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We consider propagation of a weakly nonlinear probe light beam in a resonant three-level atomic system
where an optical lattice is induced by a standing-wave control field and conditions for electromagnetically
induced transparency are created. We employ a unified theory to solve the respective nonlinear system of
equations in various regimes and investigate formation of spatial optical solitons and instabilities, both ana-
lytically and numerically. We show that the effect of the lattice is twofold. On the one hand it allows one to
reduce the probe beam intensity necessary for observation of nonlinear effects until the level of one-photon
energy, and on the other hand the lattice allows for implementation of different dynamical regimes either by
simple manipulation of its parameters or by varying one- and two-photon detunings or by changing the
geometry of the incident probe beam.
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I. INTRODUCTION

Solitons are of particular interest due to their practical
applications in optical information processing and transmis-
sion �1�. Most of optical solitons are produced in passive
media, such as glass-based optical fibers, in which far-off-
resonance excitation schemes are generally employed in or-
der to avoid uncontrollable optical attenuation and distortion.
A drawback of such systems is that their nonlinear effects are
usually very weak and hence either very high light intensities
or very long optical paths are required for formation of soli-
tons.

Different situation is observed in resonant media allowing
for the phenomenon called electromagnetically induced
transparency �EIT�, which recently received a great deal of
attention �2�. When the conditions for the EIT are created,
application of a strong resonant control field to an opaque
medium makes it transparent to a weak probe field. Due to
the atomic coherence and interference induced by the control
field, propagation of the weak probe field occurs under sig-
nificant suppression of losses, reduction in the group velocity
�3�, and giant enhancement of the Kerr nonlinearity �4�. It
has been shown that a new type of optical solitons, termed
ultraslow solitons, can exist in such resonant multilevel me-
dia under EIT conditions �5�. However, up to now only a few
works were dedicated to formation of two-dimensional �2D�
spatially localized structures in EIT systems �6,7�.

On the other hand, considerable progress has been
achieved in the study of propagation of electromagnetic
waves in photonic band-gap materials �8�. The main feature
of such media is the existence of frequency gaps where linear
wave propagation is forbidden. When nonlinearity is taken
into account the so-called gap solitons can exist allowing for
wave propagation at frequencies belonging to stop gaps. Re-
cently, manipulation of light pulses via a dynamically con-

trolled photonic band-gap structure in EIT media was inves-
tigated both theoretically and experimentally �9�.

In the present work we propose to employ a resonant
optical lattice �OL�, created by a standing-wave coupling
field, which allows one to achieve two objectives as follows.
First, serving as a stabilizing factor, under proper conditions,
a lattice allows for further reduction in the probe beam in-
tensity necessary for creation of spatial solitons in a three-
level system. In this context, we mention that for sustainabil-
ity of the stable localized structures reported in Ref. �6�, a
non-negligible quintic nonlinearity was needed, what has
been achieved by using a more sophisticated medium—four-
level atomic system. Meantime, in Ref. �7� stronger probe
beam intensities resulting in saturable nonlinearity were ex-
ploited. In the present paper we show that intensities re-
quired due to the optical lattice are 2 orders less than the
reported in �7� achieving the level of one-photon energy.
Second, the lattice allows for very flexible and manageable
implementation of different nonlinear scenarios, including
generation of spatial solitons, self-focusing, as well as vari-
ous types of beam instabilities, in a three-level atomic sys-
tem under EIT conditions. This is achievable either by
changing the geometry and intensity of the control field or by
varying one- and/or two-photon detunings or by changing
the angle of incidence of the probe laser beam.

Thus, the suggested system appears to be an ideal labora-
tory for studying nonlinear phenomena in periodic media and
to be promising for designing nonlinear band-gap devices
working at very low light intensities. While periodic EIT
media have already been the subject of studies �9�, unlike in
the previous works focused mainly on linear properties of
periodic media, here we concentrate on effects which stem
from enhancement of the Kerr nonlinearity due to the EIT
effect, focusing on stable spatial solitons and different types
of instabilities of a probe beam.
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The paper is organized as follows. Section II gives a
simple description of the model at hand. The polarization of
the atomic medium for a weak probe field under the EIT
conditions is obtained. In Sec. III, the evolution equation for
the slowly varying amplitude of a probe beam is derived for
different geometries of the control field. Spatial optical soli-
ton solutions and their stability are investigated analytically
and numerically. The main outcomes of our research are
briefly summarized in Sec. IV.

II. MODEL

A. �-type three-level system

We consider a cold lifetime-broadened three-level �-type
atomic system, schematically shown in Fig. 1. A weak probe
field with the polarization vector ep, the central frequency
�p, and the wave vector kp, i.e., Ep�r , t�=epEpei�kp·r−�pt�

+c.c., couples the ground, �1�, and the excited, �2�, states. A
strong control field consisting of a pair of counterpropagat-
ing waves having the polarization vector ec, the frequency
�c, and the wave vectors kc�K ��K�� �kc��, i.e., Ec�r , t�
=2ecEc cos�K ·r�ei�kc·r−�ct�+c.c., couples the states �2� and
�3�. The total applied electric field has the form E�r , t�
=Ep�r , t�+Ec�r , t� and is considered classically. For the sake
of convenience, we choose kp=kpez, with ez being the unit
vector along z direction.

The atomic medium is described by the bosonic field op-

erators �̂i�r , t� �i=1,2 ,3�, satisfying the standard commuta-

tion relations: ��̂i�r , t� ,�̂i�
† �r� , t��=�ii���r−r�� and

��̂i�r , t� ,�̂i��r� , t��= ��̂i
†�r , t� ,�̂i�

† �r� , t��=0. We consider
the simplest case of free atoms forming a dilute gas that
allows us to neglect the energy of interatomic interactions
compared with the interaction energy between the atoms and
the light field. Then the Hamiltonian of the system reads H
=�i=1

3 Hi+Haf, where Hi �i=1,2 ,3� are the atomic Hamilto-
nians,

Hi =� �̂i
†	−

�2

2M
�2 + ��i
�̂id

3r , �1�

M is the atomic mass, and ��i is the internal energy of the
atoms in state �i�. Haf describes the interaction of atoms with

the electric field, and in the electric-dipole approximation has
the form

Haf = −� d3r�̂2
†��p�r,t�ei�kp·r−�pt��̂1

− 2� d3r�̂2
†��c�r,t�cos�K · r�ei�kc·r−�ct��̂3 + H.c.

Hereafter �p�r , t�=ep ·p21Ep /� and �c�r , t�=ec ·p23Ec /� are
the half Rabi frequencies of the probe and control fields,
respectively, p j j� is the electric dipole matrix element asso-
ciated with the transition between �j� and �j��, and H.c. stands
for the Hermitian conjugate.

Excluding the case of ultralow temperatures at which a
Bose-Einstein condensation of atoms can occur, we neglect
the two-body interactions. Then, for typical experimental set-
tings one can also safely neglect atomic kinetic energy which
is several orders of magnitude less than the internal energy
�see also the discussion in Sec. II, below�, what corresponds
to the approximation Hi���i �i=1,2 ,3�. Therefore it is
convenient to eliminate rapidly the oscillating exponents by

means of the transformation �̂ j�r , t�= 	̂ j�r , t�exp(i�k j ·r
− �� j − �−1� j
 j�t
), where 
1=0, 
2= ��2−�1�−�p, and 
3
=�p−�c− ��3−�1� are the one- and two-photon detuning
�see Fig. 1�, and the wave vectors are given by k1=0, k2
=kp−kc, and k3=kp.

Next, we recall that due to spontaneous emission there
exists a decay of each of the atomic states. The present con-
sideration will be restricted to the situation when the decay
rate of the state �3� is very small and can be neglected, which
can be realized by choosing �3� as a hyperfine ground state or
a metastable state. In order to establish the respective condi-
tions we focus on the more significant losses of the excited
states �2�, which we account phenomenologically by adding

the decay rate i�2 in the Heisenberg equation for 	̂2:

i
�	̂1

�t
= − �p

�	̂2, �2a�

i
�	̂2

�t
= �
2 − i�2�	̂2 − �p	̂1 − 2�c cos�K · r�	̂3, �2b�

i
�	̂3

�t
= − 
3	̂3 − 2�c

� cos�K · r�	̂2. �2c�

One can evidently neglect losses associated with the ex-
cited state if the atomic system is in the stationary dark state
�where the excited state is not populated�. Strictly speaking,
this is not the case we are dealing with because the dark state
is achievable only for the zero two-photon detuning �as this
is confirmed below�. Nevertheless one can require the system
to be in some sense “close” to the dark state where the lost of
particles is suppressed. In order to establish these conditions

we look for the solution of Eq. �2� in the form 	̂ j�r , t�
=ei�t
̂ j�r�, where the exponent � is a slowly varying func-
tion of space. This immediately yields the characteristic
equation,

ω
p

ωc

|3〉 |1〉

|2〉 ∆2

p

p

z

z

atoms

atoms

K

∆3

K

case A

case B

Ωc

Ω

Ωc

Ω

Ω Ωc c

FIG. 1. Schematic representation of the energy level structure of
the lifetime-broadened �-type atomic system �see the text for the
definitions of the notations�. Insets show two possible geometries
considered in the present study: the probe field propagation direc-
tion is orthogonal �the upper panel� and parallel �the lower panel� to
the axis of the optical lattice.
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�3 − �− 
2 + 
3 + i�2��2 + �
3�− 
2 + i�2�

− 4��c�2cos2�K · r� − ��p�2�� + ��p�2
3 = 0. �3�

Thus, if the two-photon detuning 
3 is zero we obtain
one of the characteristic values �=0, which corresponds to
the exact dark state �10� �nj = �
̂ j

†
̂ j��: n1= ��p�2 / ���p�2
+4��c�2cos2�K ·r�� n2=0, and n3=4��c�2cos2�K ·r� / ���p�2
+4��c�2cos2�K ·r��. In this case, the mean population n2 of
the excited state �2� is zero, and hence the probe beam is
exempted from absorption by the atomic medium: it propa-
gates freely and does not display nonlinear effects.

Thus, for the dissipation effects to be negligible and for
the nonlinearity to be appreciable, one has to consider the
system in a state close to the dark state, which can be
achieved for using a small but nonzero 
3. In this situation,
the population in the excited state �2� is nonzero but small
enough in comparison with the total atomic number,

N = n1 + n2 + n3. �4�

Then one of the characteristic values of � can be made very
small. Indeed assuming � small enough we obtain from Eq.
�3�

� =
��p�2
3


3�
2 − i�2� + 4��c�2cos2�K · r� + ��p�2
. �5�

Notice that �=0 is achievable only for 
3=0, i.e., for the
dark state.

Now we define one of our main approximations as

�2 � �
2� . �6�

It allows us to consider � to be real, i.e.,

� � �r =
��p�2
3


2
3 + 4��c�2cos2�K · r� + ��p�2
. �7�

Then the exponent for decay rate of the total number of
atoms is estimated as

Im � �

3�2


2
3 + 4��c�2cos2�K · r� + ��p�2
�r, �8�

where we have neglected the terms of the �2
2 order. Our

consideration in what follows is restricted to the nonresonant
case, i.e., when the denominator in Eq. �8� is different from
zero �see Eq. �16� below�. In such a case weakness of the
dissipative losses is determined not only by smallness of �2
but also by the low population of the excited state, i.e., by
the smallness of 
3.

The condition of the smallness of � is considered in more
details in Sec. II B.

B. Polarization

Now we turn to the consideration of the electric field,
which is governed by the wave equation,

�2E −
1

c2

�2E

�t2 =
1

�0c2

�2P

�t2 , �9�

where P is the polarization induced by the applied electric
field E=Ep+Ec given by the expectation value of the atomic
dipole moments pij,

P = ��̂1
†p12�̂2� + ��̂3

†p32�̂2� + c.c.

= �	̂1
†	̂2�p12e

i�kp·r−�pt� + �	̂3
†	̂2�p32e

i�kc·r−�ct� + c.c.

We will focus on the dynamics of the probe field, which is
weak in comparison with the control field,

��� � 1, where � =
�p

�c
. �10�

Substituting the expressions for Ep and Ec into Eq. �9�, we
obtain the evolution equation for �p,

	�2 −
1

c2

�2

�t2
�pei�kp·r−�pt� =
N�p12�2

��0c2

�2

�t2 �	̂1
†	̂2�ei�kp·r−�pt�.

�11�

By using Eq. �2� with �=�r, given by Eq. �7�, and con-
servation of particle number �Eq. �4��, we obtain

�	̂1
†	̂2� =

���3 − ��2�

��2 + ���2���3 − ��2 + 4�2 cos2�K · r�
, �12�

where we have introduced the dimensionless parameters �see
Eq. �7��,

� =
�r

��c�
=

�3���2

���2 + �2�3 + 4 cos2�K · r�
�13�

and � j =
 j / ��c�.
Notice that there is an important conclusion following

from Eqs. �2a� and �4�: the condition for the excited state �2�
to be weakly populated, i.e., to have n2�N, is equivalent to
the requirement ��r�� ��p�, which is the same as

� � 1. �14�

Further simplification can be achieved if one of the con-
ditions,

�2�3 � 0 or �2�3 � − 4, �15�

is fulfilled. Then one has that for all values of K ·r,

v�K · r� � �2�3 + 4 cos2�K · r� � 0. �16�

From Eqs. �12� and �13� we see that in this situation �	̂1
†	̂2�

is always bounded. Indeed, since now ���� ��3�, we have the
following estimate:

��	̂1
†	̂2�� �

����
�2 + ���2

�
1

2
. �17�

Finally, using expression �13� under assumption �10� one can
approximate Eq. �12� as
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�	̂1
†	̂2� =

�3�

v�K · r��1 −
�3

2 − �2�3 − 2v�K · r�
v2�K · r�

���2� ,

�18�

where we have neglected the �5-order terms.

III. SPATIAL OPTICAL SOLITONS AND INSTABILITIES
OF THE PROBE BEAM

A. Envelope equation for Ω

Let us now consider several interesting situations address-
ing the geometry of the control field, which creates different
optical lattices for the probe field. To be specific, we limit
ourselves to a one-dimensional �1D� lattice that has different
spatial orientations. For simplicity, we focus on the following
two cases:

�i� Case A: K=Kex �the upper inset in Fig. 1�;
�ii� Case B: K=Kez �the lower inset in Fig. 1�.
We are interested in spatial patterns resulting from the

interplay between the diffraction and nonlinearity when the
probe field passes through the atomic cloud. Therefore we
require � to be independent on time. Substituting Eq. �18�
into the wave �Eq. �11�� and using slowly varying envelope
approximation, we obtain the dimensionless nonlinear
Schrödinger �NLS� equation for � with linear and nonlinear
coefficients being periodic functions of the spatial coordi-
nates:

2i
��

��
+

�2�

��2 +
�2�

��2 +
��

v��� · ���
− �g��� · ������2� = 0.

�19�

Here v��� ·����v�K ·r� is given by Eq. �16�,

g��� · ��� =
�3

2 − �2�3 − 2v��� · ���
v3��� · ���

, � =
N�p12�2

��0�c
2 
3,

and we have introduced the dimensionless variables kpr=��
= �� ,� ,�� and �� =K /kp.

First of all we notice that in all the cases considered be-
low there exists the limit of a constant coupling field which
can be formally obtained by putting K=0. In this limit v�·�
and g�·� become constants, and Eq. �20� is the well known
�2+1�-D NLS equation which supports only unstable
Townes solitons for �=−1 and has no stationary spatially
localized solutions for �=1. In other words no stable local-
ized light channels can be created in the atomic cloud in that
case.

In Secs. III B and III C we show that OL can completely
change the situation and subject to properly chosen param-
eters can stabilize light channels. We analyze different dy-
namical regimes described by the model �Eq. �19�� for K
�0 and provide their numerical simulations. To this end we
have to specify numerical values for the main physical pa-
rameters, which are feasible experimentally. The system we
are dealing with is a laser-cooled gas of magnesium atoms,
whose parameters can be found, say, in Ref. �12�. In this
system the atomic states �1�, �2�, and �3� can be chosen as
3S0, 3P1, and 3P0, respectively. The wavelengths of the probe

and control beams are chosen as �p=2� /kp=457 nm and
�c=2� /kc=0.5 mm, respectively. One of the advantages of
the chosen system is that atoms possess long decay time
even for their excited states. The decay time of �2� is about
5.1 ms. Hence, the condition �2� �
2� used in Eq. �6� can be
easily fulfilled provided that the one-photon detuning 
2 is
chosen of order of 107 s−1. In all numerical simulations
given below, the atomic concentration N is taken as 1.0
�1014 cm−3. For the convenience of the following classifi-
cation, we define the direction of K as that of the optical
lattice.

B. Diffraction parallel to the optical lattice: Spatial solitons

We first consider case A, for which the diffraction �char-
acterized by the dependence on the coordinated � and �� is
parallel to the optical lattice. Since �� =�ex, Eq. �19� reads as

2i
�A
��

+
�2A
��2 +

�2A
��2 +

�

v����
A − �g�����A�2A = 0,

�20�

where A=����� and �=sgn�
3�.
If there is no modulation of the nonlinearity, i.e., g���� is

a constant, but the linear lattice is held; Eq. �20� can support
2D solitons, stabilized by the 1D optical lattice �11� provided
the nonlinearity is focusing. With an additional modulation
in the nonlinearity, we anticipate that Eq. �20� still supports
stable �not necessarily stationary, however� localized struc-
tures at least for negative �g���� in the whole space. This last
condition can be satisfied for �3�0 combined with either for
�3

2�3�2�3 or for �2�3�−4 �see also Eq. �15��.
In order to check this, we have performed numerical

simulations of Eq. �20� by employing a pseudospectral
method combined with a second-order split-step method to
advance in the “time” coordinate �. We choose 
2=1.4
�107 s−1, 
3=1.0�106 s−1, and �c=2.4�106 s−1. Notice
that with these parameter values we have �3

2�3�2�3 and �
=1.

Typical results of the numerics are shown in Fig. 2.
Shown in the bottom-right panel is the maximal intensity of
�A�2 as a function of �. From the figure we observed that
strong diffraction of the Gaussian input beam is indeed pre-
vented by the linear lattice in Eq. �20�. The evolution how-
ever has an oscillatory character due to the nonlinear lattice
effect. The intensity �radius� of the beam periodically de-
creases �increases� as � grows. The period �denoted by Z� for
the reappearance of the principal maxima is approximately
Z=80. We also observe shallow stripes appearing due to the
periodical modulation of the medium properties along the x
axis.

We have repeated simulations with different amplitudes of
the input beam A0 and different lattice constants d. The re-
sults show that Z increases slightly with A0 and d. We also
found a threshold amplitude �i.e., the amplitude below which
no solitons are created� for the Gaussian beam with d
=� /10 is approximately Ath=0.07. For such a beam the
maximum input intensity can be estimated by the formula
Imax=c�0�Ep max�2 /2. Using the above parameters we obtain
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Imax�0.13�10−7 W cm−2. Thus, to produce a �2+1�-D spa-
tial optical soliton similar to one shown in Fig. 2, a very low
input light intensity is needed. We remark that the intensity
of a single 500 nm photon per nanosecond on an area of
1 �m2 is Iph=0.04 W cm−2. This shows that our scheme
makes it possible to generate a 2D spatial soliton with a
single-photon wave packet. This is in a sharp contrast with
the case of nonresonant media, where very high input inten-
sities or very long optical paths are necessary to originate
nonlinear effect required for soliton formation, and even with
the earlier EIT schemes whether either quintic �6� or satu-
rable �7� nonlinearities were necessary. The optical lattice
now plays the role of the stabilizing factor.

C. Diffraction parallel to the optical lattice: Instabilities

1. Envelope equation

Next, we consider the situation where the characteristic
transverse size of the probe beam is much larger than the
lattice period d. Assuming smallness of the nonlinearity, i.e.,
of the intensity of the field �Eq. �10��, we employ the
multiple-scale expansion to simplify Eq. �19�. To this end
we introduce normalized Bloch functions um,k���
���0

2d�um,k����2d�=1��,

L̂um,k��� = − qm,k
2 um,k���, L̂ = −

�2

��2 −
�

v���
, �21�

where the indices m and k stand for the band number and the
wave vector in the first Brillouin zone, i.e., for k� �−� ,��,
respectively.

The dependence of the wave vector q �i.e., of the y pro-
jection� on the x-projection k determines the deviation of the
angle of incidence of the probe beam from the z axis. It has
a band structure, two examples of which are illustrated in
Fig. 3, where the lowest bands with m=1 and m=1,2 are
shown.

Below we concentrate on the particular where k=�, and
qm,k borders a gap edge �examples are indicated by the points
A and B in Fig. 3�. For the sake of convenience we introduce
simplified notations qm=qm,� and um���=um,���� and define
the diffraction coefficient D and the effective nonlinearity G
given, respectively, by

D =
1

2

d2qm

dk2 and G = �
0

2d

g�����um����4d� .

Now the probe beam field is searched in the form �
=�2 / ��G�A�� ,�� ,��um���, where the slowly varying ampli-
tude A is governed by the NLS equation,

2i
�A
��

+ D
�2A
��2 +

�2A
���2 − 2��A�2A = 0, �22�

with �� = �1+qm
2 �−1/2��−qm�� and �=sgn�
3G�, which is

obtained by means of the multiple-scale expansion �outlined
in Appendix A�.

In the case at hand both D and 
3G can be either positive
or negative. Hence Eq. �22� can describe by any one of the
following cases:

�1� Elliptic diffraction and self-focusing nonlinearity �D
�0 and �=−1�;

�2� Elliptic diffraction and self-defocusing nonlinearity
�D�0 and �=1�;

�3� Hyperbolic diffraction and self-focusing nonlinearity
�D�0 and �=−1�;

�4� Hyperbolic diffraction and self-defocusing nonlinear-
ity �D�0 and �=1�.

2. Instabilities of solitons of Eq. (22): Elliptic cases

The elliptic case where D�0 has been extensively stud-
ied in literature �see e.g., �13,14��, and therefore we give
only a brief summary of the results relevant to the present
work. When the nonlinearity is self-focusing ��=−1� a pla-
nar bright soliton solution of Eq. �22� reads as

FIG. 2. Snapshots of the intensity �A�2 for different instants �
and the initial A0=A0 exp�−��2+�2� /9.0�, with A0=0.3 and the lat-
tice constant d=� /10. The brightness is proportional to the magni-
tude of intensity. The left panels correspond to principal maxima
and the upper-right panel to a local minimum of the evolution of the
maximal intensity shown in the bottom-right panel by the solid line.
In the latter the dashed and dash-dotted lines correspond to the
initial condition with A0=0.5 and the lattice constants d=� /10 and
� /5.
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FIG. 3. Two examples of the band structures for −qm,k
2 for the

optical lattice with the period d=�.
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Ab��,�� =
1

�
sech	 � − ��

�

ei���−��2−1/���/2�. �23�

Here 2�=tan �, where � is the angle between the soliton axis
and z axis, and � is the width of the beam in the x direction.
This solution is however unstable �15� with respect to trans-
verse perturbations �eip� having wave numbers within the
interval p2�3 /� �16�. The instability leads to filamentation
of the beam at a finite propagating distance �see the upper
panels of Fig. 4�.

When nonlinearity is defocusing ��=1�, the carrier wave
solution is stable and supports a dark soliton,

Ad��,�� = �1

�
tanh	 � − ��

�

 + i��e−i�2�, �24�

where � is the amplitude of the background, � is the width of
the soliton and �=tan �=��2−�−2. The solution �Eq. �24�� is
also unstable with respect to transverse perturbations �17�: in
the course of evolution the soliton decays into a train of
vortices with alternative polarities �18� �see the lower panels
of Fig. 4�.

The optical lattice allows one to control which of the in-
stabilities is developed. Indeed, let us consider the band
structure shown in Fig. 3. By fixing the wave vector to bor-
der the boundary of the Brillouin zone �k=��, one obtains a
set of available values qm

2 �as the ones shown by the points A
and B�. Taking also into account that the wavelength �p is
fixed, by the given one- and two-photon detunings one ob-
tains that the direction of the propagation of the probe beam,
and hence the � is also uniquely fixed and can be changed by
changing the angle of incidence. For each of the directions,
one can compute the respective diffraction coefficient �say,
in point A one obtains qm=1.0 and D�0.1 for 
3=1.0
�106 s−1�.

In order to illustrate the spatial evolution of the beam
intensities corresponding to bright �Eq. �23�� and dark �Eq.
�24�� soliton distributions, accounting also the finite size of

the beam in y direction �as this happens in real experiments�,
we performed numerical simulations of Eq. �22� subject to
the respective initial conditions with small initial perturba-
tions. The parameters were taken the same as those used in
Sec. III B for bright solitons, except for two-photon detuning
which is now 
3=−2.0�106 s−1 �respectively, �2�3=−4.9
�−4�.

The results are shown in Fig. 4. In the simulations, con-
servation laws for the intensity and energy of the probe beam
were monitored. The results were also tested on different
grid sizes and time steps. From the right top panel one ob-
serves filamentation instability. The maximum intensity of
the created narrow beams increases for approximately three
times during the simulation. In the lower panels of Fig. 4 one
can see the breaking down of the dark soliton and its decay
into a set of vortices. Finally, we notice that the observation
of bright and dark soliton phenomena, and their instabilities
predicted above requires atomic clouds with the transverse
and longitudinal dimensions of order of 10−3 and 10−4 cm.

3. Instabilities of solitons of Eq. (22): Hyperbolic cases

The hyperbolic diffraction �D�0� is less studied in the
literature �14�. Now, as an ansatz for a stationary solution of
Eq. �22� we take A�� ,�� ,��=F�� ,���exp�2i���, where � is
the propagation constant and F�� ,��� reads �a dark soliton
solution� as

F = � tanh�1

�
�� − 2�����, �2 =

�D� − tanh2 �

�2 �25�

�here the rotation angle in the �x ,y� plane is defined by
tan �=2�, see Fig. 5�. For such a solution the angle � is
limited by the dispersion coefficient and thus by the depth of
the optical lattice: in a general situation shallow lattices al-
low for wider range of the rotation angles.

The conditions for the hyperbolic diffraction can be cre-
ated by adjusting the geometry of the incident beam. For

FIG. 4. Snapshots of the intensity �Ab�2 for different � for a
bright input soliton �Eq. �22�� with the initial conditions,
Ab�� ,�� ,� = 0�=0.8 sech�0.8���1.0 + 0.01 exp�i���exp�−��2+��2� /
1600� �the upper panels�, and for a dark soliton, Ad�� ,�� ,�=0�
= �0.8 tanh �0.8� � + i0.6 � exp � −��2+��2� /1600�+0.1 �0.64 �1−tanh
��0.8x�2�
cos�0.1y�, corresponding to �=0.88 in Eq. �24� �the
lower panels�. The brightness denotes the magnitude of intensity.

FIG. 5. �a� Snapshots of the intensity �A�2 different �=0 �the top
panel� and �=80 �the middle panel�. The initial condition is given
by A0=0.5 tanh�0.7��−0.7����exp�−��2+��2� /1600� �the Gaussian
background is added to simulate more realistic experimental situa-
tions�. The bottom panel shows the width �solid line� and depth
�dashed line� of the soliton vs �. �b� �Right column� The snapshots
of the intensity at �=40 for different �. The bottom panel illustrates
the dependence of the width �solid line� and the depth �dashed line�
on �.
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example, taking 
2=2.0�107 s−1 and other parameters as in
Sec. III B, we obtain qm=0.3 �corresponding to the point B
in the right panel of Fig. 3� and D=−5.0. These data can be
used to test the stability of solution �25� by solving numeri-
cally Eq. �22� subject to initial condition �25�. The results are
shown in Fig. 5. From the bottom panel we observe that the
pattern is relatively robust for ��40 and undergoes an ap-
parent deformation for larger �. The instability arises from
the background: it is likely to be destroyed by growing per-
turbations, which limits possibilities of observation of a dark
soliton.

From Eq. �25� it follows that the width of the soliton
changes when its axis rotates. This asymmetric effect is il-
lustrated in Fig. 5 �the right column�. We observe that the
width goes to zero when �→ �� /4 and achieves its maxi-
mum when �=0 �the depth is not sensitive to the rotation�.

D. Diffraction orthogonal to the optical lattice

Finally, we analyze Eq. �19� for the situation of the light
propagation in the direction parallel to the optical lattice �the
case B in the inset of Fig. 1�. Then Eq. �19�, after the phase
renormalization A=����� exp�− i

2�0
�d� /v�����, reads as

2i
�A
��

+
�2A
��2 +

�2A
��2 − �g�����A�2A = 0. �26�

This equation displays several interesting effects, among
which we mention stabilization of 2D optical solitons �19�
and 2D matter wave solitons �20,21�, as well as enhancement
of collapse at a finite time �22�. In the case at hand either of
the above phenomena can be achieved simply by changing
the parameters of the optical lattice or of the photon detun-
ings.

Concentrating on stabilization of a beam, we notice that it
admits rather complete analytical description in terms of the
momentum method �20�. In particular, the necessary condi-
tion for stabilizing 2D solitons of Eq. �26� consists of the
inequality,

Q1d + Q2�
0

d

g����d� � 0, �27�

and the requirement for the quantity Q1+Q2g���� to change
the sign. The definition of Q1 and Q2, as well the derivation
of Eq. �27� are given in Appendix B.

As an example we consider an input Gaussian pulse
A�� ,� ,�=0�=exp�−��2+�2� / �2W0

2�� / ���W0� �W0 is a con-
stant� for which Q1=1 / �2��2 and Q2=1 / �2��3. Then the re-
gion of the beam stabilization by the lattice with d=� /20 is
shown in Fig. 6. In the same figure we also show the typical
result of the evolution of the stabilized soliton. One indeed
observes in Fig. 6 that for a small enough lattice constant d
the probe beam focusing is inhibited. Increasing d leads to
the beam focusing at a finite distance, which is however
larger than its counterpart in the continuous medium, where
self-focusing of the same input beam occurs at very early
stage of the evolution �see the bottom panel�. In other words
one can advance or delay, i.e., to manage, focusing by chang-
ing the angle between two copropagating control fields cre-
ating optical lattice �this affects the period of spatial modu-
lation appearing in the nonlinear coefficient of Eq. �26��.

The maximum input intensity in Fig. 6, estimated as
Imax=c�0�Ep,max�2 /2, for the parameters described above
gives Imax�0.6�10−5 W cm−2. We thus again arrive at the
conclusion that the lattice allows for producing a high-
dimension spatial optical soliton with an intensity of a
single-photon wave packet.

IV. CONCLUSION

In the present paper we have shown that resonant optical
lattice formed by a control field in an atomic � system can
create conditions for propagation of a weak probe field such
as a tunable band-gap structure in the regime of electromag-
netically induced transparency. Such a system possesses
many striking properties, among which we mention the de-
crease in probe-beam absorption, enhancement of Kerr non-
linearity, on the one hand, and stabilizing effect, allowing for
generation spatial solitons at extremely low intensities, on

(b)(a) (c)(c)

FIG. 6. �a� Regions of the beam stabilization �shadowed part� vs the photon detunings for the lattice constant d=� /20. More details are
shown in �b�. �c� Snapshots of the intensity evolution of the initial Gaussian beam with W0=1.5 at 
2=1.0�107 s−1 and 
3=1.0
�105 s−1 �the point P in the top panel, notice now �2�3=0.17�0�. The other parameters are the same as in Sec. II B. �c, lower panel� The
maximum �A�2 vs � of the Gaussian beam. The solid, dashed, and dot-dashed lines denote, respectively, the cases with fast �d=� /20�, slow
�d=� /3�, and no modulation of the nonlinearity.
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the other hand. In addition, this system has the advantage
that it is easy to be implemented and manipulated in experi-
ments, and hence it may serve as a nice test bed for various
linear and nonlinear phenomena that has been investigated in
conventional periodic materials by using very low light in-
tensity. Also the proposed scheme allows one to generate
various scenarios of instabilities and self-focusing.

A remarkable property is that change from one scenario of
the beam evolution to another can be achieved simply by
“geometrical” means, i.e., by changing angles of either cou-
pling or probe beams. Naturally, all the mentioned phenom-
ena were described within the framework of a unified theory
and were illustrated by direct numerical simulations. The re-
sults we obtained may have potential applications in optical
information processing and engineering.
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APPENDIX A: DERIVATION OF EQ. (22)

We use the multiple-scale expansion, which is a standard
technique for the cases where the lattice constant is much
less than the characteristic scale of the field pattern �see e.g.,
�23��. To this end we introduce a formal small parameter �
�1 �which at the end of calculations must be made one� and
independent variables ��l ,�l ,�l�=�l�� ,� ,��. We look for the
field in the form �=eiq�0� j=1

� � j��j���0 ,�1 ,�1 ,�2�, where
��j�=O�1�, are functions of the scaled variables among
which we indicate in the arguments only the most rapid ones,
i.e., ��j���0 ,�1 ,�1����j���0 ,�1 , . . . ,�1 ,�2 , . . . ,�1 ,�2 , . . .�.
Substituting this expansion in Eq. �19� and collecting the
terms at each order of �, we obtain

L̂��j� + q2��j� = Fj, j = 1,2, . . . , �A1�

where L̂ is defined in Eq. �21�, F1=0,

F2 = 2i
���1�

��1
+ 2

�2��1�

��0 � �1
+ 2iq

���1�

��1
,

F3 = 2i
���1�

��2
+

�2��1�

��1
2 +

�2��1�

��1
2 +

�2��1�

��1
2 + 2i

���2�

��1

+ 2
�2��2�

��0 � �1
+ 2iq

���2�

��1
− �g��0����1��2��1�.

The solution of Eq. �A1� at j=1, which corresponds to the
wave vector bordering a gap edge � is searched in the form
of ��1�=A��1 ,�1 ,�2�um��0�, where um��0� is a real
2d-periodic function.

A solution for the second order is searched in the form
��2�=�n�mBnm��1 ,�1 ,�2�un��0�, where the envelope ampli-
tudes Bnm are obtained by applying �0

2dd�0un��0�:

Bnm =
2

qm − qn

�A

��1
�

0

2d

un���
�

��
um���d� . �A2�

The solvability condition of the second order of Eq. �A1�
reads as ��A /��1�+qm��A /��1�=0. Then, defining �=�1
−qm�1, we can write A��1 ,�1 ,�1��A��1 ,��.

Applying �0
2dd�0ūm��0� �an overbar stands for complex

conjugation� to the third order of Eq. �A1�, we obtain

2i
�A

��2
+ D�2A

��1
2 + �1 + qm

2 �
�2A

��2 − �G�A�2A = 0, �A3�

with D and G defined in Eq. �22�. Substitution of A
=�2 / ��G�A into Eq. �A3� gives Eq. �22�.

APPENDIX B: THE CONDITIONS FOR STABILIZING
SOLITONS IN EQ. (26)

We follow Ref. �20� to describe radially symmetric 2D
localized solutions of Eq. �26�. This is done by analyzing
integral quantities �here r2=�2+�2 and the case �=1 is con-
sidered� as follows:

I1 = �
0

�

�A�2rdr, I2 = �
0

�

�A�2r3dr ,

I3 = i�
0

� 	A
�A
�r

− A
�A
�r


rdr ,

I4 = �
0

� 	� �A
�r
�2

+ g����A�2
rdr, I5 = �
0

�

�A�4rdr .

Equations for � evolution of Ij��� �j=1, . . . ,5� can be closed
subject to the assumption arg A� I3r2 / �4I2�. Then there ex-
ist invariants Q1=2�I4−gI5�I2− I3

2 /4 and Q2=2I2I5 allowing
to close the equation for W���=�I2���W3�d2W /d�2�=Q1
+Q2g���. From the analysis of the solution of this equation,
one obtains the condition of the beam stabilization �20�.
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