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We investigate in detail the focusing of a circularly polarized Laguerre-Gaussian laser beam ��� orbital
angular momentum per photon; �=1�−1� for left- �right-� handed polarization� by a high-numerical-aperture
objective. The diffraction-limited focused beam has unexpected properties resulting from a strong interplay
between the angular spatial structure and the local polarization in the nonparaxial regime. In the region near the
beam axis, and provided that ����2 and � and � have opposite signs, the energy locally counterpropagates and
the projection of the electric field onto the focal plane counter-rotates with respect to the circular polarization
of the incident beam. We explicitly show that the total angular momentum flux per unit power is conserved
after focusing, as expected by rotational symmetry, but the spin and orbital separate contributions change.
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I. INTRODUCTION

Strongly focused laser beams, produced by passage
through a high-numerical-aperture �NA� microscope objec-
tive, have been employed increasingly often in recent years.
A widespread application is their use for trapping micropar-
ticles �1� or atoms �2� in optical tweezers, employed in a
variety of fields �3�, ranging from cell biology �4� to quan-
tum information processing �5�.

In the standard optical tweezers setup, the objective en-
trance port is usually illuminated by a Gaussian linearly po-
larized beam, overfilling the entrance aperture in order to
fully utilize the high-NA of the objective. A proper descrip-
tion of such a tightly focused laser beam must include dif-
fraction at the aperture edge as well as nonparaxial effects.
The vectorial Debye-type integral representation developed
by Richards and Wolf �RW� �6,7� takes both effects into
account. This model has been thoroughly verified directly, by
measuring the electric energy density distribution in the focal
region �8�, and also indirectly, by testing the Mie-Debye
theory for the trapping force in optical tweezers �derived
from the RW model �9�� against experimental results �10�.

Unusual features, with potential applications in microme-
chanics, microfluidics and biotechnology, have been devel-
oped by employing Laguerre-Gaussian �LG� beams �11�.
These beams have helical wave fronts and a phase singular-
ity along the axis �optical vortex� �12�. Since paraxial LG
beams have enhanced gradient forces and reduced radiation
pressure, they produce more efficient trapping �13�. More
importantly, since they carry orbital angular momentum �14�
�see also �15,16� for reviews�, they allow rotational control
of the trapped particles. By transferring orbital angular mo-
mentum to absorptive particles, such particles were set to
rotate �17�. The photon spin, which is associated with the
beam circular polarization, can be employed to add or sub-
tract from the effect of the orbital angular momentum �18�.
In some cases, the particle can be trapped off-axis, near the
ring of maximum intensity, and set to rotate about the beam
axis �19�. By using a spatial light modulator, it is possible to
scan the orbital index � up to values of order 200 and ana-
lyze the resulting rotation about the beam symmetry axis as a
function of � �20�.

We consider a circularly polarized �paraxial� Laguerre-
Gaussian LG0� �radial index p=0� model for the beam inci-
dent along the positive z axis before the objective, and then
apply the RW approach to calculate the resulting strongly
focused beam beyond the objective. Ganic et al. �21� calcu-
lated the electric energy density on the focal plane for a
linearly polarized LG beam and showed that the intensity at
the focus does not vanish when �=1 or �=2. This effect
becomes stronger for a circularly polarized incident beam
�22,23�, with the photon spin antiparallel to the orbital angu-
lar momentum �the intensity at the focus vanishes when they
are parallel�. The experimental verification of this remark-
able effect provided an additional test of the RW approach
�22,23�.

Here we present a detailed theoretical analysis of the fo-
cused beam, elucidating the spatial variations of field polar-
ization, energy density, and Poynting vector. We find some
unexpected results when the spin and orbital angular mo-
menta of the incident beam are antiparallel. In this situation,
the interplay between polarization and angular dependence is
particularly interesting, resulting in a strong modification of
the focused beam polarization near the beam axis.

The discussion of angular momentum is of particular the-
oretical relevance. The identification of separate spin and
orbital contributions to the angular momentum of electro-
magnetic fields is somewhat controversial �24�, at least in the
sense that the corresponding operators do not satisfy the
commutation relations of “true” angular momenta in the full
quantum theory �25�. Nevertheless, the separation presents
itself in a very compelling way in the paraxial approxima-
tion, with spin and orbital contributions corresponding to the
field polarization and the angular spatial dependence, respec-
tively �14,26�. With �= +1�−1� corresponding to left �right�-
handed circular polarization, the spin and orbital angular mo-
menta along the propagation direction per photon are �� and
��, respectively. In the framework of the classical �i.e., non-
quantal� paraxial theory, these important results are inferred
from the values of � /� and � /� for the ratios between the
linear densities of angular momenta and energy.

In the nonparaxial regime the separation is not so straight-
forward, as far as local quantities are concerned �27�. How-
ever, a natural separation was proposed by Barnett �28� in
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terms of the overall angular momentum flux along the propa-
gation direction.

We calculate the angular momentum flux for the focused
nonparaxial beam and compare the separate spin and orbital
contributions, as defined by Barnett, with the corresponding
values for the paraxial beam before the objective. Recently,
Zhao et al. �29� have argued that the focusing effect leads to
an interconversion between spin and orbital angular mo-
menta. We derive quantitative results for the spin and orbital
flux modifications, which turn out, however, to have signs in
disagreement with Zhao et al.’s qualitative discussion. Since
their arguments, as well as their experimental demonstration,
involve local quantities, we attribute the disagreement to the
fact that we calculate the global overall flux across a plane
perpendicular to the propagation direction, rather than local
results.

The paper is organized as follows. We analyze the local
polarization on the focal plane in Sec. II and discuss the
energy and energy flux densities in Sec. III. The optical an-
gular momentum is analyzed in Sec. IV and concluding re-
marks are presented in Sec. V.

II. ELECTRIC AND MAGNETIC FIELDS

We assume that the beam waist �radius=w0� is precisely
at the position of the objective entrance port. The incident
circularly polarized electric field is then given by �the factor
e−i�t is omitted�

Einc��,�,z� = Einc��2�

w0
����

e−�2/w0
2
ei���+k0z��x̂ + i�ŷ� . �1�

The minimum spot size w0 is typically of the order of or
larger than the entrance aperture radius �overfilling�, so as to
take full advantage of the high-NA of the objective. The
focused beam �focal length f� is written as a superposition of
plane waves. According to Kirchhoff’s approximation of
classical diffraction theory �6�, the amplitude and phase of
each plane-wave component k�� ,�� ��k�=nk0=wave number
in the isotropic medium of refractive index n� are determined
by the field at the entrance port Einc�� ,� ,z� �6�, with

E�r� = �− 1��+1 iE0

	
	

0

2	

d�ei��	
0

�0

d� sin ��cos �


 ��2� sin �����e−�2 sin2 �eik·r�̂����,�� , �2�

E0 =
	f



TobjEinc, � = f/w0, �̂�� = x̂� + i�ŷ�, �3�

where �= f sin � �Abbe sine condition� and �=�+	. We
have assumed that the objective transmission amplitude Tobj
is uniform. Radial dependence of objective transmittance,
which may be present, can be taken into account by intro-
ducing an effective beam waist size �30�.

If the beam is Gaussian at the entrance port ��=0�, all
plane-wave components in Eq. �2� have the same phase at
the focal position r=0 and hence interfere constructively to
produce a maximum intensity at this point. On the other
hand, for a Laguerre-Gaussian beam, each component con-

tains the additional phase factor ei��, and then the intensity at
the focus vanishes except for some special cases discussed
below �see also Refs. �21–23��.

In order to compute the field from Eq. �2�, we need the
unit vectors x̂� and ŷ�. They are defined in the plane perpen-
dicular to k by the condition that the angles between x̂� and
ŷ� and the meridional plane at the angular position � are �
and 	 /2−�, respectively �31�. After integration over �, we
find

Ex��,�,z� = �− i��+1E0�ei��I0
��� + ei��+2���I2�

���� , �4�

Ey��,�,z� = ��− i��E0�ei��I0
��� − ei��+2���I2�

���� , �5�

Ez��,�,z� = − 2��− i��E0ei��+���I�
���. �6�

The dependence on � and z is contained in the coefficients
Im

���, m=0, �1, �2, which can be expressed in terms of the
cylindrical Bessel functions Jn��� �32�:

Im
�����,z� = ��2�����	

0

�0

d��sin �����+1�cos �e−�2 sin2 �


f �m����J�+m�k� sin ��eikz cos �. �7�

The angular functions fm��� are given by

f0��� = 2 cos2��/2� , �8�

f1��� = sin � , �9�

f2��� = 2 sin2��/2� . �10�

The magnetic field is given by ��0=vacuum magnetic per-
meability, �=electric permittivity of dielectric medium�

H = − i�� �

�0
E . �11�

The expressions above for E and H are exact solutions of
the Maxwell equations and approximate solutions of the
boundary conditions corresponding to Kirchhoff’s classical
diffraction theory �6�. This is in sharp contrast with the usual
paraxial models, where approximate solutions of the Max-
well equations are employed and diffraction is completely
neglected �the beam waist size is usually assumed to be
much smaller than the transverse sizes of the optical ele-
ments�.

The electric and magnetic fields are linear combinations
of terms of the form ei��+m��Im

���. Since the phase factor is
ill-defined on the beam axis �phase singularity�, consistency
requires that the functions Im

��� vanish at �=0, except when
�+m=0. This important property is verified by replacing the
result Jn�0�=�n,0 into Eq. �7�.

The electric- and magnetic-field components Ez and Hz
have no phase singularity when �= �1 and �=−� �antipar-
allel incident beam orbital and spin angular momenta�. In
this situation, the vectors E and H oscillate along the beam
axis in phase quadrature.

There is a second situation with nonvanishing axial inten-
sity: �= �2, �= �1. From Eqs. �4� and �5�, we find, on the

MONTEIRO, NETO, AND NUSSENZVEIG PHYSICAL REVIEW A 79, 033830 �2009�

033830-2



axis, Ey =−i�Ex and Ez=0, so that the field on the axis is
circularly polarized as in the entrance port. However, the
sense of rotation is opposite to that at the entrance port.

To provide geometrical insight into the origin of the re-
versed rotation, we analyze the effects of strong focusing
��0�1� on vector interference at the focal point. Figure 1
shows the electric-field vectors for the incident paraxial LG02
beam on a plane parallel to the xy plane. The objective maps
each of these vectors to the focal point by three-dimensional
transport, constrained by the condition that its angle with
respect to the plane of incidence �containing k and the axis�
is conserved. Thus, the cylindrical azimuthal components
�which are perpendicular to the incidence plane� are trans-
ported parallel to themselves, whereas the cylindrical radial
components yield a z component proportional to sin � and a
component on the xy plane proportional to cos �. In the fol-
lowing qualitative discussion for �0�1, we consider a large
value of �, so that the latter contribution is small. At t=0,
vectors 3 and 7 in Fig. 1 contribute 2E0 along the negative x
direction, whereas 1 and 5 contribute 2E0 cos ��2E0 along
the positive x direction. The contributions to the z component
from opposite points �1 and 5, 2 and 6, etc.� are exactly
cancelled. The difference between �= +1 and −1, corre-
sponding to Figs. 1�a� and 1�b�, respectively, lies in the con-
tributions of vectors 2, 4, 6, and 8. When adding their azi-
muthal components, we find a vector pointing along the
positive x direction in case �a�, and then the field resulting
from interference with 3 and 7 vanishes. On the other hand,
they add to the contributions of 3 and 7 in case �b�, and the
resulting electric field, containing a factor �1−cos �� in
agreement with Eqs. �4�, �5�, and �10�, points along the nega-
tive x direction at t=0. Moreover, while the electric field at
each spatial position on the incident beam rotates clockwise
in Fig. 1�b�, the resulting overall pattern rotates counter-
clockwise, with the same angular frequency. Thus, the result-
ing vector sum at the focal point also rotates counterclock-
wise.

These remarkable effects disappear in the paraxial focus-
ing limit, which may be obtained from our more general
results by assuming that �0�1 �small NA� �33�. In this limit,
the angular functions given by Eqs. �8�–�10� satisfy f2���


�2 /2� f1���
�� f0���
2. Then, we may neglect I2�
��� and

I�
��� in Eqs. �4�–�6�, yielding Ez�Ey 
 i�Ex: the polarization

of the incident beam is preserved in this case. Moreover, the
intensity along the beam axis is very small even if �+�=0 or
if �+2�=0 �especially in the second case�.

Polarization thus plays a minor role in the paraxial limit.
On the other hand, there is a nontrivial interplay between
polarization and the field spatial dependence in the non-
paraxial regime. To fully picture the polarization of the fo-
cused beam, it is convenient to derive the cylindrical field
components �34� from Eqs. �4� and �5�:

E���,�,z� = �− i��+1E0ei��+����I0
��� + I2�

���� , �12�

E���,�,z� = ��− i��E0ei��+����I0
��� − I2�

���� . �13�

Thus, all cylindrical components, including Ez given by
Eq. �6�, have the same dependence on �, determined by the
total axial incident beam angular momentum �+�. Note,
however, that the electric and magnetic fields depend sepa-
rately on the spin and orbital indexes � and �, since their
dependence on � and z is determined by the functions
Im

����� ,z� �Eq. �7��. These functions obey the important sym-
metry relation

I−m
�−����,z� = �− 1��+mIm

�����,z� . �14�

It follows that, when we reverse both incident spin and or-
bital indexes ��→−� ,�→−�� the electric field changes as

E���,�,z� → E���,− �,z� , �15�

E���,�,z� → − E���,− �,z� , �16�

Ez��,�,z� → Ez��,− �,z� , �17�

whereas corresponding results for the magnetic field have the
opposite sign due to multiplication by � in Eq. �11�. These
transformation rules allow us to extend to negative values of
� results from the discussion for ��0 presented below.

On the focal plane z=0, all functions Im
� are real according

to Eq. �7�. Then, from Eqs. �6�, �12�, and �13� we conclude
that E� and Ez are in phase or in phase opposition depending
on the sign of �I0

���− I2�
���� / I�

���, whereas E� is in phase quadra-
ture. The polarization ellipse is at an angle �
=arctan�I�

��� / �I0
���− I2�

����� with respect to the focal plane, with
its principal axis along the �̂ direction. This is illustrated at
point Q in Fig. 2, for �=2, �=−1.

For a detailed picture of the polarization in this interesting
case, we plot in Fig. 3 the field amplitude cylindrical com-
ponents as functions of � /
. The amplitudes are divided by
the maximum incident electric-field amplitude at the en-
trance port obtained from Eq. �1� on the circle of maximum
intensity �=w0 �35�. These dimensionless amplitudes are
given by

Ẽ�,� =
	e

2�2
�Tobj

w0



�I0

�2� � I−2
�2�� , �18�
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FIG. 1. �Color online� Electric-field orientations for the paraxial
LG02 beam �before the objective�, with �a� left-handed ��=1� and
�b� right-handed ��=−1� circular polarizations, at times t=0, t
=	 / �2��, and t=	 /�. The resulting spatial patterns counter-rotate
with respect to the circular polarization of the incident beam.
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Ẽz = −
	e
�2

�Tobj
w0



I−1

�2�. �19�

The prefactor w0 /
 in Eqs. �18� and �19� arises from the
focused beam intensity enhancement by the geometric factor
w0

2 /
2, which is of order of the ratio between the beam trans-
verse areas at the entrance port and at the focal plane �36�, as
expected by energy conservation.

For the numerical example shown in Fig. 3, we take
NA=1.25, n=1.5, Tobj=0.7, �=1.4, w0=3 mm, and 

=0.5 �m. As expected, the field is localized in a region
around the focus, with dimensions of the order of the wave-

length 
. When the amplitudes Ẽ� and Ẽ� have the same
sign, the projection of the electric field on the xy plane ro-
tates clockwise, like the incident beam. This happens in most
spatial regions, in particular around the ring of maximum
intensity �to be discussed in Sec. III�. On the circle �=�P
=0.24
 �for the above numerical values�, we have E�=0, so

that the polarization ellipse is perpendicular to the xy plane
��=	 /2�. This is represented at point P in Fig. 2. Inside the

disk ����P�, Ẽ� and Ẽ� have opposite signs; thus, the pro-
jection of E on the xy plane now rotates counterclockwise.
At the focal point ��=0�, the polarization is circular with
reversed rotation as already explained. These properties are
illustrated by Fig. 4, showing the projection of the electric-
field vectors onto the focal plane at different times.

The same reversion takes place for ��2 and the radius �P
increases linearly with �. However, there is a phase singular-
ity on the beam axis in these cases, so that the field vanishes
at �=0 instead of being circularly polarized. On the other
hand, no reversion occurs when � and � have the same sign,
nor with �= �1. Thus, we may interpret the reversion as a
nontrivial interplay between polarization and spatial struc-
ture, as already discussed in connection with Fig. 1. Near the
beam axis ����P�, for ����2, the spatial angular depen-
dence dominates over the polarization inherited from the in-
cident beam, leading to a reversed rotation when � and �
have opposite signs. In Sec. III, we show that the direction of
energy flow near the axis also gets inverted with respect to
the overall propagation direction �defined by the paraxial in-
cident beam� when � and � have opposite signs and ����2.

III. ENERGY DENSITY AND FLUX

The �time-averaged� electric energy density uE
= �� /4�E ·E� is symmetrical with respect to the focal plane

FIG. 2. �Color online� Polarization on the focal plane xy for �
=2, �=−1. Along the circle �=�P, the polarization ellipse is per-
pendicular to the focal plane �as illustrated at point P�. Inside the
circle, ���P, the projection of the electric field onto the xy plane
rotates counterclockwise, so that the rotation is reversed with re-
spect to the polarization of the paraxial incident beam. At the focal
point F itself, the polarization is circular.

FIG. 3. �Color online� Electric-field cylindrical components on
the focal plane divided by the maximum incident beam amplitude
versus � /
, with �=2, �=−1, NA=1.25, n=1.5, �=1.4, Tobj=0.7,
w0=3 mm, and 
=0.5 �m. The vertical dotted line indicates the
circle �=�P.

FIG. 4. �Color online� Electric-field orientations on the focal
plane at times �a� t=	 / �3��, �b� t=7	 / �12��, �c� t=5	 / �6��, and
�d� t=13	 / �12��. We take �=2, �=−1. The red �gray� line indi-
cates the circle �=�P. The electric field at a given spatial position
outside this circle rotates clockwise like the incident beam. Inside
the circle, however, the rotation is counterclockwise, as illustrated
by the vector at the focal point.
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z=0: uE�� ,−z�=uE�� ,z�, independent of � �rotational sym-
metry� and identical to the magnetic energy density at each
point: uE=uM �these last two properties would not hold for
linear polarization of the incident beam�. From Eqs. �6�, �12�,
and �13�, we find for the total energy density u=uE+uM

u��,z� = �E0
2��I0

����2 + 2�I�
����2 + �I2�

����2� . �20�

From Eq. �14� or Eqs. �15�–�17�, it is clear that the energy
density is invariant under change of signs of both � and �.
Thus, results for negative values of � are easily obtained
from those for ��0 �discussed below� by simply inverting
�.

In Fig. 5, we plot the ratio u�� ,0� /uinc
max as a function of

� /
, for the same parameters as in Fig. 3 �uinc
max represents the

maximum density of the incident paraxial beam�. We also
show, for comparison, corresponding results for �=2, �=1,
with vanishing density at the axis. Although they have the
same spatial profile at the objective entrance port, the strong
interplay with polarization results in different distributions
on the focal plane. For �=2, �=−1, the bright ring is thicker
and slightly displaced inwards �see also the insets of Fig. 5�.

The density value at the focus for �=−1 is only 9% of its
maximum on the circle �
0.65
, but it is very large in
comparison with the incident beam energy density:
u�0,0� /uinc

max=4.7
106. This arises partly from focusing the
available energy to a much tighter region, with an area on the
order of 
2 for the large NA objective considered in this
example. But increasing NA has a stronger effect on the
focal energy density for this particular case �and also for �
+�=0�. This is shown in Fig. 6, where we plot the ratio
u�0,0� /uinc

max as a function of NA for �+2�=0. We also show
the results for �=0: in this case the effect of increasing NA is
less dramatic because the axial density does not vanish in the
paraxial limit.

For all ��0, the peak value of the energy density on the
focal plane is reached at a radius that increases with �. For a
paraxial Laguerre-Gaussian beam, this radius grows as ��
�for given values of w0 and 
�. Figure 5 shows that the radius
rmax of a tightly focused beam also depends on polarization.
Remarkably, for a given polarization it grows linearly with �

for large �, as shown experimentally by Curtis and Grier �20�
from the rotational dynamics of optically trapped particles.
In Fig. 7, we show that the beam radius is in fact well fitted
by a linear function for ��20.

The Poynting vector

S�r� =
1

2
Re�E 
 H�� = −

�

2
� �

�0
Im�E 
 E�� �21�

yields the energy flux density at position r. From Eqs. �6�,
�12�, and �13� we find

S� = 2�� �

�0
E0

2 Im��I0
��� − I2�

����I�
����� , �22�

S� = 2� �

�0
E0

2 Re��I0
��� + I2�

����I�
����� , �23�

FIG. 5. �Color online� Energy density ratio u�� ,0� /uinc
max versus

� /
 at the focal plane �same parameters as in Fig. 3�. FIG. 6. �Color online� Energy density ratio u�0,0� /uinc
max at the

focal point versus NA. Same parameters as in Fig. 3.

FIG. 7. �Color online� Radius of maximum energy density �di-
vided by the wavelength� versus orbital angular momentum index
�, with �=1. The result of a linear fit for ��20 is also shown
�rmax /
=0.202�+0.758�.

ANGULAR MOMENTUM OF FOCUSED BEAMS: … PHYSICAL REVIEW A 79, 033830 �2009�

033830-5



Sz =� �

�0
E0

2��I0
����2 − �I2�

����2� . �24�

As expected by symmetry, the cylindrical components do not
depend on �. Since the functions I2�

��� are real at the focal
plane z=0, we get S�=0 on this plane. This is also expected,
since S� must change sign as the beam converges and then
diverges from the focal plane. The polarization ellipses rep-
resented in Fig. 2 already provide the directions of the Poyn-
ting vector field at the focal plane: on each point, S is per-
pendicular to the corresponding ellipse. When � and � have
opposite signs and ����2, Eq. �24� yields Sz=0 at �=�P �see
Fig. 2�, so that the Poynting vector is parallel to �̂ on this
circle �or antiparallel if �+��0�. Moreover, Sz is negative
inside the disk ���P, so that the local energy current density
flux near the axis is antiparallel to the incident beam direc-
tion. Note that the sense of the electric-field rotation with
respect to the local energy flux direction is everywhere the
same, because within the disk ���P both are reversed.
Three-dimensional insight into the beam energy flow is pro-
vided by Fig. 8. The projection of the Poynting vector on the
focal plane is represented by arrows, while its axial compo-
nent is represented in magnitude and sign by the false color
map, for �=2, �=−1 �a� and �=2, �= +1 �b�. The axial sign
reversal within the circle �=�P is apparent.

The global energy flux is of course directed along the
positive z axis. Using Eqs. �7� and �24� and the result

	
0

�

d��Jn�k� sin ��Jn�k� sin ��� =
1

k2 sin �
��sin � − sin ���

�25�

we find that the global energy flux across a plane correspond-
ing to some fixed value of z is independent of z �as expected
by energy conservation� and given by

F = 8	� �

�0

E0
2

k2 ��2��2���	
0

�0

d� cos ��sin ��2���+1e−2�2 sin2 �.

�26�

We may check this result against the incident energy flux at
the objective entrance port �radius robj= f sin �0�:

Finc = 2		
0

robj

d��ẑ · Sinc. �27�

From Eqs. �1�, �3�, and �26�, we find F=nTobj
2 Finc as ex-

pected. As a final remark about the Poynting vector, we note
the transformation rules under inversion of both spin and
orbital indices ��→−� ,�→−�� obtained from Eq. �14� and
Eqs. �22�–�24�. We find that S� and Sz are invariant whereas

S� → − S�. �28�

This sign change is expected since S� is directly related to
the optical angular momentum as discussed in Sec. IV.

IV. ANGULAR MOMENTUM

From the Minkowski linear pseudomomentum density
�37� g=D
B, we get the pseudo-angular-momentum den-
sity �38�

jz��,z� = n2�S�/c2, �29�

which may be numerically calculated from Eqs. �7� and �23�.
In Fig. 9, we plot the dimensionless density �umax is the
energy density at the focus for �=0�

FIG. 8. �Color online� The arrows represent the projection of the
Poynting vector on the focal plane, for �=2 and �a� �=−1, �b� �
=1 �same parameters as in Fig. 3�. The values of Sz /Sinc z

max are rep-
resented by the false color map �Sinc z

max is the maximum Poynting
vector of the incident beam�. In case �a�, Sz is negative within the
circle �=�P.
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j̃z =
�jz

umax

as a function of � /
 for several values of � and �. According
to Eq. �28�, negative values of � for a given polarization �

are obtained simply by changing the sign of j̃z calculated for
−� and −�.

The results shown in Fig. 9 are qualitatively similar to
those for a paraxial beam, with 
 playing the role of the
paraxial beam waist w0 as a transverse length scale for our
diffraction-limited beam. For a paraxial beam, the orbital
contribution is proportional to ��E�2, whereas the spin is pro-
portional to −�����E�2 /2 �14�. For �=−1, Fig. 9 shows that
the pseudo-angular-momentum density is in fact negative
near the outer edge of the ring of maximum intensity
����E�2�0� as in the paraxial case. Closer to the beam axis,
on the other hand, the density is always positive for ��0, so
that one might be tempted to conclude that the orbital con-
tribution dominates near the beam axis.

However, the identification of spin and orbital contribu-
tions is not straightforward �see Refs. �24,25� for a general
discussion�, particularly in the nonparaxial regime, as shown
by Barnett and Allen �27�. They took a general nonparaxial
cylindrically symmetric beam containing a phase factor ei��.
Besides the ambiguity in the identification of spin and orbital
contributions, the ratio between the total angular momentum
per unit length and the total energy per unit length was found
not to be ��+�� /� as in the case of a paraxial beam.

The nonparaxial focused beam model, as derived here,
does not coincide with the Barnett-Allen model. The reason
is that the angular position phase factor is not simply ei��:
the Cartesian electric-field components contain instead all
three phase factors ei��, ei��+���, and ei��+2��� according to
Eqs. �4�–�6�. Nevertheless, we find the same ambiguity con-
cerning the separation between spin and orbital contributions
to the pseudo-angular-momentum density in the dielectric
medium, and no simple relation between pseudo-angular-
momentum and energy per unit length.

A more convenient description of optical angular momen-
tum flow outside the paraxial regime is provided by the an-
gular momentum current flux density, represented by a
second-order tensor Mij �39�. With the pseudo-angular-
momentum density given by Eq. �29� in terms of the
Minkowski linear pseudomomentum �38�, the flux density of
the axial pseudo-angular-momentum component along the z
direction is

Mzz =
1

2
Re�y��ExEz

� + �0HxHz
�� − x��EyEz

� + �0HyHz
��� .

�30�

It is useful to write Ez and Hz in Eq. �30� in terms of the curl
of H and E by using the Maxwell equations. The factor �
appearing in Eq. �30� is canceled, and the resulting expres-
sion is further simplified by using Eq. �11� to write the mag-
netic field in terms of the electric field.

Barnett has shown that the total angular momentum flux

M = 	
0

�

d��	
0

2	

d�Mzz �31�

through a plane parallel to the xy plane can be separated into
two gauge-independent contributions, that are, associated to
the polarization and to the spatial field structure �28�. These
two contributions provide natural definitions for spin and
orbital angular momentum fluxes, respectively. After integra-
tion by parts, one finds

M = Mspin + Morb, �32�

Mspin =
�

2�
� �

�0
	

0

�

d��	
0

2	

d���Ex�2 + �Ey�2� , �33�

Morb =
�

2�
� �

�0
	

0

�

d��	
0

2	

d� Re�Ey��Ex
� − Ex��Ey

�� .

�34�

Since the component Ey already contains a factor � accord-
ing to Eqs. �1� and �5�, the prefactor � in the expression on
the right-hand side of Eq. �34� is canceled as expected.

If one applies Eqs. �33� and �34� to a paraxial LG beam,
one finds, after division by the energy flux Finc, Minc

spin /Finc
=� /� and Minc

orb /Finc=� /�. Thus, the pseudo-angular-
momentum per photon in the dielectric medium does not
depend on � and is exactly the same as in vacuum, as already
verified experimentally �38�.

We now apply Eqs. �33� and �34� to the nonparaxial fo-
cused beam. By writing the electric-field components in
terms of Im

����� ,z� as in Eqs. �4� and �5�, we find

Mspin =
2	�

�
� �

�0
E0

2	
0

�

d����I0
����2 + �I2�

����2� , �35�

FIG. 9. �Color online� Dimensionless pseudo-angular-
momentum density j̃z on the focal plane versus � /
 �same param-
eters as in Fig. 3�.
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Morb =
2	

�
� �

�0
E0

2	
0

�

d������I0
����2 − �I2�

����2� − 2��I2�
����2� .

�36�

Using definition �7� and result �25�, it is straightforward to
show that both Mspin and Morb are independent of z, so that
the spin and orbital fluxes are independently conserved as the
focused beam propagates in the region beyond the objective.
However, their values do not separately coincide with the
spin and orbital fluxes per unit power for the incident
paraxial beam before the objective. Because of the angular
dependence ei��+2��� of both Ex and Ey �cf. Eqs. �4� and �5��,
the angular derivative contained in the orbital flux in Eq. �34�
leads to the term proportional to 2� in Eq. �36�.

Only the total pseudo-angular-momentum flux per unit
power is conserved by focusing, as expected given the cylin-
drical symmetry of the objective. In fact, when adding the
spin and orbital fluxes given by Eqs. �35� and �36�, we find,
by comparison with Eq. �24�,

Morb + Mspin =
�� + ��

�
F . �37�

The relative change of the spin flux per unit power with
respect to the incident beam is

r =
Mspin/F − Minc

spin/Finc

Minc
spin/Finc

, �38�

whereas the relative change of orbital flux per unit power is
simply −�� /��r. From Eqs. �25�, �35�, and �36�, we find

r =

2	
0

�0

d�g������sin4��/2�

	
0

�0

d�g������cos �

, �39�

where

gn��� � exp�− 2�2sin2 ���sin ��2n+1. �40�

By inspection of Eqs. �39� and �40�, we conclude that r is
positive and does not depend on the sign of � nor on the
value of �. Hence the variation of Mspin /F has the sign of �
and is such that its absolute value always increases. At first
sight, values for Mspin /F outside the range from −1 /� to
1 /� might seem to contradict the fact that the photon has
spin one. Note, however, that the quantities Mspin and F
represent overall net flux balances of the local spin angular
momentum and energy across a plane of constant z, in a
situation where the polarization and the Poynting vector vary
strongly from point to point. As an illustration, consider the
case �=2, �=−1 discussed at length in Sec. II. As shown by
Fig. 1, the electric field rotates counterclockwise �as seen
from z�0� near the axis, and, as discussed in Sec. III, the
energy locally flows along the negative z direction. A picture
in terms of ray contributions then goes as follows: the flux of
rays Rfar crossing the plane far from the axis contributes
Rfar�� to F and −Rfar� to Mspin. On the other hand, rays
crossing near the axis �flux Rnear�Rfar� provide a negative

contribution −Rnear�� to F as well as a negative contribution
−Rnear� to Mspin because they propagate along the negative z
direction with a positive z component of spin angular mo-
mentum �the crucial point here is that the angular momentum
is a vector quantity whereas the energy is a scalar�. The net
overall ratio is then

Mspin

F
= −

Rfar + Rnear

Rfar − Rnear

1

�
� −

1

�
.

The interplay between spin and orbital fluxes is clearly a
nonparaxial effect which becomes enhanced as ��� increases,
because larger values of ��� reduce the contribution of
paraxial angles ��1 in Eq. �39�. The integrands in Eq. �39�
are equal at �m
74.5°, which corresponds to a numerical
aperture NA=1.44 for n=1.5. Typical high-NA values 1.25
and 1.4 are such that for all values of � in Eq. �39� the
integrand in the numerator is considerably smaller than that
in the denominator, leading to small values for the relative
change r. In Table I, we show the values of r for NA=1.25
and 1.4, for different values of �. The orbital flux per unit
power

Morb/F = − ��/��r + ��/�� �41�

increases �decreases� when �=−1�+1�. This seems to be in
contradiction with the concept of “conversion” between spin
and orbital angular momenta �29�. Note, however, that the
connection between the global angular momentum flux cal-
culated here and the mechanical effects on local probe par-
ticles is not straightforward, particularly when local quanti-
ties vary strongly, as discussed in the previous paragraph. To
our knowledge, a consistent identification of spin and orbital
contributions to the local angular momentum or flux densi-
ties of nonparaxial beams is not available �27,28� �this is the
reason why we employ the term “interplay” rather than “ex-
change” or “interconversion”�.

V. CONCLUSION

The diffraction-limited optical beam that results from fo-
cusing a circularly polarized LG beam by a high-NA objec-
tive has some remarkable properties, particularly when � and
� have opposite signs. In this situation, the interplay between
polarization and angular spatial dependence leads to a strong
modification of the local polarization and of the energy
propagation direction in the region near the beam axis: the
energy locally propagates along the negative z direction near
the focal point for any ����2. Also, the rotation of the

TABLE I. Relative spin flux change r for different values of �.
Additional parameters as in Fig. 3.

� NA=1.25 NA=1.4

0 0.0165 0.0264

1 0.0382 0.0703

2 0.0579 0.118

3 0.0742 0.162
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electric-field projection onto the focal plane is reversed; e.g.,
when �+2�=0, the polarization at the focal point is circular
with the reversed rotation. All these effects disappear in the
paraxial limit, which can be obtained from our results by
taking low values of NA or a small waist size at the entrance
port, thereby underfilling the objective aperture ���1.�.

The total angular momentum flux per unit power across a
plane perpendicular to the z axis is conserved by the focusing
effect, but not the separate spin and orbital contributions. On
the other hand, they are separately conserved as the beam
freely propagates beyond the objective. We have presented
quantitative results for the modification of the spin and or-
bital fluxes. Even for the highest possible values of NA, the
relative spin flux modification is typically small, but it grows
with �.

Interplay between light orbital and spin angular momen-
tum is an unfamiliar concept. Geometrical insight concerning
this effect was provided in connection with Fig. 1 �cf. �22��:
in the paraxial case, spin has to do with the change in rota-
tional orientation of the electric-field vector at a given point,
whereas orbital angular momentum is associated to its
change around a circle at a given time. When focusing a

circularly polarized LG beam, the interesting patterns emerg-
ing from the combination of these two concepts give rise to
surprising results near the beam axis of the nonparaxial
beam. From a physical point of view, this may be regarded as
a vectorial interference effect among plane waves in the an-
gular spectrum produced by diffraction at the objective. An
analogy is provided by a �TE� or �TM� mode in a parallel-
plate waveguide: it may be described in terms of multiple
reflections of ordinary �TEM� plane waves against the walls
�boundary effects�, but vectorial interference leads to the ap-
pearance of longitudinal field components.

The results presented in this paper have possible applica-
tions to optical trapping. A calculation of the optical force
and torque on dielectric spheres along the lines presented
here is currently under way.
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