0 through
Eq. �28�. Inserting this time dependence in Eq. �45� we can
optimize Varsq���=Varsq��� / t2. Figure 3 shows the optimal
value of �t� for different values of r0 together with the cor-
responding minimum variance. The optimal time is now a
function of the initial squeezing and ranges from t�=1 /� for
low squeezing to t�= �2+W�−2e−2�� /��1.59 /� for high
squeezing, where W�x� is Lambert’s W function �48�. At this
high squeezing regime the variance scales as O�n0

−1�. Hence,
the characteristic Heisenberg scaling of squeezed pure states
turns into the standard quantum limit scaling in the presence
of losses.

In Fig. 4 we compare the performance of an initial pure
coherent state with that of a pure squeezed state of the same
energy �mean photon number�. In the limit of low photon
numbers �see inset� the squeezed state performs worse than
the corresponding coherent state of the same energy. At
higher energies the squeezed state gives a slightly higher
precision.

A similar behavior is found if one restricts to the adaptive
homodyning strategy mentioned above. In that case the vari-
ance in presence of losses for a given time t can be computed
from Eq. �77�. The optimal times are shorter than those re-
quired for the optimal POVM, but they have the same
asymptotic values �t�� �1,2+W�−2e−2��. Figure 4 shows
the corresponding minimum variances for the homodyning
strategy. We note that for small squeezing, homodyning is
nearly optimal, while for large squeezing the differences be-
come important �close to a factor of 2� although still give rise
to the same type of scaling.

Finally, using Eq. �55� we can obtain the results for the
heterodyne strategy. In this case the optimal times range
from �t�=1 for very low squeezing to �t�=2+W�−e−2�
�1.84. As shown in Fig. 4, heterodyning always performs
worse than homodyning. The differences are especially large
in the low squeezing regime, where homodyning is nearly
optimal.

VII. CONCLUSIONS

We have derived optimal bounds to the phase estimation
fidelity for pure and mixed Gaussian states of light. This
enables us to study how temperature affects the precision of
the estimation. We have focused on displaced thermal and
squeezed thermal states. A priori, one would expect that the
fidelity degrades with temperature, as the fluctuations also
increase. This is precisely what we find for coherent thermal
states. However, squeezed thermal states have the opposite
behavior: a squeezed state with high temperature can provide
twice the precision of a pure squeezed state with the same
squeezing parameter. The result seems at first sight paradoxi-
cal, but it can be understood by noticing that an initial ther-
mal state gives rise to a nonlinear increase in the mean pho-
ton number, which counterbalances the thermal noise.

In the many-copy scenario we have studied three different
single-shot measurements: heterodyning, canonical single-
copy phase measurement, and adaptive homodyning. Adap-
tive homodyne measurements attain the optimal bounds for
coherent thermal states and squeezed vacuum states but are
suboptimal for thermal squeezed states since they provide a
precision that is independent of temperature. Heterodyning
provides suboptimal precision for pure states; however we
find the surprising result that it does saturate the optimal
bounds in the limit of very mixed states, a regime where
adaptive homodyning ceases to be optimal. Finally, what is
taken to be the canonical phase measurement, which is opti-
mal in the single-copy scenario but extremely hard to imple-
ment, turns out to perform worse than the practical hetero-
dyne or adaptive homodyne strategies in some cases when
many copies are available.

We have given a simple model to study the effect of
losses in a situation where the phase imprinted on a Gaussian
state grows linearly with time, �=�t, while the system suf-
fers losses also at constant rate �. We give the optimal du-
ration of the experiment which finds the compromise be-
tween losses and accumulated phase. Using the derived
many-copy results and optimizing over this time interval, we
show that high-energy squeezed states give only a minor
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advantage over coherent states with the same energy and are
in fact outperformed by them in the low-energy regime.
While a similar analysis could be carried out for other Gauss-
ian noisy channels �the complete Bures metric in the Gauss-
ian state space, from which one obtains the optimal bound to
the variance, can be found in �49��, it remains an open prob-
lem to address optimal estimation for non-Gaussian noisy
channels, such as phase diffusion.
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