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The analysis of an angular distribution of the emission intensity of a two-level atom �dipole� in a photonic
crystal reveals an enhancement of the emission rate in some observation directions. Such an enhancement is the
result of the bunching of many Bloch eigenwaves with different wave vectors in the same direction due to the
crystal anisotropy. If a spatial distribution of the emission intensity is considered, the interference of these
eigenwaves should be taken into account. In this paper, the far-field-emission pattern of a two-level atom is
discussed in the framework of the asymptotic analysis of the classical macroscopic Green’s function. Numeri-
cal example is given for a two-dimensional square lattice of air holes in polymer. The relevance of results for
experimental observation is discussed.
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I. INTRODUCTION

Light emission in a photonic crystal has attracted a sub-
stantial attention both in theoretical �1–12� and experimental
�13–22� studies. To a large extent this interest is due to po-
tential perspectives of the emission modification and control
provided by photonic crystals. The inhibition of spontaneous
emission is possible within a spectral range of a complete
photonic band gap �1,2�, where linear propagation of light is
prohibited in all spatial directions. An emission enhancement
is a result of a long interaction time of an emitter and the
radiated field, when the emitter is coupled to the slow eigen-
mode �7,13,23� or to the strongly localized mode of a defect
state of a photonic crystal �24–26�.

It is well known that the spontaneous decay of an excited
atom strongly depends on the environment �27�. Both the
emission rate and the emission directionality can be affected.
In the simplest case of a two-level atom placed in an inho-
mogeneous medium, the emission dynamics can be de-
scribed by the integro-differential equation for the upper-
state occupation probability amplitude �8,28�

Ċ�t� = − �
0

t

dt�K�t − t��C�t� �1�

with the kernel K�t− t�� defined by

K�t − t�� =
1

2��0
�

0

�

d����r0,��exp�− i�� − �0��t − t��� ,

�2�

where

��r0,�� =
2�

�c2d · Im�GJ �r0,r0,��� · d �3�

is the projected local density of states �PLDOS� �29,30�.
GJ �r ,r� ,�� is the classical macroscopic dyadic Green’s func-

tion defined by the inhomogeneous wave equation �31�

��2

c2 ��r� − � � ���GJ �r,r�,�� = − �J	�
�r − r�� . �4�

Here �J	�
�r−r�� is the �-transverse dyadic delta function

�4,32�, r0, �0, and d are atom location, transition frequency,
and transition dipole moment, respectively. c is a speed of
light in vacuum. In the case of a general linear nonmagnetic
dielectric medium with arbitrary three-dimensional �3D� pe-
riodic dielectric function, ��r�, the Green’s function can be
expressed in the Bloch mode basis as �4,31�

GJ �r,r�,�� =
c2

V
�
nk

Ank�r� � Ank
� �r��

�nk
2 − �� + i
�2 . �5�

Here Ank�r� are Bloch eigenwaves characterized by the band
index n, the wave vector kn, and the eigenfrequencies �nk.
Bloch eigenwaves are solutions of the homogeneous wave
equation and obey the gauge � · ���r�Ank�r��=0, normaliza-
tion, and completeness conditions �4,32�. The asterisk � and
� denote the complex conjugate and the outer tensor prod-
uct, respectively. A positive infinitesimal 
 assures causality.

In the limit of the weak coupling �Markov approxima-
tion�, a coarse-grained description of the atomic motion
memory effects can be disregarded �8,28� and Eq. �1� yields
the familiar exponential decay of the excited state with a
decay rate given by

��r0,�0� =
��0

��0
��r0,�0�

=
��0

��0V
�
nk

	Ank�r0� · d	2���0 − �nk� , �6�

and the spatial distribution of the emitted intensity given by
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2
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This approximation gives the correct result for emission
modification in most of the situations considered in the
present paper. In the same time, special care should be taken
for frequencies near the photonic band edges or other van
Hove singularities, where the memory effects become sig-
nificant and Eq. �1� should be analyzed instead of a direct
use of Eqs. �6� and �7�.

In Eqs. �1�, �6�, and �7� all parameters of a periodic envi-
ronment relevant for the atomic evolution are contained via
the classical Green’s function and its Bloch mode expansion
�5�. Emission rate �6� is proportional to the density of avail-
able Bloch eigenmodes weighed by the coupling strength
between the atomic dipole moment and the corresponding
mode. Emitted intensity �7� at the point r is determined both
by the spectral and angular emission rate modifications and
by the interference of the Bloch modes at this point.

In contrast to total emission rate modification �6�, angular-
resolved emission experiments, e.g., �21,22�, usually probe
only a small fraction of the solid angle detecting the emis-
sion modification in a particular direction in space. To ana-
lyze such angular-resolved emission experiments, a frac-
tional power emitted per solid angle in space can be
introduced. It has been shown that the radiation pattern of the
classical dipole in a photonic crystal can demonstrate a
strong modification with respect to the dipole radiation pat-
tern in vacuum �21,33�. For example, in a photonic crystal
with incomplete band gap, the angular-resolved emission rate
is suppressed in the direction of the spatial stop band and
strongly enhanced in the direction of the group velocity,
which is stationary with respect to a small variation in the
wave vector �photon focusing� �33�. Such an enhancement is
the result of the bunching of many Bloch eigenwaves with
different wave vectors in the same spatial direction due to the
crystal anisotropy �34,35�. For a coherent light source, this
inevitably leads to the interference of the Bloch eigenwaves
at the detector plane and additional modification of the spa-
tial distribution of the emission intensity.

In this paper, the physical picture of the interference
fringes formation in the far-field-emission pattern of the two-
level atom placed in a periodic medium is considered. The
paper is organized as follows. The evaluation of the
asymptotic form of emitted intensity �7� is given in Sec. II in
the radiation zone. The physical explanation and the rel-
evance of results for experimental observation are discussed
in Sec. III. In Sec. IV a numerical example is given for a
two-dimensional polymer photonic crystal. Section V sum-
marized the main results of the paper.

II. ASYMPTOTIC FORM OF EMITTED INTENSITY

By taking into account the Bloch theorem, Ank�r�
=ank�r�eikn·r, where ank�r� is a lattice periodic function, and
changing the k-space summation to the corresponding

k-space integral, �k→ �V /8�3��d3k, Eq. �7� can be ex-
pressed as

I�r,r0,�0� = 
 �0
2

8�3�0
�

n
� d3kn

�ank
� �r0� · d�ank�r�

�nk
2 − ��0 + i
�2

�exp�ikn · �r − r0��
2

. �8�

For large 	x	= 	r−r0	 the exponential function in integral �8�
oscillates rapidly. To evaluate the integral, the method of
stationary phase can be used. As it was shown in �33�, the
principal contribution to the integral comes from the regions
of the isofrequency surface in the wave vector space, at
which the eigenwave group velocity is parallel to observa-
tion direction x. Then, the integral in Eq. �8� can be trans-
formed to the form

I�r,r0,�0� � 
 �0

8�2�0
�

�
�

n

�ank
���r0� · d�ank

� �r�
	Vnk

� 	

�
�0

d2kn exp�ikn · �r − r0��
2

, �9�

where Vnk
� is the group velocity of the Bloch eigenwave, the

integration is over the isofrequency surface �nk=�0, and
summation is taken over all stationary eigenwaves � with a
group-velocity vector pointing in the observation direction
x=r−r0.

The result of the integration in Eq. �9� depends on the
local topology of isofrequency surface �nk=�0. It is conve-
nient to introduce the local curvilinear coordinates i with the
origin at the isofrequency surface and with one of the coor-
dinate aligned perpendicular to it, e.g., 3. Then, a function
h�1 ,2�=kn · x̂ can be expanded in a series near the wave
vector of the eigenwave �� ,n ,k�,

h�1,2� = kn
� · x̂ +

1

2 �
i,j=1

2

�ij
� i j +

1

6 �
i,j,k=1

2

�ijk
� i jk

+ O�1,2�4, �10�

where

�ij
� = � �2h

�i �  j
�

�

, �ijk
� = � �3h

�i �  j � k
�

�

and x̂ is a unit vector in the observation direction x=r−r0. If
the isofrequency surface has a nonvanishing Gaussian curva-
ture in the vicinity of the wave vector kn

�, only quadratic
terms in expansion �10� can be kept, leading to the following
asymptotic from of far-field intensity �9� �33�:

I�r,r0,�0� � 
 �0
2

4��0
�

�
�

n

exp�− i
�

4
�sgn��1

�� + sgn��2
����

�
�Ank

���r0� · d�Ank
� �r�

	Vnk
� 	

1

	Knk
� 	1/2	r − r0	
2

�11�

where Knk
� =�11

� �22
� determines the Gaussian curvature of the

isofrequency surface at the point kn=kn
� �stationary point�

DMITRY N. CHIGRIN PHYSICAL REVIEW A 79, 033829 �2009�

033829-2



and summation is over all stationary points with x ·Vnk
� �0.

The emission intensity far from an atom is proportional to
the inverse Gaussian curvature of the isofrequency surface,
�	Knk

� 	−1, and to the inverse square of the distance between
the source and the observation point, �	x	−2. The asymptotic
energy flux shows the necessary amount of decrease with
distance ��	x	−2�, providing a finite value of the energy flux
in any finite interval of a solid angle, assuming nonvanishing
Gaussian curvature. A vanishing curvature formally implies
an infinite flux along the corresponding observation direc-
tion, leading to the photon focusing phenomenon �33,36–38�.

Strictly speaking, the asymptotic behavior of emission in-
tensity �11� is valid only if quadratic terms in expansion �10�
do not vanish so that all higher order terms in the expansion
can be neglected. A parabolic point of the isofrequency sur-
face is an example of vanishing quadratic terms in Eq. �10�.
Generally, the Gaussian curvature is zero at a parabolic point
and one �both� of the principal curvatures of the isofrequency
surface is zero. Actually, at parabolic points the asymptotic
behavior of the emitted intensity, i.e., the dependence of the
intensity on the inverse distance ��	x	−1�, changes to the
power of the inverse distance.

As an illustration one can consider the simple parabolic
point k0=kn

0 in the vicinity of which the function h�1 ,2�
has the expansion �39�,

h�1,2� = k0 · x̂0 +
1

2
�1

2 +
1

6
�2

3, � = �11
0 , � = �111

0 ,

�12�

where x̂0 is the unit vector in the direction normal to the
isofrequency surface at the parabolic point k0. The local cur-
vilinear coordinates i has the origin at the parabolic point
k0, with the coordinates 1 and 2 aligned along the direc-
tions of the principal curvatures of the isofrequency surface
at this point and with the coordinate 3 aligned along x̂0. For
the parabolic point k0 �Eq. �12�� one of the principal curva-
tures vanishes ��22

0 =0�, while another principal curvature re-
mains nonzero. Using expansion �12� the asymptotic form of
intensity �9� can be expressed as

I�r,r0,�0� � 
 �0

8�2�0

�a0
��r0� · d�a0�r�

	V0	
exp�ik0 · x�

��
−�

� �
−�

�

d1d2 exp�i	x	��

2
1

2 +
�

6
2

3��
2

,

�13�

where A0�r�=a0�r�exp�ik0 ·r� and V0 are the Bloch mode
and the group velocity associated with the parabolic point k0,
respectively. Calculating integrals in Eq. �13� leads to

�
−�

�

d exp�i
x�

2
2� =� 2�

x	�	
exp�−

i�

4
sgn���� �14�

for the direction 1 and

�
−�

�

d exp�i
x�

6
3� =

3

�3 x	�	
��4

3
� , �15�

for direction 2. Here �� 4
3 � is the Gamma function. Now,

combining Eqs. �14� and �15� the following expression for
the emission intensity associated with the parabolic point
�Eq. �12�� can be obtained �40,41�:

I�r,r0,�0� � 
 3

25/2
�0

�3/2�0
exp��

4
�sgn�������4

3
�

�
�A0

��r0� · d�A0�r�
	V0	

1

	�	1/2	�	1/3	r − r0	5/6
2

.

�16�

The emission intensity associated with a parabolic point
falls off with the distance as 	x	−5/3 in contrast to the usual
inverse square law 	x	−2 for other directions. If there are no
additional singularities on the parabolic line, the product
	�		�	1/2�K, where K is the Gaussian curvature at an arbi-
trary point of the isofrequency surface. Then the emission
intensity is proportional to K−1	�	−1/6. Thus, at large 	x	, the
energy flux along the direction corresponding to a parabolic
point on the isofrequency surface exceeds the energy flux
along the direction corresponding to an elliptical point in the
ratio 	x	1/3	�	1/6.

Expression �16� gives the asymptotic emitted intensity in
the direction x̂0 associated with a parabolic point on the isof-
requency surface k0, so in the direction of the group velocity
at the parabolic point. Now, the asymptotic intensity for di-
rections x̂ near the direction of that group velocity will be
calculated. As before, the origin of the coordinates i is cho-
sen at the parabolic point, where the direction of observation
x̂ coincides with direction x̂0. It is assumed that the principal
curvature vanishes in the 2 direction. Let the position x�x 	 x̂�
be described by coordinates xi. Then, since x is nearly par-
allel to x̂0 one have from Eq. �12� �39�,

3 =
1

2
�1

2 +
1

6
�2

3

and

kn · x � k0 · x + 1x1 + 2x2 + �1

2
�1

2 +
1

6
�2

3�x3. �17�

Using expansion �17� the asymptotic form of intensity �9� is
given by

I�r,r0,�0� � 
 �0

8�2�0

�a0
��r0� · d�a0�r�

	V0	
exp�ik0 · x�

��
−�

�

d1 exp�i�x11 +
1

2
�	x	1

2��
��

−�

�

d2 exp�i�x22 +
1

6
�	x	2

3��
2

,

�18�

where the fact that 	x	 and x3 are approximately equal was
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used. The integral in Eq. �18� over 1 is calculated simply to
be

�
−�

�

d1 exp�i�x11 +
1

2
�	x	1

2��
=

�2�

	�	1/2	x	1/2exp�− i
x1

2

2�	x	
�exp�−

i�

4
sign���� ,

while the integral over 2 results in

�
−�

�

d2 exp�i�x22 +
1

6
�	x	2

3��
=

24/3�

	�	1/3	x	1/3Ai�x2
21/3

	�	1/3	x	1/3� ,

where Ai is the Airy function. Then asymptotic emitted in-
tensity �18� is finally given by

I�r,r0,�0� � 
 1

27/6
�0

��0
exp�− i� x1

2

2�	x	
+

�

4
sgn�����

�
�A0

��r0� · d�A0�r�
	V0	

1

	�	1/2	�	1/3	r − r0	5/6

�Ai� x2

a
�
2

, �19�

where a= �	�		x	 /2�1/3.
As in the case of asymptotic intensity �16�, energy flux in

the direction x falls off as 	x	−5/3 and exceeds the energy flux
along the other directions in the ratio 	x	1/3	�	1/6. The depen-
dence of the energy flux in the plane of the vanishing prin-
cipal curvature is given by the square of the Airy function
�Ai�x2 /a��2. When x2 /a is positive, the energy flux is small
and exponentially drops while the angle between direction of
observation and direction corresponded to the parabolic point
increases �Fig. 1�. For negative x2 /a, the flux oscillates rap-
idly and has a mean value averaged over one cycle propor-
tional to ��x2 /a�−1/2 �Fig. 1�. A mean value of the energy

flux is then proportional to 	�	−1	�	−1/2�K−1 and 	x	−2 and
coincides with the asymptotic energy flux associated with an
elliptical point of isofrequency surface �Eq. �11��, demon-
strating focusing of the energy flux in the direction corre-
sponding to the parabolic point of the isofrequency surface.

III. INTERFERENCE OF BLOCH EIGENWAVES

The vanishing curvature of the isofrequency surface re-
sults in the folds of the wave front �wave surface� �33�. Then,
for the direction near the fold of the wave surface the field is
a superposition of several Bloch eigenwaves �Fig. 2�. In the
far field, where the source-to-detector distance is much larger
than the source size and the wavelength, the part of the wave
front limited to the small solid angle can be approximated as
a Bloch eigenwave with the group velocity within this angle.
If there is a relative difference in the lengths or directions of
the wave vectors of Bloch eigenwaves, the eigenwaves can
interfere, yielding oscillations in the energy flux distribution.
This can be already seen from the general expression for
emitted intensity �7�.

Two general conditions are required for the interference to
occur. The polarization states of the Bloch eigenwaves must
be nonorthogonal and the Bloch eigenwaves must overlap in
space �42�. This kind of interference of the Bloch eigen-
waves will be called further a self-interference to stress that
the field produced by the light source inside a photonic crys-
tal can interfere with itself producing an interference pattern
in the energy flux distribution. A similar self-interference ef-
fect also happens in the case of ballistic phonons propagation
in acoustically anisotropic crystals �41,43�.

For a more qualitative measure of the self-interference
effect the isofrequency surface superimposed on a photonic

0−10 5

0.1

0.2

0.3

0.4

� � � �

A
i(

x
2
/
a
)2

FIG. 1. Plot of Airy function �Ai�x2 /a��2 �solid line� and its
mean value �1 /4��−1�x2 /a�−1/2 �dashed line�. The dashed line can
be considered as the “geometrical optics” approximation of the Airy
function.

�

�

�

�

�

FIG. 2. Diagram illustrating the self-interference of the Bloch
eigenwaves in a photonic crystal. A section of the wave surface with
a fold is presented �thick solid line�. The asymptotic intensity �solid
line� displays oscillations as the angle passes the fold section of the
wave surface. The asymptotic intensity in the “geometrical optics”
limit demonstrates focusing caustics in the direction of the folds
�dashed line�. Within a small solid angle the far field of a point
source consists on superposition of three Bloch eigenwaves with
different wave vectors. These Bloch eigenwaves interfere leading to
oscillations in the intensity distribution. Only two wave vectors are
illustrated for clarity.
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crystal is considered in Fig. 3. Here evaluation presented by
Hauser et al. �43� for the self-interference of ultrasound in a
crystal is followed. In Fig. 3, dots are parabolic points of
zero curvature. The light source is located near the bottom
surface of the photonic crystal and generates uniform distri-
bution of wave vectors. The Bloch eigenwave with wave
vector k0 propagates with the group velocity V0, normal to
the isofrequency surface at k0, arriving at the point R0 on the
opposite surface of the crystal. Near the parabolic point the
isofrequency surface are practically flat, neighboring wave
vectors have nearly the same group velocity. This gives rise
to the high-intensity caustic in the detected intensity distri-
bution �Fig. 3, left�. If the detector is moved to a point R1
slightly away from R0, two distinct Bloch eigenwaves with
different wave vectors k1� and k2� near k0 arrive at the detec-
tor �Fig. 3, right�. If the surface were perfectly flat near k0,
then k1� ·R1=k2� ·R1, and the two eigenwaves would always
remain in phase at the detector, interfering constructively. In
reality the isofrequency surface is curved near the parabolic
point, so as R1 is rotated downward the corresponding waves
begin to interfere destructively, producing an Airy pattern
�Figs. 1–3�. If k1� and k2� are close to k0, and q�k1�−k0
�k2�−k0, then destructive interference will take place if the
total phase difference of the light as it travels through the
sample, 2q ·R1, is an odd integer multiple of �.

Strictly speaking, there is one more Bloch eigenwave fol-
lowing in the observation direction in the fold region of the
wave surface �Figs. 2 and 3�. This eigenwave is depicted as
V1 and V3� in the left and right panels of Fig. 3, respectively.
To obtain a complete picture of the self-interference near the
fold of the wave surface, a three-wave interference should be
taken into account, which would lead to more complicated
interference patterns in the intensity distribution. Here, the
influence of this third eigenwave is neglected for simplicity,
hence this eigenwave usually has a relatively small group

velocity and could arrive at the detector too late to interfere
with the eigenwaves k1� and k2�.

From the perspective of the self-interference effect, the
mean value of asymptotic energy flux �19� averaged over one
cycle of Airy oscillations can be viewed as a “geometrical
optics” approximation of the actual energy flux. This ap-
proximation then corresponds to the ray description of wave
propagation, where the energy flux is simply proportional to
the density of rays crossing a detector surface. In this picture
the interference among different rays is neglected. Then, the
emission rate enhancement in the focusing direction can also
be interpreted as the relative increase in the rays density or as
an increased probability of the photon emission in this ob-
servation direction. As it has been mentioned above, the
mean value of asymptotic flux �19� coincides with
asymptotic energy flux �11� derived for elliptical points of
the isofrequency surface. So, asymptotic energy flux �11�
corresponded to an elliptical point can be also considered as
a “geometrical optics” approximation, and can be used for all
points of the isofrequency surface within this approximation.

In a typical experiment the differences between energy
flux �19� and its “geometrical optics” approximation �11�
will be reduced by the effect of the finite size of the light
source and the detector. It is clear that if the linear dimen-
sions of the source area and detector are L, the intensity is
averaged over x2 values with a spread of L. To see the oscil-
lations of the energy flux one therefore needs L���R1,
where R1 is the distance between the source and the detector
and �� is an angular separation of the fringes of intensity
distribution.

To estimate this angular separation, Bloch eigenwaves k1�
and k2� are further approximated by plane waves. Then their
superposition at the detector position R1, assuming that they
have the same polarization, is �43�

exp�ik1� · R1� + exp�ik2� · R1� = 2 cos��k · R1�exp�ik0 · R1� ,

which is a plane wave with average wave vector k0= �k1�
+k2�� /2, modulated by a cosine function with effective wave
vector �k /2= �k2�−k1�� /2. When �k ·R1=�k�R1=�, the
waves interfere destructively at the detector. To estimate �k�

a local Cartesian coordinate system i with the origin at k0
and 3 along V0 is chosen as it is shown in Fig. 3 �left�.
Then, the isofrequency surface near the parabolic point can
by parametrized as 3=−a2

3 /k0 and �k� =−23=2a2
3 /k0

2

�43�. Therefore, the first minimum in the intensity will occur
when

2 = ��k0
2/2aR1�1/3 � R1

−1/3�−2/3,

where �=2� /k0 is the average wavelength. Finally, the
coordinate-space angle between the intensity maximum and
the first minimum is given by �43�

�� � 	V1� − V0	/V0 = 3a��/2ak0R1�2/3 � ��/R1�2/3.

�20�

Then for optical wavelengths, e.g., 500 nm, and a distance to
the detector of 1 cm the linear dimension of the light source
and the spatial resolution of the detector should be smaller
than 10 �m. So, in most experiments “geometrical optics”

� � � � � � � � � �� � � � � � � � � �
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FIG. 3. Schematic of self-interference in a photonic crystal. The
isofrequency surface is a sketch of the isofrequency surface of a
real 2D photonic crystal. The plot on the top is the detected inten-
sity distribution. Left: for the wave vector k0, the group velocity is
V0, and the wave arrives at R0. Right: there are two eigenwaves
with different wave vectors ki�, which group velocity points in the
same direction R1. The difference in the wave vectors of these
eigenwaves results in the waves arriving at R1 with different phases
and leads to interference.
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approximation �11� reasonably represents an asymptotic
emission intensity of the light source inside a photonic crys-
tal.

IV. NUMERICAL EXAMPLE

In this section different approximations of the light-
emission pattern, discussed in Sec. II, are compared. Numeri-
cal calculations are done for a point source placed inside a
two-dimensional polymer photonic crystal. A point source
produces an isotropic and uniform distribution of wave vec-
tors kn with the frequency �0. Then, the asymptotic field in
Eqs. �9� and �11� should be averaged over the dipole moment
orientation, which yields a factor of 	d	 /3.

As it was pointed out in Sec. II, the main contribution to
the far field of a point source inside a photonic crystal comes
from the vicinity of the wave vector of the eigenmodes with
the group velocity pointing in the observation direction. That
means that the far-field-emission intensity of a point source
is mainly given by the square of the integral in Eq. �9�,

Iw � 

�0

d2kn exp�ikn�r − r0��
2

. �21�

In what follows, the contribution only from one photonic
band is considered. In “geometrical optics” approximation
�11� the main contribution to the far-field-emission intensity
is then given by an inverse Gaussian curvature of the isofre-
quency surface,

Ig � �
�

	Knk
� 	−1. �22�

The angular distribution of the far-field intensity depends
on the topology of the isofrequency surface of the crystal at
the emission frequency �Eqs. �21� and �22��. In what follows,
an infinite two-dimensional square lattice of air holes in a
polymer background is considered. Polymer has the refrac-
tive index n=1.56, radius of holes is r=0.15d, where d is the

lattice period. The consideration is limited to the in-plane
propagation of the TM mode of the crystal. The photonic
band structure of such a photonic crystal is presented in Fig.
4. The band structure has been calculated using the plane-
wave expansion method �44�.

The isofrequency contours for the normalized frequency
�=0.333 is presented in Fig. 5. The frequency belongs to the
first photonic band and it is within the first stop band in the
�X direction of the crystal. To plot an isofrequency contour,
the photonic band structure for all wave vectors within the
irreducible Brillouin zone was calculated and then an equa-
tion ��k�=�0 was solved for a given frequency �0. The
isofrequency contour is an open contour and has alternating
regions of the Gaussian curvature with a different sign. Para-
bolic points, where the Gaussian curvature vanishes, are
marked by black dots in Fig. 5. The vanishing curvature
results in the folds of the wave contour and in the focusing of
the light in the folds direction �33�. The wave contour corre-
sponding to the isofrequency �=0.333 is presented in Fig. 6.

� � � � � � �

d

FIG. 4. Photonic band structure of the square lattice of air holes
made in a polymer. Polymer has the refractive index 1.56. Radius of
holes is r=0.15d, where d is the lattice period. The band structure is
given for TM polarization. The frequency is normalized to �
=�d /2�c=d /�. c is the speed of light in the vacuum. Insets show
the first Brillouin zone �right� and a part of the lattice �left�.

FIG. 5. Isofrequency contour of the square lattice photonic crys-
tal �Fig. 4� for the normalized frequency �=0.333. Parabolic points
are marked by the black dots. The first Brillouin zone of the lattice
is plotted in order to show the spatial relation between zone bound-
ary and isofrequency contours.

� � � ��

�

�

�

0.0

0.0

1.0

1.0

−1.0
−1.0

� � � �

� � � �

� � � �

Æ

FIG. 6. Wave contour corresponded to the normalized frequency
�=0.333. The group velocity is plotted in the units of the speed of
light in vacuum. The directions corresponded to the folds of the
wave contour are shown.
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A pair of the parabolic points in the first quarter of the Bril-
louin zone results in a cuspidal structure of the wave con-
tours in the first quarter of the coordinate space. In Fig. 7 the

polar plot of the main contribution to the far-field intensity in
“geometrical optics” approximation �22� is presented. The
energy flux is strongly anisotropic, showing relatively small
intensity in the directions of the stop band, and infinite in-
tensity �caustics� in the directions of the folds.

In Fig. 8 the comparison of the “geometrical optics” �Eq.
�22�� and “wave optics” �Eq. �21�� approximations of the
far-field-emission intensity is given. A normalized inverse
Gaussian curvature of the isofrequency surface �=0.333 is
presented in the top panel. Focusing directions, 22° apart
from the �10� direction of the square lattice, are clearly seen.
Integral �21� evaluated for the distance 100 period apart from
the point source is given in the middle and the bottom panels
of Fig. 8. The normalized intensity distribution presented in
the middle panel was calculated by reducing the integration
limits in Eq. �21� to the close neighborhood of the parabolic
point of the isofrequency surface. Then the result of the in-
tegration is similar to one in Eq. �19� and an angular distri-
bution of the emission intensity resembles the square of the
Airy function. Actually, this approximation takes into ac-
count an interference of only two Bloch eigenwaves in the
fold region. If the three-wave interference is taken into ac-
count, by extending the integration limits in Eq. �21� over all
isofrequency surface in the first quarter of the Brillouin zone,
a more complex interference pattern appears in the angular
emission intensity distribution �Fig. 8, bottom�. Both “wave
optics” approximations show an intensity enhancement along
fold directions.

In Fig. 9 a two-dimensional map of the intensity distribu-
tion inside a 50�50 photonic crystal is presented. The inten-
sity distribution was calculated using Eq. �21� by integration
over complete isofrequency contour �=0.333. The structure
of the crystal is superimposed on the field map. Folds direc-
tions are shown by black lines. The focusing of the light in
the fold direction together with Airy-like oscillations be-
tween folds directions are clearly seen in Fig. 9.

� � � �� � � �

� � � �

� � � �

Æ

FIG. 7. Angular distribution of radiative power corresponding to
the normalized frequency �=0.333. The directions of infinite radia-
tive power �caustic� coincide with the directions of the folds of the
wave contour �Fig. 6�.

FIG. 8. “Geometrical optics” �22� and “wave optics” �21� ap-
proximations of the far-field-emission intensity. Normalized fre-
quency is �=0.333. The distance between a point source and a
detector is 100 lattice periods. The top panel is for the “geometrical
optics” approximation. The middle and bottom panels are for the
“wave optics” approximations. See text for more details.

FIG. 9. An asymptotic map of the intensity distribution inside a
50�50 photonic crystal. Normalized frequency is �=0.333. The
structure of the crystal is superimposed on the field map. Folds
directions are shown by black lines.
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To substantiate an asymptotic analysis, the finite differ-
ence time domain �FDTD� calculations were done �45,46�.
The simulated structure was a 50�50 lattice. The crystal is
surrounded by an extra two lattice constants wide layer of
polymer. The simulation domain was discretized into squares
with a side �=d /32. The total simulation region was 1728
�1728 cells plus eight-cell wide perfectly matched layer
�PML� �47�. The point isotropic light source was modeled by
a current-density source �45,46� with a homogeneous spatial
dependence and sinusoidal temporal dependence of the sig-
nal.

In Fig. 10 the map of the modulus of the Poynting vector
field is shown, when the crystal is excited by a point isotro-
pic source. The point source is placed in the middle of the
crystal. A field map is shown for one instant time step. The
snapshots were captured after 10000 time steps, where the
time step was 4.38�10−17 s �0.99 of the Courant value�.
The structure of the crystal is superimposed on the field map.
One can see that the emitted light is focused in the directions
of the folds �black lines�. Moreover, an interference pattern
between the folds directions is in a reasonable agreement

with the interference pattern predicted using the asymptotic
analysis �Fig. 9�. For the FDTD calculations, a periodic
modulation of the intensity in the radial direction will go
away if time averaging is performed. The comparison of the
intensity distribution, 20 periods apart from the point source,
is given in Fig. 11. A reasonable agreement between interfer-
ence minima and maxima positions for the asymptotic �solid
line� and the FDTD �dashed line� calculations is shown. The
disagreement in the absolute values of the angular intensity
distributions is mainly because of the prefactor of the inte-
gral in Eq. �9� which was neglected in Eq. �21� for simplicity.

V. SUMMARY

It was shown that the intensity modulation of the angular-
resolved emission spectra is not only due to the emission rate
modification, but also is the result of the interference of sev-
eral photonic crystal eigenmodes with different wave vectors
approaching detector at the same moment of time. Using an
asymptotic analysis of classical Green’s function, “geometri-
cal optics” and “wave optics” approximations of the emitted
intensity due to a two-level atom were introduced in the
radiation zone. The physical reasons for the interference pat-
tern formation and the possibilities of its experimental obser-
vation were discussed. A numerical example was given in the
case of polymer two-dimensional photonic crystal. It was
shown that rigorous FDTD calculations are in a reasonable
agreement with the developed approximate analysis.
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