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On basis of numerical simulation of fiber laser passive mode locking, we have determined the quantum
binding-energy levels for a pair of interacting structural solitons. These solitons have powerful wings and
correspondingly large binding energies. It has been found that the field amplitude functions for steady states
corresponding to neighboring energy levels have opposite parity. We have pointed out the analogy between the
energy quantization for laser bound solitons and for a particle moving in potential well. The possibility of a
coexistence of in-, opposite-, and � /2-phase soliton pairs has been found. In the case of multiple soliton trains,
we have demonstrated the realization of highly stable soliton sequences with any required distribution along
the soliton train of various types of bonds between neighboring pulses.
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I. INTRODUCTION

Stable self-localized waves called solitons arise spontane-
ously in many fields of physics, among them hydrodynamics,
plasma physics, superfluidity, nonlinear optics, and so on
�1–3�. The passive mode-locked fiber lasers are of great in-
terest for a study of various soliton properties in dissipative
systems. Nonlinear-dispersion parameters of the fiber laser
can be changed in a very large range that provides a distinct
manifestation of these properties including diverse peculiari-
ties of an interaction between solitons. The multiple-pulse
passive mode locking is a commonly observed regime of
operation for fiber lasers exploiting nonlinear polarization
rotation technique �4–6�. As this takes place, the ultrashort
pulses in a laser cavity have the same spectral and spatial
parameters that caused by the effect of quantization of intra-
cavity radiation into identical individual solitons �6,7�. The
interaction between solitons plays a crucial role in the estab-
lished multiple-pulse lasing regime. In the case of pulse at-
traction, the regime of bound solitons can be realized �8�. If
this attraction is sufficiently strong, the soliton sequences
become long. The quantity of solitons in the train can be
equal to several hundreds �9�. Under certain conditions the
harmonic bound-soliton passive mode-locking can be real-
ized �10�. In this case the solitons are equidistantly placed in
the laser cavity. The interaction between solitons is one of
the main problems in the creation of soliton-based optical
fiber communications lines. Such interaction can destroy or
protect information sequences of ultrashort pulses. Thus, for
efficient control and management of multiple soliton regimes
it is necessary to know the properties of soliton interaction at
a fundamental level.

Bound states of two solitons in the frame of complex
cubic-quintic Ginzburg-Landau equation were first analyzed
by Malomed �11�. Using standard perturbation analysis for
soliton interaction, it was found solutions in the form of
bound states of two solitons, which are either in-phase �the
phase difference in the points of peak intensity of solitons is
equal to zero� or opposite-phase �the phase difference is
equal to ��. However, the detailed analysis showed that these
types of bound states are unstable for used nonlinear-

dispersion parameters �12,13�. In the frame of this equation,
Akhmediev et al. �8� discovered stable solutions which de-
scribe bound states of two solitons with a � /2 phase differ-
ence between them. The bound states of solitons were then
experimentally observed in passive mode-locked fiber lasers
with the nonlinear polarization rotation technique �14–20�.
The bound steady states with the � /2 phase difference were
detected in the experiments presented in the papers �15,20�.
The authors of the paper �14� reported the observation of
bound steady states with the � phase difference. In their
experiment no bound states with a zero phase difference
have been observed. The stable soliton pairs with zero and �
phase differences were obtained on basis of the coupled ex-
tended Schrödinger equations that explicitly take into ac-
count the birefringence of the fiber and the gain and loss of
the laser cavity �21,22�. In above investigations, both theo-
retical and experimental results were however limited to a
few pulses.

The reliable experimental realization of long trains of
bound solitons �several hundreds pulses in the train� �9�
means their high stability that is caused by high binding
energies of solitons. Recently we have found the type of
solitons which we named “structural solitons” �23�. These
solitons have powerful wings that result in large binding en-
ergies of interacting pulses. This paper is devoted to a theo-
retical investigation of bound steady states of structural soli-
tons. For our numerical analysis we used the model which
describes adequately a dependence of nonlinear losses on a
field intensity for real fiber lasers with the nonlinear polar-
ization rotation technique in all range of laser parameters �6�.
For some conditions this model transforms into one which is
determined by the complex cubic-quintic Ginzburg-Landau
equation �24�.

This paper is organized as follows. In Sec. II we present
the used model of a passive mode-locked fiber laser with
nonlinear polarization rotation technique and the correspond-
ing equations describing the soliton dynamics. Section III is
devoted to the numerical simulation results on the quantiza-
tion of a binding energy of a soliton pair with zero and �
phase difference, on the information bound-soliton se-
quences, and on the coexistence of soliton pairs with differ-
ent phase differences including the � /2 phase difference be-
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tween solitons. In Sec. IV we give the physical interpretation
of the energy quantization based on boundary conditions for
two waves describing individual solitons. Section V is de-
voted to the discussion of the obtained results.

II. PHYSICAL MODEL AND MASTER EQUATIONS

The laser under investigation is schematically represented
in Fig. 1. It was described in detail in Ref. �6�. For isotropic
fiber, this system involves all necessary elements for the con-
trol of nonlinear losses. After the polarizing isolator the elec-
tric field has a well-defined linear polarization. Such state of
polarization does not experience polarization rotation in the
fiber because the rotation angle is proportional to the area of
the polarization ellipse. Consequently, it is necessary to place
a quarter-wave plate 3 which transforms the linear polariza-
tion into the elliptic one ��3 represents the orientation angle
of one eigenaxis of the plate with respect to the laboratory
frame�. The rotation of the polarization ellipse resulting from
the optical Kerr nonlinearity is proportional to the light in-
tensity, the area of the polarization ellipse and the fiber
length. At the output of the fiber, the direction of the ellipti-
cal polarization of the central part of the pulse can be rotated
toward the passing axis of the polarizer by the half wave
plate 2 �the orientation angle is �2�. Then this elliptical po-
larization can be transformed into a linear one by the quarter-
wave plate 1 �the orientation angle is �1�. In this situation the
losses for the central part of the pulse are minimized while
the wings undergo strong losses. The evolution of the radia-
tion in the investigated laser is described by the following set
of equations �6�:

�E

��
= �Dr + iDi�

�2E

��2 + �G + iq�E�2�E , �1�

En+1��� = − ��cos�pIn + �0�cos��1 − �3�

+ i sin�pIn + �0�sin��1 + �3��En��� , �2�

where E�� ,�� is the electric field amplitude, � is a time co-
ordinate expressed in units �t=���2�L /2 �here �2 is the
second-order group-velocity dispersion for fiber and L is the
fiber length�, � is the normalized propagation distance
�=z /L, Dr and Di are the frequency dispersions for a gain
loss and for a refractive index, respectively, and q is the Kerr
nonlinearity. The term G=a / �1+b��E�2d�� in the second pa-
renthesis in Eq. �1� describes the saturable amplification

�here the integration is carried out on the whole round-trip
period, a is the pumping parameter and b is the saturation
one�. The second term in these parentheses is connected with
Kerr nonlinearity of the fiber. Equation �2� determines the
relation between the time distributions of the field before and
after nth pass of radiation through the polarizer �� is the
transmission coefficient of the intracavity polarizer�.
Parameters �0, I, and p are determined by relations
�0=2�2−�1−�3, I= �E�2, p=sin�2�3� /3. The amplitude E���
is subject to periodic boundary conditions with period equal
to one round trip.

The numerical procedure starts from the evaluation of the
electric field after passing through the Kerr medium, the
phase plates, and the polarizer, using Eq. �2�. The resulting
electric field is then used as the input field to solve Eq. �1�
over a distance L, using a standard split-step Fourier algo-
rithm. The computed output field is used as the new input for
Eq. �2�. This iterative procedure is repeated until a steady
state is achieved.

III. RESULTS OF NUMERICAL SIMULATION

A. Steady states of two bound solitons

For our numerical simulation we have used typical param-
eters of Er-doped fiber laser with anomalous net dispersion
of group velocity. Figure 2 shows the temporal and spectral
profiles of a single soliton. The soliton has significant wings.
On the bell-shaped spectral profile one can see the additional
structure. For some nonlinear-dispersion parameters of an
intracavity medium, the additional structure arises also on
powerful wings of the temporal intensity profile of a pulse.
This structure can depend on initial generation conditions. In
paper �23� such solitons have been named structural solitons.
The sidebands in the soliton spectrum are typical for case of
anomalous dispersion. In the frame of the model described
by Eqs. �1� and �2�, the top part of the soliton and its pedestal
are formed by different mechanisms. The former is mainly
shaped by the combined action of the focusing nonlinearity
and the anomalous dispersion of refractive index. The latter
is formed also by the nonlinear losses. As a result, choosing
suitable angles of the phase plates �i and dispersion param-
eters �Di, Dr�, we can independently change properties of the
pedestal and the top part of a soliton in wide limits. By this
method we have obtained the regime in which stable solitons
and stable cw-component of radiation coexist simultaneously
�25�.

Because of the interaction between solitons, the pair of
such structural solitons is united in the stability formation
with a large binding energy—highly stable “two-soliton mol-
ecule” �8�. The radiation energy of such molecule is less than
the energy of two solitons placed from each other on a long
distance. The binding energy for two solitons in this mol-
ecule takes the discrete set of values shown in Fig. 3. Corre-
sponding energy levels are numbered in decreasing order for
a binding energy presented in relative units �the binding en-
ergy divided by twice the energy of an isolated soliton�. The
binding energy is the difference between the energy of the
bound-soliton pair and two widely separated identical soli-
tons. Large binding energies for the low-energy steady states
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FIG. 1. Schematic representation of the investigated fiber ring
laser passively mode locked through nonlinear polarization rotation.
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are due to powerful wings of the structural solitons.
For the ground steady state �the first energy level� and for

the all odd levels, the field functions are antisymmetric
Ek���=−Ek�−�� if the origin of the coordinate �=0 corre-
sponds to the point equally spaced from the peaks of the
solitons. In this case, the peaks amplitudes of two solitons
are in opposite phase ���=��. For all even steady states the
field functions are symmetric Ek���=Ek�−�� and the peaks
amplitudes of two solitons have the same phase ���=0�.

In the ground state the distance between the solitons is
minimal d1. For the kth steady state this distance dk is deter-
mined by the approximate relation

dk � kd1. �3�

In our numerical experiment the second soliton is placed in
the points in which the phase of the single first soliton is
multiple � �the phase of the single first pulse in the point of
its peak intensity is supposed equal to zero�. The distances
between these points and the point of a peak intensity of the
first single pulse are correspondingly also determined by Eq.
�3�. For the laser parameters we used, the phase of a single
soliton in the vicinity of its central part changes nonmono-
tonically. As a result, the phases in the first point d1 and in
the point of a peak intensity are the same. For the first steady
state with the distance between solitons d1 �the ground

steady state� the phase difference for their amplitudes in their
peak points is �. This means the opposite-phase interference
between the central part of each of two pulses with a wing of
other one in the case of ground steady state. On basis of the
presented numerical simulation results it is easy to under-
stand that this statement is true for any obtained steady state.
Thus, the results of our numerical simulation show the
opposite-phase �destructive� interference between the central
part of each of two pulses with a wing of other one for all
discussed here steady states.

All steady states are stable. This means multistability of
such two-soliton molecule. Setting some distance between
initial pulses, after a transient process we have obtained the
steady state, for which the distance between pulses is the
closest to its initial distance. This result depends weakly on
an initial phase difference. During transient process the
phase difference corresponding to a realized steady state is
established very quickly �about ten round-trip periods�.

Figure 4 shows the temporal distributions of intensities in
the two-soliton molecule for the cases of the ground steady
state �the minimal distance between solitons� and for the first
and second excited steady states �the distances between soli-
tons approximately equals the double and triple minimal one
d1, respectively�. In the cases of the ground �k=1� and sec-
ond excited �k=3� states, the intensity is equal to zero in the
center point between solitons. For the first-excited state
k=2 the intensity in this point is distinct from zero.

Our numerical simulation shows that the soliton pairs in
different steady states can coexist each with other and with
single solitons. Note that similar results on quantization of
soliton separation in a soliton pair have been previously re-
ported in a different configuration �26�. Indeed, it was con-
sidered a stretched pulse fiber laser and the resulting separa-
tion did not vary in arithmetic progression.

B. Information sequences of bound solitons

Due to large binding energies, it is possible to realize
highly stable noise-proof multisoliton molecules. Placing
several initial pulses on certain distances from each other,
after transient process we have obtained stationary “molecu-
lar chains” with any desirable distribution of types of bonds
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FIG. 2. �a� Temporal and �b� spectral distributions of radiation for the single soliton passive mode locking. The upper right inset of Fig.
2�a� shows the multiplied soliton pedestal. In all figures we use arbitrary units. a=1.1, q=2, Di=0.13, �0=0.2, �1=−1.64, �3=0.2, Dr is
determined by the amplification medium: Dr=Dr0G, Dr0=0.085.
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FIG. 3. Binding energy of two solitons in steady states J ex-
pressed in relative units �the binding energy divided by the energy
of the two solitons removed from each other on the long distance�.
The laser parameters are the same as in the case of Fig. 2.
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between neighboring solitons along a pulse train. Such se-
quence is realized more simply with a use of the ground- and
first-excited types of intersoliton bonds for which the binding
energies are especially great. Distributing types of intersoli-
ton bonds along a soliton train by required appointed order, it
is possible to code information. Figure 5 shows such infor-
mation soliton sequence in which the number 2708 is coded
in binary system. Here the ground type of a bond �smaller
distance between pulses� corresponds to zero and the first-
excited type of a bond �the greater distance between pulses�
corresponds to unit. In binary system this sequence corre-
sponds to the number 101010010100, that in decimal system
is the number 2708.

Such soliton trains are highly stable formations. The high
stability is primarily due to large binding energies. Further-
more, there exists a second reason of the high stability. It
consists in the following. The perturbation energy which was
initially localized in the vicinity of some pair of bound soli-
tons is quickly collectivized among all solitons of the train.
In the numerical simulation we have used the random radia-
tion noise to prove this stability. This noise induces up to
10% fluctuations of peak intensities of solitons but does not
change the structure of soliton sequences.

C. Nonsymmetric steady states of a bound-soliton pair

The phase difference for solitons in the above-discussed
symmetric and antisymmetric pairs is equal to zero and �,
respectively. Such soliton pairs and also soliton trains with
symmetric and antisymmetric types of bonds �see Fig. 5�
move at the same velocity as single solitons. In our numeri-
cal experiment we have also observed bound states of two
solitons with a phase difference � /2 �8,26�. These nonsym-
metric pairs of bound solitons move relative to single soli-
tons, symmetric and antisymmetric soliton pairs, and relative
to the above-mentioned soliton trains. Figure 6 demonstrates
such movement and the elastic collision of a � /2 soliton pair
and a single soliton. After the collision the initially at-rest
soliton and the forward soliton of the moving pair forms the
new � /2 pair which continues the movement. The tail soli-
ton of the initial pair therewith transits in a state at rest. With
other laser parameters we have observed a nonelastic colli-
sion of a nonsymmetric pair and a single soliton. In this case
after the collision the stable moving structure with the three
bound soliton were realized. These results are in excellent
agreement with those obtained on basis of the complex
cubic-quintic Ginzburg-Landau equation �27�.

In our numerical experiment we have obtained regimes in
which the � /2 soliton pairs simultaneously coexist with
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FIG. 4. Temporal distribution of intensity in the two-soliton
molecule for �a� the ground steady state �minimal distance d1 be-
tween solitons�, for �b� the first-excited steady state, and for �c� the
second excited steady state. The laser parameters are the same as in
the case of Fig. 2.
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FIG. 5. Stable train of bound solitons with the ground- and
first-excited types of bonds in which the number 2708 is coded in
binary system 101010010100. The greater distance between pulses
corresponds to unit. The smaller distance between pulses does to
zero. The laser parameters are the same as in the case of Fig. 2.
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FIG. 6. Elastic collision between a soliton pair with a � /2 phase
difference and a single soliton. a=1.3, �0=−0.1, �3=0.17, the other
parameters are the same as in the case of Fig. 2.
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symmetric and antisymmetric pairs and with solitons se-
quences. With decreasing pumping the phase difference for
the nonsymmetric soliton pair shown in Fig. 6 increases.
When the pump reaches some threshold value, the nonsym-
metric pair transforms into ground antisymmetric state. In
the vicinity of the threshold of the transition the phase dif-
ference of the nonsymmetric pair is considerably different
from � /2. With laser parameters for the case of Fig. 5 we
could not obtain a � /2 soliton pair. Nevertheless, the � /2
bond was easily realized at the ends of soliton sequences
with symmetric and antisymmetric bonds. As this takes
place, the soliton sequence begins to move relative to single
solitons.

IV. PHYSICAL INTERPRETATION OF BINDING-ENERGY
QUANTIZATION

Physical interpretation of the obtained energy quantiza-
tion consists in the following. Distances and phase relations
for solitons in steady state take such values for which the
arising field structure experiences minimal nonlinear losses.
In the papers �6,7� we found that in the case of multiple-
pulse passive mode locking the total amplification coefficient
decreases with increasing peak intensity of a soliton. It is a
necessary condition for an equalization of peak soliton am-
plitudes. Thus, the condition for minimal loss for a two-
soliton structure is the opposite-phase interference of the
central part of each of two pulses with a wing of other one.
In this case the peak intensities of solitons are decreased and
the amplification coefficients are correspondingly increased.
The same interference is realized in our numerical experi-
ment �see Sec. III A�. In this way we obtain two boundary
conditions which link the two-soliton waves to each other
and result in a quantization of the energy binding the two
solitons.

Let �1��1 max� and �1��2 max� be the phases of the field for
the first soliton in points of its peak intensity and of the peak
intensity of the second soliton, respectively. Similarly, we
designate through �2��2 max� and �2��1 max� the phases of the
amplitude for the second soliton in points of its peak inten-
sity and of the peak intensity of the first soliton, respectively.
The condition of an opposite-phase interference of two
pulses in points of their maximal amplitudes can be written
down as follows:

�1��2 max� = �2��2 max� − � + 2�k1, �4�

�2��1 max� = �1��1 max� − � + 2�k2, �5�

where k1 and k2 are integers. These relations are the two
boundary conditions �in the points �=�1 max and �=�2 max�.
Summarizing these two equalities, we obtain the following
ratio:

��1 + ��2 = 2��k − 1� , �6�

where ��1=�1��2 max�−�1��1 max� is the phase difference of
the first soliton wave for the points �=�2 max and �=�1 max,
��2=�2��1 max�−�2��2 max� is the phase difference of the sec-
ond soliton wave for the points �=�1 max and �=�2 max,

k= �k1+k2� is an integer. Here k is determined by such way
that it gives ��1+��2=0 with k=1 in the correspondence
with our numerical results �see Sec. III A�. Thus, from the
two boundary conditions we have obtained the condition of
the energy quantization and of the steady-state realization in
the following form �see Fig. 7�: the total change in the phase
of a field on the closed trajectory is multiple 2� �the closed
trajectory consists in two parts: the first part from the point
�1 max up to the point �2 max is related with a change in the
phase for a wave function of the first pulse, and the second
part from the point �2 max up to the point �1 max is related with
a change in the phase for a wave function of the second
pulse�. As a matter of fact, this condition coincides with the
condition of an energy quantization for a particle under its
finite movement which is according to Bohr’s rule in the
following formulation: on the closed trajectory of a move-
ment of a particle, there should be an integer number of de
Broglie’s wavelengths.

As characteristics of both pulses are identical �within a
location on the axial period and any phase factor in the case
of an absence of interference interactions�, and the varying
part of a phase for each pulse is even function of a variable �,
then ��1=��2= �k−1��. It means that even k corresponds to
symmetric distributions of a field in the soliton molecule
Ek���=Ek�−�� �the solitons are in phase�, and odd k does to
antisymmetric distributions Ek���=−Ek�−�� �the solitons are
in opposite phase�. On wings of a pulse, the phase is mono-
tonic function of �. Hence, with increasing k, the distance
between pulses monotonously increases. With increasing k,
the effect of redistribution of a field owing to an interference
and an additional amplification due to such redistribution are
decreased. It means that with increasing k the binding energy
of a molecule is decreased. As pointed out above, the used
here numbers k coincide with the numbers k of the energy
levels shown in Fig. 3.
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FIG. 7. Stationary steady states of ‘‘two-soliton molecule’’ cor-
responds to such distance between solitons for which the total
change in a phase of a field on the closed trajectory ��1+��2 is
equal to 2��k−1�, where k is an integer. The closed trajectory con-
sists of two parts: the first part from the point �1 max up to the point
�2 max is related with a change in the phase for a wave function of
the first pulse, and the second part from the point �2 max up to the
point �1 max is related with a change in a phase for a wave function
of the second pulse. The upper right inset gives the analogy with the
mechanism of energy quantization for a particle moving in a square
potential well with infinite walls.
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It is easy to understand why the distance between solitons
in steady states is approximately multiple to the minimal
distance. It is connected to the circumstance that local fre-
quency of a field on wings of pulses practically does not vary
�28�, and the phase change along a pulse equal to � occurs
after equal intervals ��. As a result, Eq. �3� is obtained.

It is necessary to note that, in the discussed task, an anti-
symmetric wave function corresponds to the lowest binding-
energy level, while from quantization of energy for a particle
in a symmetric potential well, it is known that a wave func-
tion of the ground state is symmetric. Although in both cases
the opposite-phase boundary conditions are used. In the case
of a particle the minimum phase change between boundary
points for each counterpropagating wave is �. In our case
this is zero �the phase of a single soliton in the vicinity of its
central part changes nonmonotonically�. As a result, the
ground states in these tasks have opposite parities. For other
laser parameters for which the phase of a single soliton
changes monotonously with changing � from the peak inten-
sity point to infinity, one might expect that the ground steady
state will be even.

In this paper we use the opposite-phase boundary condi-
tions for a quantization of a binding energy of two interact-
ing solitons. It is necessary to note that in the case of the
in-phase boundary conditions the parity of each of steady
state is replaced with the opposite parity. The distances be-
tween solitons are determined by Eq. �3� as for case of the
opposite-phase boundary conditions. However these field
configurations will not correspond to minimal losses and are
not realized in an experiment.

In the case of only in-phase boundary conditions or only
opposite-phase ones, steady states of a two-soliton molecule
are described by symmetric or antisymmetric wave functions
Ek���. The phase difference for solitons is zero or �. The
energy flow between solitons is absent because of symmetry.
If the energy flow for points 0 and � is equal to zero, it is
naturally to expect that it will be maximal in an intermediate
point where symmetry is maximally broken, which is in a
vicinity of a point � /2. What boundary conditions are re-
quired for such phase difference? It is easy to understand that
boundary conditions must be mixed ones: in the point of a
peak amplitude of one soliton the interference must be con-
structive, in the point of a peak amplitude of other soliton it
must be destructive. In this case, in the right part of one from
Eqs. �4� and �5� there occurs the additional phase �. Equa-
tion �6� transforms into the equation ��1+��2=2��k−1�
+�. If the peak intensities of the solitons are almost the same
then ��1=��2=� /2+��k−1�. This means the � /2 phase
difference for bound solitons. The additional asymmetric
chirp in the interior wings of the solitons due to the � /2
phase difference results in a movement of the soliton pair
relative to a single symmetric soliton. The energy balance in
such molecule is realized in the following way. The energy
flow goes from the smaller pulse to the greater one. As a
result, they have the difference in their peak amplitudes
which is due to this flow �29,30�. These energy changes in
individual solitons are compensated by a difference in their
amplification: the total amplification coefficient for the
greater pulse is less than for a smaller one. The stability of a
� /2 bound pair means an energy advantage of such configu-

ration of the field. It would appear reasonable that the � /2
bound pairs are the most easily realized if peak intensities of
solitons correspond to the top part of dependence of the total
amplification coefficient on a peak soliton intensity �see Fig.
9 in the paper �6� and Fig. 3 in the paper �7��. In this case the
mechanism of equalization of solitons is the weakest.

So, the presented physical interpretation allows to identify
the mechanism of quantization of the binding energy of a
two-soliton molecule and to explain the basic laws of this
quantization which have been revealed in the performed nu-
merical experiment.

V. DISCUSSION

The analysis on basis of complex cubic-quintic Ginzburg-
Landau equation showed an instability of in- and opposite-
phase steady states of a bound soliton pair and a stability of
� /2-phase steady states �8,11–13�. For our analysis we used
more generalized model taking into account peculiarities of
intensity-dependent losses for real fiber lasers. In the frame
of such model we have found stable steady states with all
above-mentioned phase differences. We have shown that
soliton pairs with in-, opposite-, and � /2-steady states can
simultaneously coexist each with others and with single soli-
tons. In our analysis we have not taken into account an an-
isotropy and a third-order dispersion of a fiber, because of
these effects result in insignificant modifications of investi-
gated phenomena.

In our study we have chosen such laser parameters for
which the researched phenomena are manifested most
clearly. With other parameters we have observed various
modifications of investigated regimes. For examples, we
have observed the temporal oscillations of soliton amplitudes
in bound states. For some parameters the lower states were
unstable. As a result of this instability, a soliton pair transits
into a higher steady state. With other parameters this insta-
bility results in a merge of solitons. With certain parameters
the investigated phenomena are masked by period-doubling
effects.

Our results on � /2 soliton pairs are in agreement with
corresponding experimental and theoretical results obtained
on basis the complex cubic-quintic Ginzburg-Landau equa-
tion �8,15,20,27�. It concerns character of collision of soliton
pairs with single pulses. In our numerical simulation we have
obtained the ground steady state with � phase difference for
solitons in the pair. The binding energy for this ground state
is considerably more than for the first-excited state �by factor
3�. As a result, in an experiment the � bound steady state
will be realized with the greater probability than in-phase
states. Really, the transition of the pair from the ground
steady state to exited states requires considerably greater en-
ergy than a return one. It may explain the experimental re-
sults of the paper �14� where a � bound state of a soliton pair
was observed but the in-phase states were not detected. The
authors of the papers �21,31,32� observed the lasing regime
with several same pairs of bound solitons in the laser cavity.
As this takes place, single solitons are always absent in the
cavity. This fact can be understood if the binding energy of a
soliton pair is greater than the energy of a single soliton. In
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our numerical experiment it was 26% of the single soliton
energy.

Thanks to large binding energies of interacting structural
solitons, we have realized high-stable noise-proof multisoli-
ton molecules. We have shown that sets of various types of
bonds between neighboring pulses in such molecule can be
obtained. Accordingly, the coding of the information in these
soliton sequences can be realized through various distribu-
tions of types of bonds between neighboring pulses along a
soliton train. Dense packing of pulses in the bound-soliton
sequence provides high speed of transfer of information in
fiber communications line working in nonlinear bound-
soliton-based regime.

VI. CONCLUSION

On basis of numerical simulation we have found that odd
and even steady states of a soliton pair are determined by
conditions of opposite-phase interference between a peak
amplitude of each from two pulses and a wing of other pulse.
The steady states corresponding to neighboring binding-
energy levels have opposite parity. The ground steady state

has odd parity. All steady states are stable. From any initial
state the soliton pair passes in one of possible steady states,
that is, a bound-soliton pair is multistable. We have demon-
strated the possibility to form information soliton sequences
with any desirable distribution of the types of bonds between
neighboring pulses along soliton trains. Thanks to large val-
ues of binding energies, such sequences have a high level of
stability against perturbations.

We found that nonsymmetric steady states of two bound
solitons with the � /2 phase difference between them are
determined by mixed boundary conditions: �1� the in-phase
interference between a peak amplitude of first pulse and a
wing of second pulse; �2� the opposite-phase interference
between a peak amplitude of second pulse and a wing of first
pulse. In-, opposite-, and � /2-phase soliton pairs can simul-
taneously coexist with each other and with single solitons.
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