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We develop the theory of the Poynting singularities �critical points of the Poynting vector� extending the
theory of dynamic systems to classify and analyze optical singularities. An optical dynamic system is described
by the three first-order differential equations for the image point, with the tangent to the image point trajectory
being the Poynting vector. Important feature of the Poynting singularities is the existence of the polarization-
induced singularities �arise due to the specific field polarization� along with the field-induced ones �appear
owing to the vanishing the fields�. We analyze not only isolated critical points, but the manifolds of singulari-
ties forming lines and surfaces as well. We define the types of the singular points �vortex, saddle, sink, source,
and focus� using the trace and determinant of the stability matrix. Such a criterion and the study of the
dependence on parameter �bifurcations� are applied for a number of examples. We offer to study the chaotic
dynamic of the image point in future.
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I. INTRODUCTION

Singular optics deals with complex field distributions. The
complexity is connected not only with intricate intensity pat-
terns, but with inhomogeneous spatial pictures of elliptical
polarization. The fields can be decomposed into the plane
waves �or any other orthogonal waves� and can be computed
using the Fourier-transform technique. Singularities are the
result of the complex behavior of the fields, in other words,
result of the wave interference. The reason why we study
singularities is not only fundamental �to deeply understand
the peculiarities of the inhomogeneous field distributions�.
The point is that the complex field distributions are generated
in laser devices, while the fields themselves are applied in
super-resolution lenses �1–8�. Focusing beyond the diffrac-
tion limit is caused by the evanescent waves. The lenses �and
their singularities� are intensively discussed now �9,10�.

Electromagnetic beams have been studied for a long time
in wave or ray formulation �e.g., see �11��. Sometimes the
scalar approximation is useful. In general, when polarization
plays important part, the vector beams must be considered.
The beams can be described just by the electric and magnetic
field strengths. One more description is the use of the beam
tensor introduced in �12,13�. This tensor entirely describes
the light beam �including partially polarized beams� and can
be applied to find the result of the reflection, refraction, scat-
tering, and so on.

The history of the problem may make clear some details
and help to grasp the classes of singularities. The story starts
with the classical paper of Nye and Berry �14�, who de-
scribed the creation of the wave crests in the ultrasonic field.
These crests were called edge dislocations of the wave front
by analogy with dislocations in crystals. It was discovered
that at the dislocation point the wave amplitude turns to zero;
hence, the wave phase is not defined. This property corre-
sponds to the wave singularity �exactly, phase singularity�.
Later on, the singularities have been developed in many in-
vestigations.

The ultrasonic field is a scalar one; therefore, the theory
of singularities cannot be directly applied to vector electro-
magnetic fields. Nevertheless a linearly polarized field can be
considered as scalar field. The zeroes of the vector field can
be also considered as phase singularity �the phase is not de-
fined�. On the other hand, the vector nature implies that at
the point of zero vector magnitude its direction is not defined
as well. In paper �15� such a singularity is called a vector
one. Further the polarization singularity was introduced
�16–21�. It arises in an inhomogeneous distribution of ellip-
tically polarized field, which is considered as generic. Each
point of this field may have not only distinct wave ampli-
tudes and phases, but wave polarizations �azimuths and el-
lipticities of the polarization ellipses� too. Polarization singu-
larities include C point �points of circular polarization, at
which the polarization azimuth is not defined� and L points
�points of linear polarization, at which the right- or left-
handed direction of the elliptical polarization is not defined�.
The amplitude does not vanish at the polarization-singular
points and, therefore, the phase and the vector direction are
defined. Vector and polarization singularities lead to the po-
larization �15� and vortex �22� flowers, optical diabolos �23�,
and other complex polarization distributions. Also, the fields
in complex media are of interest �24–26�.

The next step is to introduce the singularity of the Poyn-
ting vector �Poynting singularity�. It has been introduced in
work �27� to study the paraxial light beams. In the present
paper, we do not use the approximations and consider the
general three-dimensional distribution of the energy flow
density vectors. Poynting vector is a real vector, and so it has
no phase singularities. The Poynting singularity is caused by
the indeterminacy of its direction at zero magnitude. Poyn-
ting vector is a composite quantity consisting of the electric
and magnetic fields. Therefore, the Poynting singularity can
appear both due to the vector field singularities �zeroes of the
electric and magnetic fields� and mutual polarization of the
fields �per se, owing to vector product�. Reasoning from the
said above, we introduce the terms electric-field-induced sin-
gularity �E=0 and S=0�, magnetic-field-induced singularity
�H=0 and S=0�, and polarization-induced singularity �E
�0, H�0, and S=0�.*andrey.novitsky@tut.by
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The Poynting singularities are necessary to study for the
following reasons: �i� the measured characteristics are rather
intensities �energy flows falling normally onto the detector
surface� than fields and the singularities are in the realistic
three-dimensional space, �ii� Poynting singularity is more ge-
neric than the phase one because it contains the phase singu-
larities of both electric and magnetic fields therein �as
Riemann-Silberstain vector �28–30��, and �iii� there exists
another sort of singularity caused by the special polarization
of the electromagnetic field. Note that we cannot distinguish
phase singularity and polarization-induced singularity in the
map of energy flow densities.

The feature of the current work is the close analogy with
the theory of dynamic systems. This analogy allows investi-
gating many problems �determining the type of singularity,
dynamics of the distribution of the energy flow density, and
bifurcations� and finding a number of the new topics to be
studied �existence of the limit cycles or chaotic dynamics�.
In the “dynamic” consideration, the picture of the three-
dimensional distribution of the Poynting vector is replaced
with the manifold of the line trajectories of the image point.
Its initial position sets the following movement under the
influence of the applied energy flow density vector.

In Sec. II, the origins of the similarity of the singular
optics and the theory of dynamic systems are demonstrated.
The basic equation for the “optical dynamic systems” �1� is
discussed. In Sec. III, the difference between the field-
induced and polarization-induced singularities is shown.
Also, all the field polarizations resulting in S=0 are deter-
mined. Section IV is devoted to the study of movement of
the optical dynamic system in the vicinity of the singular
point, line, or surface. The trajectories of the image point in
the vector Bessel beam energy flow are determined as in-
stance. The types of the singularities �vortices, focuses,
nodes, and saddles� are classified in the reduced two-
dimensional �2D� system considered in Sec. V. We find the
types of Poynting singularities in general, without using cer-
tain field distributions. So, for the generic x-polarized mag-
netic field, the magnetic-field-induced singularity can be vor-
tex, focus, or node �sink or source�, while any electric-field-
induced singularity is saddle. The very promising is seemed
to be Sec. VI, where the tangential bifurcation is of interest.
The bifurcation diagram is quite unusual and consists of sev-
eral branches, which set the dynamics of the appearance or
disappearance of the singularities.

II. OPTICAL DYNAMIC SYSTEMS

The Poynting vector S= �c /8��Re�E�H�� �energy flux
density of the beam� represents the real vector field in the
three-dimensional �physical� space. Vectors E and H are
called electric and magnetic field vectors and the superscript
� is for the complex conjugate. If radius vector r= �x ,y ,z�

determines position of the image point on a curve and S is
the tangent vector to this curve �see Fig. 1�, then

dr

d�
� ṙ = S�r� . �1�

Equation �1� is the same as that for a dynamic system �31�.
We introduce a fictitious point, which moves according to the

equation of motion �1� with “time” �. Parameter � is not the
genuine time; it is used just to parametrize the curve and has
the dimension �r� / �S�. We suppose that Sn component shifts
the image point in direction of vector n. Since Eq. �1� does
not follow from any physical problem, it is not unique. The
equation ṙ=−S�r� is of use as well. It can be reduced to Eq.
�1� by the replacement �→−�. Therefore, the stability cannot
be studied for the image point. The stability can be consid-
ered only if the problem will be extended, e.g., using the
physical reasons. Since we consider the lines of vector Poyn-
ting �not negative S�, we accept Eq. �1� and the forward
direction of time from zero to infinity.

Dynamic systems are usually investigated in the phase
space �in the space of momenta and coordinates of the true
space�, where the equations of motion are the differential
equations of the first order. In the present consideration, the
dimension of our “phase” space equals 3, and the space co-
incides with physical three-dimensional one. This corre-
sponds to the dynamic system of the order 3/2. The example
of such a system is the system of Lorentzian attractor.

Equation �1� describes the countless infinite number of
lines in the three-dimensional space. These lines serve to
study the structure of the field distribution during its propa-
gation. Each line is defined by the initial conditions at the
time moment �=0, i.e., by r�0�. As the field propagates fur-
ther, the parameter � increases and the coordinates of the
image point are calculated using Eq. �1�.

The phase volume is simply the unit volume of the physi-
cal space: �=dxdydz. The speed of change in the volume can
be written as

�̇ = � � ẋ

�x
+

� ẏ

�y
+

� ż

�z
�� = � �Sx

�x
+

�Sy

�y
+

�Sz

�z
�� = div S� .

�2�

The phase volume does not change, if div S=div ṙ=0. This
equation can be fulfilled for the nondiffraction beam �such as
the plane wave or Bessel beam� because nondiffraction
means div ST=0, where ST is the Poynting vector in the di-
rection orthogonal to the propagation direction of the beam
�32�. In some situations �for example, for Bessel beams�
div ST=div S and the volume is conserved. The condition

y

x

Sy

Sx

S(x,y)
y=y(x)

FIG. 1. �Color online� Two-dimensional plot to prove relation
�1�. Since S is the vector tangential to the curve y=y�x� , tan �
=Sy /Sx. On the other hand, the angle of the tangent to the curve
equals tan �=dy /dx. So, we have the expression dy /dx=Sy /Sx,
which after parametrizing is turned to Eq. �1�.
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div S=0 corresponds to Hamiltonian dynamic systems, for
which the phase volume is the integral of motion. Let us
consider, as what follows from div S=0, if it is transformed
using the definition of the Poynting vector and Maxwell’s
equations for the monochromatic waves in an anisotropic
medium,

� � E = ik0�H, � � H = − ik0	E , �3�

where k0=
 /c is the wave number in vacuum, 
 is the cir-
cular frequency, � and 	 are the dielectric permittivity and
magnetic permeability tensors, respectively. Then we derive

div S =
ik0c

8�
�H�� − �+�H� + E��	 − 	+�E� . �4�

The superscript + denotes the Hermitian conjugate. Now it is
easily observed that the phase volume is conserved �div S
=0�, if �=�+ and 	=	+, i.e., for nonabsorptive media.
Therefore, the phase volume changes only for absorptive ma-
terials, i.e., for dissipative dynamic systems.

The general solution of Eq. �2� is expressed by means of
an exponent,

���� = �0 exp�	
0

�

d� div S„r���…
 � �0 exp�h����� . �5�

The phase volume decreases, if h��0. If the above inequal-
ity is satisfied for all ��0, the phase volume exponentially
goes to zero and the phase trajectory is pulled to an attractor.

Returning to Eq. �1� we state that it is a nonlinear vector
equation written in coordinate-free �covariant� form. This
equation can be written in different coordinate systems, e.g.,
in Cartesian coordinates as

ẋ = Sx�x,y,z�, ẏ = Sy�x,y,z�, ż = Sz�x,y,z� . �6�

In general, in the arbitrary curvilinear coordinates �x1 ,x2 ,x3�
one reads

hiẋi = Si�x1,x2,x3�, i = 1,2,3, �7�

where h1, h2, and h3 are the Lame coefficients and S1, S2, and
S3 are the projections of the Poynting vector onto the basis
vectors of curvilinear coordinates.

III. FIELD-INDUCED AND POLARIZATION-INDUCED
SINGULARITIES

The optical Poynting singularity is defined as the point r0,
at which the time-averaged Poynting vector becomes zero;
that is,

S�r0� = 0 . �8�

Using the analogy with the theory of dynamic systems, we
may interpret this condition as the point, at which the image
point is immovable: ṙ=0. These balance points can be stable
or unstable and can be classified as well known.

Condition �8� puts some restrictions on the electric and
magnetic fields of the beam, which are derived below. We
start with the substitution of the Poynting vector definition
into relation �8�, which results in the equation �further we
omit the dependence on r0�

E � H� + E� � H = 0 . �9�

Our aim is to find the magnetic field vector H, if the electric
strength E is known. This should give the link between the
electric and magnetic fields.

Let us multiply Eq. �9� by the electric field E,

�E � E��H = 0 . �10�

The obtained equation offers two possibilities:
�i� �E�E��=0. Representing E=E1+ iE2, we get from

�E1�E2�=0 that real vectors E1 and E2 are parallel. There-
fore, electric field is linearly polarized: E=E1, where  is a
complex number. One more presentation for the linearly po-
larized vector E is E�=�E. Now we substitute the electric
field into Eq. �9�: E1� �H�+�H�=0, from which it fol-
lows

H� + �H = �E1, �11�

where � is a real coefficient. For �=0 the special case fol-
lows: H�=−�H; that is, the magnetic vector is linearly
polarized as well.

�ii� �E�E���0 and �E�E��H=0. If the electric field is
nonlinearly �circularly or elliptically� polarized, then mag-
netic field is perpendicular to the vector �E�E��. Three non-
parallel complex vectors E, E�, and �E�E�� form the basis
in three-dimensional space. Therefore, an arbitrary vector
can be written as the superposition of these three basis vec-
tors. The magnetic field then has no �E�E�� projection and
equals H=1E+2E�, where 1 and 2 are complex num-
bers. By substituting the calculated magnetic field into Eq.
�9�, one obtains

1
��E � E�� + 1�E� � E� = 0 . �12�

Since �E�E���0, we conclude that 1=1
� is a real num-

ber. Some special cases are �a� 1=0, then H=2E� and
magnetic field is parallel to the complex conjugate electric
field and �b� 2=0, then H=1E and magnetic field is par-
allel to the electric field.

The same formulas can be obtained provided the replace-
ment of E with H and H with E. Hence all the conditions
that lead to singularity �8� can be gathered to the following
list:

�1� E is linearly polarized as E=E1, and H�+�H
=�E1 � is a complex number and � and E1 are real quan-
tities�.

�2� H is linearly polarized as H=H1, and E�+�E
=�H1 � is a complex number and � and H1 are real quan-
tities�.

�3� E is circularly or elliptically polarized ��E�E���0�,
and H=1E+2E� �1 and 2 are real and complex num-
bers, respectively�.

�4� H is circularly or elliptically polarized ��H�H��
�0�, and E=1H+2H� �1 and 2 are real and complex
numbers, respectively�.

�5� Electric or magnetic field is equal to zero: E=0 or
H=0.

It should be noted that , 1, 2, �, E, and H can be
functions of the singularity position r0.
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Equations in the above list can be solved for a certain
medium. For instance, in an isotropic medium the magnetic
field takes the form H= �−i / �k0���� �E �Maxwell’s equa-
tions� and the third condition is the differential equation

� � E = ik0��1E + 2E�� . �13�

This is the generalized equation for Beltrami fields �33,34�
�the conventional equation is ��E=E�. It is not surprising
that at the singular point the field should be of Beltrami type
because it is well known that among the solutions of the
Beltrami equation the standing waves characterized by the
zero energy flux density can be found. More complex electric
field equations for the singularities follow for anisotropic
materials.

Items �1�–�4� of the list can be joined together because
they result at the singularity due to the specific polarization
of the fields in the point. Therefore, we call this type of
singularity as polarization-induced one. Field-induced singu-
larities �phase singularities of the vector fields� are described
by item �5�. The concept of singularity is often connected
with the field-induced points, which provide zero electric or
magnetic field and nondefined phase. The examples of these
points will be given in Sec. V. In this section, we demon-
strate the idea of polarization singularity.

Example

Polarization singularity arises in the system of a vector
Bessel beam of the order m in isotropic nonabsorbing me-
dium with real dielectric permittivity � and magnetic perme-
ability 	. The beam moves in the z direction. We use the
derived earlier �e.g., see �35,36�� electromagnetic field �solu-
tion of the Maxwell equations in cylindrical coordinates r, �,
and z�,

E�r,t� = ei��Jm�qr�c2ez −
k0	

q
c1�ez � b� +

�

q
c2b
 ,

H�r,t� = ei��Jm�qr�c1ez +
�

q
c1b +

k0�

q
c2�ez � b�
 ,

�14�

where c1 and c2 are the amplitudes of TE and TM partial
Bessel beams, q is the transverse wave number �projection of
the wave vector onto the plane orthogonal to z axis�, �
=�k0

2�	−q2 is the longitudinal wave number �along the z
axis�, and �=m�+�z−
t is the Bessel beam’s phase,

b = iJm� �qr�er −
m

qr
Jm�qr�e�, Jm� �qr� =

dJm

d�qr�
.

The Poynting vector has two nonvanishing components: lon-
gitudinal and azimuthal,

S =
c

8�
� k0�

q2 �	�c1�2 + ��c2�2��Jm�
2 +

m2

q2r2Jm
2 �

−
2m

q3r
��2 + k0

2�	�Im�c1c2
��Jm� Jm
ez

+
c

8�
�mk0

q2r
�	�c1�2 + ��c2�2�Jm

2 −
2�

q
Im�c1c2

��Jm� Jm
e�.

�15�

The Bessel beam system in nonabsorbing media is the
example of Hamiltonian �conservative� system because
div S=0. Both components of the energy flux density depend
only on the radial coordinate r. We search the singularity
from the conditions S�=0 and Sz=0. For m�0 they can be
reduced to the couple of equations

�− � � k0
��	�Jm−1�qr� + �� � k0

��	�Jm+1�qr� = 0,

�16�

	�c1�2 + ��c2�2 � 2��	 Im�c1c2
�� = 0. �17�

The first equation defines the positions of the singularities,
with the position values being independent on the initial con-
ditions �complex amplitudes c1 and c2�. It is evident that the
singularity position is determined only by the radial coordi-
nate. Therefore, the singularity is described by the equation
r=r0 �with any � and z�. The amplitudes c1 and c2 are not
arbitrary. They are very specific and can be extracted from
Eq. �17�. Putting Eqs. �16� and �17� into the field expressions
�14�, we get to the fields at a singular point,

H =
c1

c2
E ,

E = ei�c2�−
� � k0

��	

q
Jm+1�qr0�e� + Jm�qr0�ez
 . �18�

One notes that in spite of zero Poynting vector, neither
electrical nor magnetic field equals zero. The singularity is
generated due to the colinearity of the electric and magnetic
field strengths �specific polarization of the vector beam�.
Since E�E�=0 and H�H�=0, both electric and magnetic
fields are linearly polarized and our polarization singularity
belongs to the first or second item of the list presented above
��=0�. Nonlinearly polarized fields at the singular points can
be obtained for evanescent vector Bessel beams �37�. Such
singularities satisfy the third item of the list.

IV. SINGULAR POINTS, LINES, AND SURFACES

The further study of optical dynamic systems implies the
linearization of the existing nonlinear equations near the sin-
gular point r0. Since S�r�S�r0�+ ��r�0�S�r0� and S�r0�
=0, we find

�̇r = ��r�0�S�r0� � �r��0 � S�r0�� , �19�

where �0=� /�r0 and �r=r−r0. Vector �19� is linear with
constant matrix coefficient
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G = �0 � S�r0� . �20�

In the above equation, the 3�3 stability matrix G is coordi-
nate free. It can be rewritten in Cartesian coordinates as
Gij =�Sj /�xi

0, or in curvilinear coordinates as

G = �
i,j=1

3
1

hi

�Sj

�xi
0ei � e j + �

i,j=1

3
Sj

hi
ei �

�e j

�xi
0 , �21�

where ei are the basis vectors of the curvilinear coordinates.
If we use G in curvilinear coordinates, we should take the
vector �r in the same basis, so that linear equation �19� will
be converted to the nonlinear one.

In the further consideration, we should distinguish the
situations when the singularity is an isolated point or line or
surface in three-dimensional space �Fig. 2�. For the isolated
singular point, the surrounding points are identical �not sin-
gular�. Therefore, the problem to be solved is three dimen-
sional and the covariant solution of Eq. �19� is of the form

r = r0 + �r0 exp�G�� . �22�

The stability matrix can be presented in the spectral form
G=�1�1+�2�2+�3�3, where �i and �i �i=1,2 ,3� are the ei-
genvalues and projection operators onto the eigenvectors of
the matrix G. Projectors possess the following properties:
�1+�2+�3=1 and �i� j =�i�ij, where 1 is the unit three-
dimensional matrix and �ij is the Kronecker delta. The pro-
jector can be written as the outer product of the eigenvector
v of G and eigenvector u of the transposed matrix GT :�i
=ui � vi. Then, expression �22� takes the form

r = r0 + �r0�e�1��1 + e�2��2 + e�3��3� . �23�

For increasing �, the radius vector r will tend to r0 only if
all the real parts of eigenvalues are negative: Re �i�0, i
=1,2 ,3. This is possible only for dissipative dynamic sys-
tems. In fact, the condition of a conservative �Hamiltonian�
system is div S=0 �see the discussion after Eq. �2��. In the
vicinity of the singular point, we compute div S=div��rG�
=Tr�G�=�1+�2+�3 and make sure that div S�0, if Re �i
�0.

For Hamiltonian systems, there exists the generalized To-
da’s criterion of local instability �38�. Two conclusions fol-
low from this criterion:

�i� the local instability of the movement arises, if Re �i
�0 for some i. Since the phase volume is constant, the com-
pression of the phase flux in one direction �e.g., Re �1�0� is
accompanied with its stretching in another one �Re �2�0�;
and

�ii� if Re �i=0 for any i=1,2 ,3, then the motion of the
image point is stable and regular.

Thus, the dynamics of the image point can be both regular
and stochastic depending on the eigenvalues of the stability
matrix �39�.

Another situation arises, when the singularities are distrib-
uted along the line. Then the nonsingular points near the line
are situated in the plane perpendicular to this line and de-
scribed by the in-plane radius vector p=r− �rn3�n3, where n3
is the unit tangent vector to the line �Fig. 2�b��. Therefore,
we get to the two-dimensional equation for p,

ṗ = ṙ − �ṙn3�n3 = S − �Sn3�n3 = S��r� . �24�

The in-plane Poynting vector S� near the singular line
can be expanded to a series, with the variations of coordi-
nates being in the plane perpendicular to the line: S��r�
S��r0�+ ��p� /�p0�S��r0�. Using the expansion to the se-
ries for S�, the equation near the singular line can be derived
as follows:

�̇p = ��p
�

�p0
�S��r0� , �25�

where �p=p−p0. The stability matrix G=� /�p0 � S��r0� is
two dimensional now: Eq. �25� contains only two compo-
nents of the Poynting vector and only two coordinates. The
2D case is well investigated in many papers because it pro-
vides the analysis of the types of singularities �vortices,
sources, sinks, and saddles�. The third coordinate x3 changes
according to the equation

�ẋ3 = �Sn3� = �p
�S3�r0�

�p0
, �26�

which can be integrated, if �p is found from Eq. �25�.
Let us consider the situation when there is the surface of

singularities in the three-dimensional space �Fig. 2�c��. Non-
singular points are placed on the lines perpendicular to this
surface: x3=rn3 is the coordinate along the line, where n3 is
the unit vector normal to the surface. The equation of motion
for the coordinate x3 in the vicinity of the singular surface is
one dimensional, i.e.,

�̇x3 = �x3
��n3S�r0��

�x3
0 . �27�

Here the assertion that the Poynting vector can change only
along the direction orthogonal to the singular surface is used.
The other coordinates x1 and x2, joined into the vector p, can
be computed from the equation

�̇p = �x3
�S��r0�

�x3
0 . �28�

Equations �27� and �28� are easily solved with regard to
the trajectory of the image point r���=r0+�p���+n3�x3���
as follows:

O

r0

dr

(a)
O

dp n3

(b)
O

r0

n3
dx3

(c)

FIG. 2. �Color online� �a� Three-dimensional, �b� two-
dimensional, and �c� one-dimensional vicinity of the isolated singu-
lar point, singular line, and singular surface, respectively.
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r��� = r0 +
1

�

�S�r0�
�x3

0 e���x3�0� −
1

�

�S��r0�
�x3

0 �x3�0� . �29�

The stable singular point follows from the condition �
=�S3�r0� /�x3

0�0 �� is always real quantity�. We suppose that
the initial position of the image point is r0+n3�x3�0�, so that
the quantity �x3�0� defines the initial position of the image
point in the coordinate frame regarding the singularity r0.
Equation �29� represents the movement of the image point in
the plane tangent to the singular surface at the point r0 �per
se, in the plane involute of the singular surface�. Therefore, if
�x1 ,x2 ,x3� are the orthogonal coordinates at r0, then

r��� = r0 + �
i=1

3

hi����xi���ni, �30�

where n1 and n2 are the unit vectors in the tangent plane and
Lame coefficients hi can also depend on the coordinates and,
hence, on �. Equation �30� defines � dependencies of the
curvilinear coordinates. Vectors ni point out the directions of
the change in coordinates �in and out the singular surface�.
The same solution can be derived, if Eq. �19� is directly
solved in curvilinear coordinates. Then the vector equation
comes apart as

hi�̇xi =
�Si�x1

0,x2
0,x3

0�
�x3

0 �x3, i = 1,2,3. �31�

The relation div S=�=0 corresponds to Hamiltonian
�conservative� dynamic systems. This special case results in
the simple solution

r��� = r0 + � �S��r0�
�x3

0 � + n3
�x3�0� , �32�

which means that near the singular surface coordinate x3 is
constant, while the vector along the surface changes linearly.
For example, if the singular surface is z=const in Cartesian
coordinates, then the image point moves along the straight
line. The trajectory of the point repeats the form of the sin-
gular surface. Therefore, the movement of the particle is
regular and the singularity is of the center type �there is no
trajectories that go through the singularities�. Below the ex-
ample in cylindrical coordinates is considered.

We also define a zero-dimensional �0D� problem as the
situation when the whole space is filled with the singular
points. The aim is to determine the electromagnetic fields
that has zero Poynting vector at every point of the three-
dimensional space. Such a problem can be solved using the
list of relations �1�–�4� obtained earlier in this section. Bel-
trami field is the special case of 0D problem.

Example

Here we continue the investigation of vector Bessel beam
singularities. In Sec. III we have defined the positions of the
singular points. Radial coordinates of these points satisfy Eq.
�16�, while � and z can take arbitrary values. Hence we
guess that the singular points are situated at the surface r
=r0, where r0 is the root of Eq. �16�. Now we will apply the
general analysis developed above.

In the considered system, coordinate x3 is the radial coor-
dinate r, while the unit radial vector er is the normal vector
to the singular surface n3. Since Bessel beam field in a non-
absorbing medium corresponds to the Hamiltonian dynamic
system, we write div S=�=0. Thus, from expression �32� the
trajectory of the image point follows

r��� = r0 + er�r�0� + �� �S��r0�
�r0

e� +
�Sz�r0�

�r0
ez
�r�0� ,

�33�

where S�=S�e�+Szez. The derivatives can be calculated us-
ing the explicit expression for the Poynting vector �15� and
the equations defining the singularities �16� and �17�. How-
ever, the trajectory of the image point can be estimated from
the already obtained equation �33�. The point linearly shifts
in azimuthal and longitudinal directions: the image point
spires. According to Eqs. �30� and �33� we find �r=�r�0�,
��=��S� /�r0, and �z=��r�0��Sz /�r0. Since �r is constant,
the point moves at the fixed distance from the singular cy-
lindrical surface. The initial position of the point r0
+er�r�0� specifies the certain spiral trajectory, so that the
different spirals cover all the space without intersections.

For the vector Bessel beams, there exist the spatial re-
gions, where the Poynting vector S is pointed to the opposite
propagation direction of the beam �the case of the so-called
negative propagation �35,40� when the longitudinal compo-
nent Sz is negative�. The singular surfaces divide the regions
of negative and positive propagation. The image point shifts
along the z axis for positive propagation and oppositely for
the negative one. This situation is demonstrated in Fig. 3.

V. TYPES OF POYNTING SINGULARITIES

In this section, we consider the singular lines in the three-
dimensional space. After passing on to the two-dimensional
space �to the plane perpendicular to the singular line� the
lines will turn to the isolated singular points. These points
can be classified as well known in the theory of dynamic

FIG. 3. �Color online� Spiral trajectories of the image point. The
singular surface is the cylinder of radius r0. Since at the singularity
the Poynting vector S changes the sign, the spirals near r0, at r
�r0 �red� and r�r0 �green�, will be directed oppositely.
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systems. So, each critical point can be center, focus, node, or
saddle. Using the stability matrix G we will remind the cri-
teria of defining the type of the point.

We start with Eq. �25� with redefined stability matrix G,

�̇p = G�p, G = � �

�p0
� S��r0�
T

, �34�

where superscript T denotes the transposition. Searching for
the solution of Eq. �34� in the exponential form �p
=exp����c, we derive the dispersion equation for � in the
form

�2 − Gt� + �G� = 0, �35�

where Gt and �G� are the trace and determinant of the matrix
G, respectively. The solutions of this quadratic equation set
the type of a critical point in the plane.

So, we get the following classification of the singularities
�31�:

�i� Vortex �center in the theory of dynamic systems� cor-
responds to the imaginary solutions of Eq. �35�: �1=−�2
= i, where  is a real number. The trajectory of the image
point near the vortex is the closed elliptic curve. Vortex ap-
pears, if Gt=0 and �G��0.

�ii� Focus �focus or spiral point in the theory of dynamic
systems� corresponds to the complex conjugate solutions of
Eq. �35�: �1=+ i� and �2=− i�, where  and � are real
numbers. The trajectory of the image point near the focus is
the diverging or converging spiral. Stable �unstable� focus
appears, if Gt�0 �Gt�0� and �G��Gt

2 /4.
�iii� Sink or source �stable or unstable node in the theory

of dynamic systems� corresponds to the real like-sign solu-
tions of Eq. �35�: �1�2�0. Sink arises, when �1�0 and �2
�0, while �1�0 and �2�0 is the condition for the source.
The trajectories of the image point near the sink �source� are
the converging �diverging� parabolas. Sink �source� appears,
if Gt�0 �Gt�0� and �G��Gt

2 /4.
�iv� Saddle �saddle in the theory of dynamic systems� cor-

responds to the real opposite-sign solutions of Eq. �35�:
�1�2�0. The trajectories of the image point near the saddle
are the hyperbolas. Saddle appears, if �G��0.

Note that the stability of the singular points is defined in
this formulation. All the types of singularities can be gath-
ered to the diagram demonstrated in Fig. 4.

Let us consider the vector beam in an absorbing isotropic
material with complex dielectric permittivity �=�1+ i�2 and
magnetic permeability 	=1. We suppose that such a beam
forms the lines of phase singularity along the Cartesian co-
ordinate x and is characterized by the TM polarization,

H�y,z� = Hx�y,z�ex, E�y,z� = Ey�y,z�ey + Ez�y,z�ez.

�36�

TE polarization follows from the mutual replacement of
electric and magnetic fields. The problem to be solved is
obviously two dimensional �in the plane �y ,z��. Magnetic-
and electric-field-induced singularities are connected with
the zeroes of the complex functions Hx or Ey and Ez, respec-

tively. At first, we will investigate the singular points pro-
vided by the magnetic field; that is, the points y=y0 and z
=0, at which Hx�y0 ,0�=0.

Magnetic-field-induced Poynting singularities are defined
as S�y0 ,0�=0. In spite of the coincidence of the Poynting
and phase singularities, the types of the points differ. The
energy flux density for fields �36� equals

S�y,z� = Sy�y,z�ey + Sz�y,z�ez,

Sy =
c

8�
Re�EzHx

��, Sz = −
c

8�
Re�EyHx

�� , �37�

while Maxwell’s equations connect electric and magnetic
fields as

E = −
1

ik0�
� � H � −

1

ik0�

�Hx

�z
ey +

1

ik0�

�Hx

�y
ez,

Hx =
1

ik0
� �Ez

�y
−

�Ey

�z
� . �38�

The magnetic field strength can be expanded into the Tay-
lor series near the singular point Hx�y0 ,0�=0 as

Hx�y,z�  � �Hx

�y
�

0
�y + � �Hx

�z
�

0
�z , �39�

where �y=y−y0 and �z=z−0 are the deviations of the coor-
dinates from the singularity. The subscript 0 denotes that the
derivatives are calculated at the point y=y0 ,z=0 These de-
rivatives can be expressed through the electric field compo-
nents �38� as

� �Hx

�y
�

0
= ik0�Ez�y0,0�, � �Hx

�z
�

0
= − ik0�Ey�y0,0� .

�40�

Further we will omit the arguments of the electric field
components. By substituting the electric E and magnetic
Hz= ik0��Ez�y−Ey�z� vectors into the Poynting vector com-
ponents �37�, we write

|G|

Gt

|G|=Gt2/4

SADDLE
0

SINK SOURCE

Stable
FOCUS

Unstable
FOCUS

VORTEX

FIG. 4. �Color online� Diagram defining the type of optical sin-
gularity using the trace and the determinant of the stability matrix
G.
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Sy = a11�y + a12�z, Sz = a21�y + a22�z , �41�

where

a11 = −



8�
�2�Ez�2, a12 =




8�
Re�i��EzEy

�� ,

a21 = −



8�
Re�i�EzEy

��, a22 = −



8�
�2�Ey�2. �42�

The types of the singular points can be determined using the
trace and determinant of the stability matrix

G = �a11 a12

a21 a22
� . �43�

The invariants of matrix G have the following form:

Gt = a11 + a22 = −



8�
�2��Ey�2 + �Ez�2� ,

�G� = a11a22 − a12a21 = � 


8�
�2

���2 Im�EzEy
��2. �44�

Now let us address the diagram shown in Fig. 4. Since
�G��0, the singularity can be vortex, focus, or node. The
stability is defined by the sign of the imaginary part of di-
electric permittivity: at �2�0 ��2�0� the points are stable
�unstable�. The singular points can be identified depending
on �2. If �2=0, then Gt=0 and the point is vortex. Stable
focus appears, if �G��Gt

2 /4, i.e.,

2����Im�EzEy
��� � ��2���Ey�2 + �Ez�2� . �45�

For the sign “less” in the inequality above the node arises.
Per se, relation �45� is the inequality for �2, which enters not
only into the dielectric permittivity �, but into the electric
field components as well.

Now we turn to the singularities of the electric field E,
i.e., the points y=y0 and z=0, at which Ey�y0 ,0�=0 and
Ez�y0 ,0�=0. We expand the electric field in the vicinity of
the singular point into the Taylor series as follows:

E  � �E

�y
�

0
�y + � �E

�z
�

0
�z . �46�

By substituting the magnetic field Hx from the Maxwell
equations �38� into the expression for Poynting vector �37�
and using the expression div E=�Ey /�y+�Ez /�z=0, we get
to the stability matrix G with the following real components:

a11 = − a22 = −
c

8�k0
Re�i

�Ez

�y

�Ey
�

�z

 ,

a12 = a21 =
c

8�k0
Re�i

�Ez

�z
� �Ez

�

�y
−

�Ey
�

�z
�
 . �47�

The determinant of the stability matrix is always negative:
�G�=−a11

2 −a12
2 �0. Therefore, the only type of the singular

point, namely, the saddle, is possible �see Fig. 4�.
So, we have defined the type of the Poynting singular

point without information about certain field distribution. For

TE-polarized beams, we need to replace H with E, E with H,
� with −	, and 	 with −�. It is evident that the types of the
singularities can be found in the similar way. We obtain vor-
tex, focus, or node for the singularities of the linearly polar-
ized electric field Ex and saddle for the singularities of the
magnetic field H. In nonabsorbing media �as for the Hamil-
tonian dynamic systems� only vortices or saddles can appear.

Following the theory of dynamic systems, we need to
study, whether the limit cycles are possible for the electro-
magnetic beams. The limit cycle is the singular trajectory of
a dissipative system. The system cannot get to this trajectory
for the finite time or come down from it, if it was situated in
the trajectory at the initial time moment �31�.

The dissipative system can be easily realized for the elec-
tromagnetic beam, if the absorbing medium is taken. How-
ever, it is not sufficient. The sufficient condition of the ab-
sence of the closed trajectories is provided by the
Bendickson criterion, which is formulated for the two-
dimensional system

ẏ = Sy�y,z�, ż = Sz�y,z� �48�

as follows: if in some simply connected domain in the plane
�y ,z� the expression

�Sy

�y
+

�Sz

�z
� div S

is of invariable sign, then there are no closed contours �in-
cluding limit cycles� in this domain, which are fully formed
from the trajectories of the system.

Applied to the beams in isotropic media �=�1+ i�2 and
	=1, the Bendickson criterion results in

div S = −
k0c

4�
�2�H�2. �49�

This expression does not vary the sign, if the imaginary part
of the dielectric permittivity is constant. However, if �2
=�2�y ,z�, then the limit cycles may appear as the singular
trajectory of the image point. The change in the sign of �2
means that one spatial region is amplifying, while another
region is absorbing. If the amplifying region is at small co-
ordinates, then the trajectory from the initial point inside this
domain will increase the coordinate going to the limit cycle.
The image point from the initial point in the absorbing re-
gion will decrease the coordinates going to the limit cycle
from another side. It is possible that anisotropic medium can
help in creating limit cycles.

Example

A good example showing all the features of the theory
provided above is the electromagnetic field generated by the
magnetic field source distributed in the plane z=0 as
Hx�y ,0�=Ay cos�py�, where A is an amplitude and p is a
wave parameter �transverse wave number�. This source is
very attractive because it allows finding the closed-form ex-
pressions for electric and magnetic fields. The function
Hx�y ,0� strongly increases in infinite limits of the coordinate
y. That is why the limited coordinates y �as always in physi-
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cal problems� should be considered. However, further we
turn back to the mathematical formulation with nonlimited
coordinates y. The chosen source contains the infinite num-
ber of phase singularities of the magnetic field, which can be
found from the condition Hx�y0 ,0�=0: y0=��n+1 /2� / p. The
situation y=0 is out of our interest because at this point both
Hx and Ey turn to zero �it should be studied separately�.

Using the Fourier method, the fields can be restored as

Hx�y,z� = Aei�z�y cos�py� −
ipz

�
sin�py�
 ,

Ey�y,z� = −
A

�k0
ei�z��y cos�py� −

p

�
sin�py� − ipz sin�py�
 ,

Ez�y,z� =
A

i�k0
ei�z�cos�py� − py sin�py� −

ip2

�
z cos�py�
 ,

�50�

where �=�k0
2�− p2 is the longitudinal wave number. Except

the magnetic-field-induced phase singularities, the electric-
field-induced singularities exist. They appear when both
components of the electric field equal zero: Ey�y0 ,0�
=Ez�y0 ,0�=0. The combined solution of this couple of equa-
tions results in only some possible transverse wave numbers
p. At p /k0=1.0312 two electric-field-induced singularities
arise, namely, k0y0= �0.8343.

Let us observe the positions of Poynting singularities.
Since Sy�y ,0�=0, in Fig. 5�a� we show the nonvanishing
component Sz�y ,0�. Poynting singularities arise for
Sz�y0 ,0�=0. From Fig. 5�a� we note that three singularities
are generated by the electric or magnetic field. The rest sin-
gular point is the so-called polarization-induced singularity
�due to specific polarization of the electromagnetic field�.
There are infinite number of pairs of singular points �saddle-
vortex� along the y axis and only the first saddle is caused by
the electric field vector singularity. All other saddles are ow-
ing to polarization. The distance between the vortex and
saddle decreases for the remote pairs. Since H is linearly
polarized at the point of polarization-induced singularity,
electric field vector satisfies the equation E�+�E=�H /
�see Sec. III�. Since H is directed along the x axis, while E
does not, it is necessary to put �=0 and, therefore, the elec-
tric field is linearly polarized. If magnetic field polarization
is expressed as H=H1 �H1 is the real part of the magnetic
field and  is a complex number�, then the electric field at
the point of singularity must be E= iE1 �E1 is the real part
of the electric field�. From Eq. �50� it follows that H is real at
singularity �y0 ,0�; hence,  is real number and E is the
imaginary vector. This can be fulfilled only if the real com-
ponent Ey�y0 ,0�=0. Such a condition serves for finding the
polarization-induced singularities y0 at the axis z.

One more peculiarity can be noted in Fig. 5�a�. The dis-
tance between the saddle and vortex is the region of negative
Poynting component Sz �negative propagation of the beam
according to �35��. Such negative propagation domains arise
in many beam structures and are connected with the compli-
cated interference picture of vector fields. The distances be-
tween the couple saddle-vortex diminishes with increase in

the coordinate y; therefore, the regions of negative Poynting
component become smaller too.

For the nonabsorbing media the only singular points are
vortices and saddles �Fig. 5�b��. More interesting situation
arises for an absorbing medium with complex dielectric per-
mittivity �=�1+ i�2. Increasing the imaginary part of the di-
electric permittivity, we can achieve the transformation of
the singularity type as displayed in Fig. 6. At �2=0 the pos-
sible points are �a� vortex and �d� saddle. Saddle is the
electric-field-induced or polarization-induced singularity.
Vortex is the singularity of the vanishing magnetic field.
When �2 arises, vortex is converted to another stable point. If
�2 is small enough �inequality �45� is fulfilled�, �b� the stable
focus appears: the image point will be attracted to this point.
�c� Larger �2 transforms focus into the sink. Thus, the change
in the system parameter affects the type of the singularity.

Evanescent waves are generated for the wave numbers p
greater than k0

��	. For such waves the only type of singular
point for Hx is available—it is node �sink or source�. The
proof of this statement for fields �50� can be made in the
closed form. The singularities for evanescent waves are not
the isolated points. They form the lines in the plane �y ,z�;

(a)

(b)

MFIS
vortex

MFIS
vortex

EFIS
saddle

PIS
saddle

z

y

0

FIG. 5. �Color online� �a� The origin of the Poynting singulari-
ties for fields �50� in nonabsorbing dielectric media. For four sin-
gularities shown, we define one electric-field-induced singularity
�EFIS�, two magnetic-field-induced singularities �MFIS�, and one
polarization-induced singularity �PIS�. �b� Poynting vector picture
with indication of the singularity types. Parameters: �1=2.5, �2=0,
and p /k0=1.0312.
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i.e., the singular surfaces in the three-dimensional space
arise.

VI. BIFURCATIONS IN SINGULAR OPTICS

Bifurcation is any qualitative �topological� reorganization
of the system at the parameter transition through a critical
�branching� value. Usually bifurcations are connected with
appearance or disappearance of the critical points �singulari-
ties in our interpretation�.

There are some physical parameters that can be varied.
We have already changed medium parameters, such as di-
electric permittivity �or magnetic permeability�, to see the
change in the type of the singular point �see Fig. 6�. But
more powerful tool to bifurcate is hidden in the field param-
eters. In fact, in the considered system �50� the wave number
parameter p strongly affects the electric-field-induced singu-
larities. Only at some special points these singularities may
appear. For another parameters p this saddle point does not
exist.

The singularities can appear or disappear in couples be-
cause Poincare’s index �topological charge of the electro-
magnetic field� should stay constant when parameter varies.
At the bifurcation value, the complex critical point arises
�e.g., saddle-node�, which is then segregated into two �or
more� isolated points with zero total index. Below we con-
sider a simple example of Poynting bifurcations.

Example

The selected example is a sort of tangential bifurcation,
which is generally introduced for a one-dimensional dynamic
system ẋ=�−x2 �39�. We transform the system of tangential
bifurcation supposing that x-polarized magnetic field de-
pends on real parameter � as

Hx�y,0� = A�� − y2� , �51�

where A is an amplitude. The source Hx�y ,0� itself has two
singular points in the y axis, namely, y0= ���. Depending

on the parameter value, two situations are possible: there is
no singularities ���0� and there are two singularities
���0�. At �=0, the complex singularity arises.

For the given source, the fields can be analytically calcu-
lated as follows:

Hx�y,z� = Aeikz�� − y2 −
iz

k
� ,

Ey�y,z� =
Ak

k0�
eikz�� − y2 −

ikz + 1

k2 � ,

Ez�y,z� =
2iA

k0�
eikzy , �52�

where k=k0
�� �magnetic permeability is again the unity�.

Further we will trace the development of the Poynting
singularities with raising parameter �. All the transforma-
tions of the singularities are summarized in the bifurcation
diagram in Fig. 7. At ��0 there is no critical points. First,
complex singular point appears at �=0 �Fig. 8�a��. It is com-
posed of four Poynting singularities, two vortices, and two
saddles and looks like the obstacle preventing the energy
density flow. The vertical line passing through the complex
point divides the plane into two parts. In the right-�left-�hand
side, the right-�left-�hand vortex becomes apparent. The sim-
pler form of this complex critical point can be observed in
Fig. 9�a�. In this map of the magnetic field, the complex
singular point presents the superposition of saddle �left-hand
side of the figure� and stable node, namely, sink �right-hand
side of the figure�. Such a complex critical point is known to
appear at the line �G�=0 separating saddles and nodes in the
diagram in Fig. 4. However, stability matrix is now referred
not to the Poynting vector, but to the complex function of
magnetic field Hx.

FIG. 6. Evolution of the singularity type depending on the
imaginary part of dielectric permittivity �2: �a� vortex at �2=0, �b�
stable focus at �2=0.5, and �c� sink at �2=1.5. �d� Also the saddle
point is shown. Parameters: �1=2.5 and p /k0=1.0312.

FIG. 7. �Color online� Bifurcation diagram �dependence of the
singularity position on parameter �� showing magnetic-field-
induced singularity �MFIS�, electric-field-induced singularity
�EFIS�, and polarization-induced singularity �PIS�. Only dashed
curve corresponds to the PIS situated in the z axis. Real dielectric
permittivity equals �=2.5.
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Subsequent increase in parameter � generates four Poyn-
ting singularities. As proved in Sec. V, the magnetic-field-
induced singularities are always vortices �we consider the
nonabsorbing media with real dielectric permittivity ��. The
positions of these vortices are defined by the equation
Hx�y0 ,0�=0, i.e., y0= ���. The signs concern the direction
of the vortex rotation, + �−� is for the right- �left-� hand
vortex. The square-root dependencies are shown in the bifur-
cation diagram in Fig. 7. Except the couple of vortices, the
couple of polarization-induced saddles arises �Fig. 8�b��. The
saddles are placed in the z axis, and their positions can be
calculated from the condition S�0,z0�=0 as z0

= ����1−�k0
2��. From the dependence z0��� we may note

that � is strictly confined by the values 0���1 / ��k0
2�. The

corresponding curves are marked dashed in Fig. 7. At first
the saddles are disperse, but after �=1 / �2�k0

2� they gather
again. At �=1 / ��k0

2� both saddles coincide �Fig. 8�c��. As
follows from Fig. 9�b�, magnetic field singularities �saddle
and sink� are simply dispersed. In this example of bifurcation
behavior, the value �=1 / ��k0

2� corresponds to the singularity
of the electric field �in general, this is not the case�,
E�0,0�=0. In the Poynting map we call this situation as
electric-field-induced singularity. The point �0,0� is the single
point to result in the electric field singularity.

The further increase in the parameter � generates the
couple of polarization-induced saddles, which attract to the
vortices for greater � �Fig. 8�d��. The positions of y-arranged
polarization-induced singularities follow from Ey�y0 ,0�=0;
that is, y0= ���−1 / ��k0

2�.
Thus, we have considered the example of Poynting vector

bifurcations. They are accompanied with the magnetic field
and electric field bifurcations. The separate situation, typical
for the Poynting vector behavior, is the presence of the
polarization-induced singularities. They significantly change
the bifurcation diagram of the system.

VII. CONCLUSION

This paper is intended for demonstrating the frame of the
optical dynamic systems theory. We have revealed some ba-

sic features of the optical singularities, which are similar to
what follows from the theory of dynamic systems. First of
all, it is the proof of the equation for the image point �1�. The
image point moves in the natural three-dimensional space
�such as phase space of a dynamic system�. The point itself
does not exist as realistic object; it is only one of the conve-
nient descriptions of the field evolution. On the other hand,
Poynting vector S �exactly, S /c2� is the momentum of the
electromagnetic wave. That is why Eq. �1� results in the ob-
vious statement that the velocity ṙ is proportional to the mo-
mentum. The realistic dielectric microparticle can be also
affected by the averaged Poynting vector; however, the effect
is not direct: the applied force is somehow expressed with S.

We have obtained that the singularity of the Poynting vec-
tor can be caused by field vanishing or special polarization of
the electromagnetic field. These singular points are called
electric-�magnetic-�field-induced singularities and
polarization-induced singularities, respectively. The positions
of field-induced singular points coincide with that of phase
singularities of the vector fields. All the situations �for linear
and nonlinear field polarizations�, in which polarization-
induced singularities arise, have been analyzed in Sec. III.
The critical points can be just isolated singular points or can
form singular lines and surfaces. The behavior of the image
point near the singular objects depends on the geometry of
the singularity. In the case of the singular lines, the problem
can be reduced to the two-dimensional one. The examples of
the two-dimensional problems are considered in Secs. V and
VI. The simplest case of singular surface can be studied in
general: for the conservative dynamic systems the image
point moves along the surface.

We have offered the calculation of the Poynting singular-
ity type �vortex, focus, saddle, and node� of a two-
dimensional system using the criterion based on the trace and
determinant of the stability matrix. In this way, we have gen-
erally found the types of field-induced singularities without
specifying certain field dependencies �Sec. V�. Finally, we
have considered the tangential bifurcation of the magnetic
field and demonstrated some branching points for the bifur-
cation of the Poynting vector.

As future trends of the current work, we may suppose

Im(Hx)

R
e(
H
x)

Im(Hx)

(b)(a)

N

S

S-N

FIG. 9. �Color online� Vectorial map of complex function of
magnetic field Hx�y ,z� at �a� �=0 and �b� �=0.2 �compare with
bifurcation diagram in Fig. 7�. The zeroes of magnetic field are the
phase singularities: complex saddle-node point �S-N�, saddle �S�, or
node �N�.

z

y

z

y

(b)(a)

(d)(c)

complex
point

VV

S

S

V V

S

V V

S S

FIG. 8. �Color online� Poynting vector map �Sy is along the
horizontal y axis and Sz is along the vertical z axis� for the bifurca-
tion diagram in Fig. 7 at �a� �=0, �b� �=0.2, �c� �=0.4, and �d�
�=0.6. Red and green arrows show the movement of singularities,
vortices �V� and saddles �S�, with increasing parameter �.
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investigating the fully three-dimensional field distributions,
appearance of the limit cycles, and stochastic dynamic re-
gimes. The theory developed can be applied for investigating
optical singularities in the focal region, if the fields are pre-

sented in the certain form �e.g., in Debye approximation�.
Then polarization dependence of the local circulation �41�
and super-resolution in high numerical aperture systems �42�
can be analyzed.
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