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We investigate the possibility of bistable lasing in microcavity lasers as opposed to bulk lasers. To that end,
the dynamic behavior of a microlaser featuring two coupled interacting modes is analytically investigated
within the framework of a semiclassical laser model, suitable for a wide range of cavity shapes and mode
geometries. Closed-form coupled mode equations are obtained for all classes of laser dynamics. We show that
bistable operation is possible in all of these classes. In the simplest case �class A lasers� bistability is shown to
result from an interplay between coherent �population-pulsation� and incoherent �hole-burning� processes of
mode interaction. We find that microcavities offer better conditions to achieve bistable lasing than bulk cavi-
ties, especially if the modes are not degenerate in frequency. This results from better matching of the spatial
intensity distribution of microcavity modes. In more complicated laser models �classes B and C� bistability is
shown to persist for modes even further apart in frequency than in the class A case. The predictions of the
coupled mode theory have been confirmed using numerical finite-difference time-domain calculations.
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I. INTRODUCTION

In recent years, microlasers have been an object of grow-
ing interest in the photonics community because of a remark-
able promise in both basic and applied research. Modern
technology has facilitated fabrication of high-Q microsized
and nanosized cavities �microresonators� in a vast variety of
designs �microdisks, microrings, microgears, microtoroids,
nanowires, nanoposts, and so on �1��. Lasers can be based on
many of these setups as well as on different materials, e.g.,
semiconductors, impurity ions, or dye molecules. In addition,
periodic nanostructures �photonic crystals �PhCs�� can pro-
vide both cavity-based and distributed feedback resonators
suitable for laser design �2,3�. The cavity size, which be-
comes so small as to be comparable to the operating wave-
length, is what makes a microlaser physically distinct from
conventional �“bulk”� cavities whose size is far larger. The
small size limits the number of cavity modes that could take
part in lasing and at the same time greatly increases the in-
fluence of the cavity shape on the character of the modes. As
a result, the mode structure becomes more complicated and
heavily dependent on the specific cavity design. One is no
longer able to describe the modes universally in an analytical
manner. The variety of laser dynamics becomes much richer,
which complicates the studies of microlasers to a consider-
able extent but at the same time can harbor interesting new
effects. For example, one could look for new possibilities of
bistable or multistable lasing �4�, which would prove useful
in many applications such as multiple-wavelength light
sources, optical flip-flop devices, or optical memory cells �5�.

In the simplest case when two modes coexist in the same
laser cavity �competing for the same saturable gain medium�,

three lasing regimes are usually considered �6�. First, when
one of the modes has an advantage �e.g., larger Q-factor or
better coupling to the gain�, it simply dominates, becoming
the only lasing mode �single-mode lasing�. Second, when the
modes are well balanced �i.e., similar Q-factors and equally
well coupled to the gain�, they can both lase simultaneously.
Such a coexistence can become possible because the modes
with different frequency and/or spatial field pattern prefer-
ably interact with different gain centers. As a consequence,
the spectral and spatial hole burnings cause each mode to get
saturated independently and allow the mode that happens to
be weaker to catch up with the stronger one. Each mode
saturates itself more readily as it does the other mode; in this
sense, the coexisting modes are said to be weakly coupled
�simultaneous multimode lasing�. Third, if the reverse is true,
i.e., if each mode saturates the other mode before coming to
its own saturation �the modes are strongly coupled�, the
weaker mode is quenched by the stronger one before it has
any chance to catch up. Whichever mode has an initial ad-
vantage wins the competition and becomes the only lasing
mode �bistable multimode lasing�. The system can lase in
either mode and is in this sense bistable.

Trying to understand the physical origin of strong mode
coupling brings about certain problems. It was pointed out
from the beginning �7� that harmonic modes �such as longi-
tudinal modes in bulk cavities� must always be coupled
weakly because the antinodes of the field �the regions where
the light-matter interaction is maximized� are spatially mis-
matched for different modes. Spatial hole burning would
work similarly for any two modes with mismatched intensity
distribution �such as transverse modes in bulk cavities�. One
of the ways to circumvent this limitation is to use degenerate
modes with identical spatial intensity profiles, e.g., polariza-
tion degenerate modes or counterpropagating modes in ring
lasers. This can make the lasing bistable due to additional
mode coupling through population pulsations �6,8�. Alterna-
tively, one can place a saturable absorber in addition to the
saturable gain medium into the cavity �7,9,10�. Such an ab-
sorber can be naturally realized when only a part of the ac-
tive medium is pumped. Both principles can be adapted for
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use in microlasers and are embodied in the form of
polarization-bistable and absorptive bistable laser diodes
�11�. It has also been shown that two coupled lasers can
achieve bistability if the output from each laser is directed to
the other one and the feedback is reduced to prevent forma-
tion of a compound cavity �12,13�. Later studies �14,15� give
a detailed account on the stability and mode-locking regimes
of bulk coupled lasers based on nonlinear bifurcation analy-
sis of the corresponding rate equations. It is fundamentally
problematic to achieve similar behavior in microlasers where
the modes share the same cavity. Recent achievements in the
design of bistable multimode-interference laser diodes �16�,
although capable of bistable lasing within a cavity of submil-
limeter size, still require saturable absorbers for the device to
function properly.

In the meantime, recent results show that there are yet
unexplored possibilities for bistable operation of microlasers.
We have shown �17� that a cavity based on coupled defects
in a PhC exhibits bistability without the need for saturable
absorption or similar additional mechanisms. The device can
be brought into the bistable regime by properly choosing the
mode frequencies with respect to the gain line profile. The
same idea was seen to work in lasers based on multimode
nanopillar waveguides �18�. Similar results have been re-
ported based on coupled microdisk �4� and coupled micror-
ing �5� resonators, the latter proposed for an ultrafast
ultralow-power optical memory cell design. Also, Ref. �19�
reports that coupled multiple-feedback ring lasers can be
brought to bistability by carefully selecting the feedback
times, which may be more feasible in microlasers than the
conventional gain-quenching scheme as in �13�. Finally, a
time-independent multimode laser theory recently developed
by Türeci and co-workers �20,21� reported that mode inter-
action can be very important in highly multimode
nanostructure-based systems such as random lasers �22�. In
view of this, there is a pronounced need to address the ques-
tion of bistability in microresonators with their specific fea-
tures such as complex cavity shapes and mathematically
complex cavity modes taken into account consistently. Spa-
tial hole burning should also be accounted for rigorously
without reverting to averaging approximations, which are
usually applied for coupled or semiconductor lasers
�4,12,14�.

In this paper, we consider the dynamics of two interacting
modes in a microresonator-based laser. The semiclassical
rate-equation model based on the Maxwell-Bloch equations
is used to model a laser-active medium. Coupled mode equa-
tions are derived and analyzed for different classes of laser
dynamics. Compared to existing accounts on mode dynamics
and coupled lasers �14,15,23,24�, no specific form is as-
sumed for either the cavity or the mode geometry. The spa-
tial distribution of population inversion is taken into account
fully in terms of projections onto the modes’ subspace �see
�25�� for all classes of laser dynamics. The theory developed
here can be seen as complementary to the account in Refs.
�20,21� by being able to provide a description of time-
dependent laser dynamics. Although they are rather different,
both these approaches go beyond the third-order nonlinearity
in the description of light-matter interaction.

In the simplest case of class A laser dynamics, the equa-
tions suitable for analytical studies have been derived. As

already shown earlier for some particular cases �see, e.g.,
�14��, we confirm that coherent mode interaction �population
pulsations� can result in bistable laser operation. We show
that bistable lasing becomes increasingly more difficult to
achieve as the intermode frequency spacing �� increases
from zero. However, for microcavity modes with well-
matched intensity-gain overlap the bistability window has
been shown to be much greater �by up to several orders of
magnitude with respect to ��� than for harmonic bulk-cavity
modes. A nonsymmetric system, where one of the modes is
given an advantage through cavity design, is also investi-
gated. We show that a parameter mismatch favoring one of
the modes can be compensated for by an opposing mismatch
in another parameter that would favor the other mode. In the
more complicated class B or class C cases, numerical studies
of the obtained coupled mode equations have been carried
out. The effects of increasing the pumping rate and/or ��
beyond the applicability limits of class A approximations are
studied. Bistable lasing is seen to persist unless �� becomes
comparable to the width of the gain line. Even then, bistabil-
ity can be further restored by increasing the pumping rate
highly above threshold. The results obtained for class B and
class C microlaser systems in the framework of the coupled
mode theory have been compared with full numerical finite-
difference time-domain �FDTD� calculations. At least for the
system considered �coupled defects in a 2D photonic crystal
as in Ref. �17��, we demonstrate that the predictions of the
theory are in a good agreement with the results of numerical
simulations.

The paper is structured as follows. In Sec. II, we derive
the semiclassical coupled two-mode laser equations suitable
for a wide range of microcavity modes. Only a few general
assumptions about the cavity shape are made and no particu-
lar form for the mode geometry is specified. The derivation
starts from the Maxwell-Bloch equations and is carried out
from the more general �class C� through the intermediate
�class B� to the most restrictive �class A� laser dynamics.
Specific issues pertaining to the introduction of the dynamics
classes in multimode lasers are addressed along the way. The
analysis of the equations obtained is then carried out in the
reverse order. In Sec. III, we analyze class A case, which,
with some assumptions, turns out to be closely related to the
standard two-mode competition model �6�. The parameter
window of bistable operation is investigated in terms of the
spatial and spectral mode properties. In Sec. IV, class B and
class C equations are numerically investigated, and the main
differences with class A model in regard to the bistable lasing
operation are discussed. Finally, Sec. V summarizes the
paper.

II. COUPLED TWO-MODE LASER EQUATIONS

A. Semiclassical laser equations and multimode expansion

The semiclassical laser equations used in the present pa-
per as a starting point are composed of three parts: �i� the
laser rate equations reduced to the equation for population
inversion W of the laser transition; �ii� the equation of mo-
tion for the macroscopic polarization density P of the laser
medium obtained in a modified electronic oscillator model;
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and �iii� the scalar wave equation derived from the Maxwell
equations. We consider two-dimensional �2D� systems, trans-
lationally invariant in the ẑ direction, with TM light polar-
ization, corresponding to a wide range of 2D photonic struc-
tures. In this case the electric field is E�r�=Ez�x ,z�ẑ,
allowing us to restrict ourselves to the z component of the
field E�r , t�=Ez�x ,y , t�. Applying the slowly varying enve-
lope �SVE� approximation �6�, the Maxwell-Bloch system of
equations takes the form �23�

�

�t
W�r,t� = ���R − W�r,t�� +

i

4�
�E�r,t�P��r,t�

− E��r,t�P�r,t�� , �1�

�

�t
P�r,t� = − ��� + i��P�r,t� −

i�2

�
W�r,t�E�r,t� , �2�

1

�0

�2

�t2 �P�r,t�e−i�t� = �c2�2 − ��r�
�2

�t2 − ��r�
�

�t
��E�r,t�e−i�t� .

�3�

Here W�r , t� has the meaning of population inversion, which
can vary spatially as opposed to Ref. �14� where it is as-
sumed to be constant across the whole cavity. Further, R is
the external pumping rate, � is the dipole matrix element of
the atomic laser transition, and the polarization and popula-
tion inversion decay rates are given by �� and ��, respec-
tively. We consider a resonant system that features two
eigenmodes with decay rates �1,2, phenomenologically ac-
counted for by the presence of a loss term ��r� in Eq. �3�.
The mode frequencies are �1,2��0	��, and the central
frequency �0 is shifted with respect to the lasing transition
frequency �a by ��=�a−�0, with �� ,��
�0, as shown in
Fig. 1. We assume that the eigenmodes of the cold cavity
have a spatial structure given by u1,2�r�. The electric field
E�r , t� is then decomposed into the spatially dependent mode
profiles u1,2�r� multiplied by time-dependent SVE functions
E1,2�t� as

E�r,t�e−i�0t = u1�r�E1�t�e−i�1t + u2�r�E2�t�e−i�2t

� �u1�r�E1�t�e�+ + u2�r�E2�t�e�−�e−i�0t. �4�

Here and further, ��� � i��t. Following the approach in
�23�, we make a similar ansatz for the polarization, introduc-
ing the amplitudes P1,2�t� as

P�r,t�e−i�0t = �u1�r�P1�t�e�+ + u2�r�P2�t�e�−�e−i�0t. �5�

The applicability of expansion �5� needs further justifica-
tion. Equation �5� assumes that polarization P�r , t� and the
electric field E�r , t� have similar spatial profiles. This is
strictly true only if the field intensity is small enough, e.g., if
the pumping rate R is not very large. Otherwise, the polar-
ization gets influenced by the saturation terms that involve
the population inversion W�r , t�, which itself does not distin-
guish between the modes and thus cannot be spatially de-
composed. These saturation terms would modify the spatial
profile of P�r , t� outside the scope of Eq. �5�.

However, as Eq. �5� does not contain any explicit expan-
sion in a series of nonlinearity orders with subsequent series
truncation, the constraint on the pumping rate R appears to
be much weaker than what is enforced by the usual near-
threshold expansion �26–28�, which explicitly retains only
third-order nonlinearities in the hole burning interaction. In
the extreme �single-mode� case, where Eq. �5� implies
P�r , t�E�r , t� and thus carries the strongest approximation,
it can be shown that the coupled mode theory based on Eq.
�5� leads to underestimation of the steady-state laser field
intensity E�R�. However, the character of the dependence
E�R� is preserved for the values of R well outside the range
of applicability of the near-threshold expansion �see �20��.
Moreover, the dynamical behavior of the laser is also cor-
rectly predicted by the coupled mode theory employing ex-
pansion �5� both for one and for two modes �see our earlier
work �25� for a comparison with direct numerical simula-
tions�.

That taken into account, in what follows we will use ex-
pansion �5�, remembering that the results may deviate quan-
titatively and may be subjected to further checking as the
pumping rate goes far above threshold.

B. Class C lasers

In order to derive the equations for Ei�t� and Pi�t�, one has
to eliminate all the spatial dependencies from Eqs. �1�–�3�.
We begin by substituting Eqs. �4� and �5� into Eq. �3�, as-
suming that the time dependence of the field envelopes are
slow enough so that 	dEj /dt	
� j	Ej	. The modes uj�r� are
assumed to be orthonormal solutions of the homogeneous
wave equation �c2�2−��r�� j

2�uj�r�=0, which means that
their integral across the cavity is



C

��r�ui
��r�uj�r� = �ij . �6�

As a result, the spatial derivatives in Eq. �3� can be elimi-
nated. If ��r�=� is constant throughout the cavity �the bulk-
cavity case �23��, the modes in Eq. �3� decouple rigorously,
and one obtains

d

dt
Ej = −

� jEj

2
+

i

2�0�
� jPj . �7�

This decoupling remains approximately true if the major part
of the modes’ energy is located in a material with the same
dielectric constant, as is often the case in microcavities. For
details we refer the reader to our earlier work �25�. A more
complicated case of distributed feedback structures would

FIG. 1. �Color online� Schematic illustration of the mode fre-
quencies ��1,2��0	��� with respect to gain ���=�a−�0�, as
used throughout the paper.
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require additional spatial multiscale analysis, e.g., following
the approach developed for photonic crystal lasers �24�.

Eliminating spatial dependencies in Eq. �2� is simpler and
requires substitution of Eqs. �4� and �5� with subsequent pro-
jection onto the eigenmodes, i.e., integration �uj

��¯�d3r over
the gain medium,

d

dt
P1 = − �1P1 − i

�2

�
�E1W11 + E2W12e

2�−� ,

d

dt
P2 = − �2P2 − i

�2

�
�E1W21e

2�+ + E2W22� , �8�

where �1,2= ���+ i���� i�� and Wij are the projections of
the population inversion W�r , t� onto the corresponding
modes,

Wij�t� � �

G

d3rui
��r�W�r,t�uj�r� . �9�

Analogously, by substituting Eqs. �4� and �5� into Eq. �1� and
applying �ui

��¯�ujd
3r, one can obtain the equations for Wij

in the following form:

d

dt
Wij = ���Rij − Wij� −

i

4�
�E1

���ij
11P1 + �ij

12P2e2�−�

+ E2
���ij

21P1e2�+ + �ij
22P2�� +

i

4�
�E1��ij

11P1
�

+ �ij
21P2

�e2�+� + E2��ij
12P1

�e2�− + �ij
22P2

��� . �10�

Here, Rij are related to R in the same way as Wij to W�r , t�
via Eq. �9�. The coefficients �ij

mn are mode overlap integrals
defined as

�ij
mn � �


G

d3rui
��r�uj�r�um

� �r�un�r� . �11�

The integration in Eqs. �9� and �11� is performed over the
gain medium where ��r�=� is assumed to be constant. Apart
from that assumption, the shape of the gain region itself can
be arbitrary and does not have to be contiguous. The mode
geometry can also be arbitrary unlike in the previous reports
�14,15,23�, as the intermode and mode-gain overlaps are ac-
counted for in terms of �ij

mn and Wij. Note that Eqs. �8� and
�10� with definition �9� do not involve any approximations
on the field or pump intensity beside the one associated with
the validity of Eq. �5� as described above. Because of this,
the full population inversion W�r , t� cannot be written explic-
itly in terms of Wij�t� and u1,2�r�, in contrast to E and P, as
in Eqs. �4� and �5�. Also note that the rate Eq. �10� for the
population inversion explicitly contain oscillatory terms,
which originate from the beating in the superposition of the
two modes with different frequencies �1 and �2.

C. Class B lasers

Equations �7�, �8�, and �10� govern the dynamics of the
two spectrally close interacting modes without any assump-
tions on the laser dynamics besides those needed for the SVE

approximation. All these equations include a decay term with
a characteristic decay rate for all the variables involved. The
mode amplitudes Ej decay with the rate � j associated with
the Q factors of the modes �Qj =� j /� j�. The decay of all the
population inversion projections Wij is governed by ��. Fi-
nally, the polarization amplitudes Pj decay rates are com-
plex, � j = ���+ i���� i��. This complexity directly results
from the multimode character of the laser under study and in
the single-mode case � j =��.

In the most general case of laser dynamics there are no
restrictions on the decay rates � j, �� , �� �so-called class C
lasers�. In reality, however, the decay rates are governed by
different physical processes and often belong to different
time scales �class B or class A lasers, see �15��, which can
make the analysis of the laser equations considerably sim-
pler.

Class B lasers are defined by ����� ,� j. In the single-
mode case, it would mean that the polarization relaxes and
achieves saturation so fast that the polarization can be as-
sumed to have no own dynamics and follows E and W adia-
batically.

In the two-mode case, where the polarization dynamics is
influenced by the intermode spacing ��, the introduction of
class B approximations needs to be approached with greater
care. Since the right-hand side of Eq. �8� includes oscillatory
terms on the time scale of 2��, one can eliminate the polar-
ization only if these oscillations are much slower than the
exponential decay due to ��, i.e., �����. Note that this
additional condition for class B lasing, specific for multi-
mode lasers, becomes especially important in microlasers
where the small cavity size can place the modes much further
apart from each other than in the bulk cavities.

Under these assumptions, we can now eliminate the po-
larization adiabatically by assuming dPj /dt�0. Hence, Eq.
�8� assume the form

P1 = − i
�2

�

1

�1
�E1W11 + E2W12e

2�−� ,

P2 = − i
�2

�

1

�2
�E1W21e

2�+ + E2W22� , �12�

which causes Eq. �7� to be modified as

d

dt
E1 = −

�1

2
E1 +

�2

�

�1

2�0�

1

�1
�E1W11 + E2W12e

2�−� ,

d

dt
E2 = −

�2

2
E2 +

�2

�

�2

2�0�

1

�2
�E1W21e

2�+ + E2W22� . �13�

Analogously, substituting Eq. �12� into Eq. �10� one may
obtain the equations for Wij. Since the population inversion
W is real �see Eq. �1��, it follows from Eq. �9� that Wji

�

=Wij, and in particular, Wjj
� =Wjj. Hence,
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d

dt
Wij = ���Rij − Wij� −

�2

4�2 	E1	2��ij
11 1

�1
+

1

�1
��W11

+ �ij
12

�2
W21 +

�ij
21

�2
� W12�� −

�2

4�2 	E2	2

���ij
22 1

�2
+

1

�2
��W22 + �ij

21

�1
W12 +

�ij
12

�1
� W21��

−
�2

4�2E1
�E2��ij

11

�1
+

�ij
22

�2
� �W12 + �ij

12 1

�2
W22

+
1

�1
�W11��e2�− −

�2

4�2E1E2
���ij

22

�2
+

�ij
11

�1
� �W21

+ �ij
21 1

�1
W11 +

1

�2
�W22��e2�+. �14�

Equations �13� and �14� are the governing equations for
two-mode class B lasers. Further knowledge about the modes
in question can allow further simplification. A good example
is the case when the modes are orthogonal not only within
the whole cavity �Eq. �6�� but also in the gain region, e.g., if
most of the cavity or at least the portion of the cavity with
maximum mode energy is filled with the pumped gain me-
dium,



G

ui
��r�uj�r� = �ij . �15�

In this case the overlap integrals with one out-of-place index
��ij

ii, �ii
ji, etc.� will be negligible compared to the rest of the

overlaps such as � j j
j j, � j j

ii , �ij
ij, or � ji

ij. This allows us to shorten
Eq. �14�, which then assumes different forms for symmetric
Wjj vs antisymmetric projections Wij�i:

d

dt
Wjj = ���Rjj − Wjj� −

�2

4�2�	E1	2� j j
11 1

�1
+

1

�1
��W11

+ 	E2	2� j j
22 1

�2
+

1

�2
��W22� −

�2

4�2�E1
�E2e2�−� j j

11

�1

+
� j j

22

�2
� �W12 + E1E2

�e2�+� j j
11

�1
� +

� j j
22

�2
�W21� , �16�

d

dt
W12 = ���R12 − W12� −

�2

4�2�	E1	2�12
12

�2
W21 +

�12
21

�2
� W12�

+ 	E2	2�12
21

�1
W12 +

�12
12

�1
� W21��

−
�2

4�2�E1
�E2e2�−�12

12 1

�2
W22 +

1

�1
�W11�

+ E1E2
�e2�+�12

21 1

�2
�W22 +

1

�1
W11�� , �17�

where R12
Rjj due to the mode orthogonality and, as we
remember, W21=W12

� . Furthermore, if the modes are
intensity-matched, i.e., assumed to have nearly equal inten-
sity distribution in the gain region so that

	u1�r�	2 � 	u2�r�	2, r � G , �18�

then it follows from Eq. �9� that W11=W22�Ws and W12
=W21

� �Wa, as well as from Eq. �11� that � j j
ii =� ji

ij �� is real,
while �ij

ij ��� can be complex. Hence,

d

dt
Ws = ���Rs − Ws� −

�2

4�2��	E1	2 1

�1
+

1

�1
�� + 	E2	2 1

�2

+
1

�2
���Ws −

�2

4�2��E1
�E2e2�− 1

�1
+

1

�2
��Wa

+ E1E2
�e2�+ 1

�1
� +

1

�2
�Wa

�� , �19�

d

dt
Wa = − ��Wa −

�2

4�2�E1
�E2e2�−�� 1

�2
+

1

�1
��

+ E1E2
�e2�+� 1

�2
� +

1

�1
��Ws −

�2

4�2�	E1	2��

�2
Wa

�

+
�

�2
�Wa� + 	E2	2 �

�1
Wa +

��

�1
� Wa

��� . �20�

D. Class A lasers

If one further assumes that ������� �� j �class A lasers�,
the slowest-varying quantity becomes the mode decay. The
population inversion follows the mode amplitudes Ej�t� in-
stantaneously and can be eliminated, leaving us with only
two equations for the mode amplitudes. Similar to the way
we have built the class B approximation, the derivatives in
Eq. �14� are dWij /dt�0. In this case, Eqs. �16� and �17�
become

Wjj = Rjj −
�2

4�2

1

��
�	E1	2� j j

11 1

�1
+

1

�1
��W11 + 	E2	2� j j

22 1

�2

+
1

�2
��W22� −

�2

4�2�E1
�E2e2�−� j j

11

�1
+

� j j
22

�2
� �W12

+ E1E2
�e2�+� j j

11

�1
� +

� j j
22

�2
�W21� , �21�

W12 = −
�2

4�2

1

��
�	E1	2�12

12

�2
W21 +

�12
21

�2
� W12� + 	E2	2�12

21

�1
W12

+
�12

12

�1
� W21�� −

�2

4�2�E1
�E2e2�−�12

12 1

�2
W22 +

1

�1
�W11�

+ E1E2
�e2�+�12

21 1

�2
�W22 +

1

�1
W11�� . �22�

This is a system of linear algebraic equations that can be
solved for Wij. We are aiming for equations with simple
enough structure to be treated analytically, namely, equations
for Ej with up to cubic-order nonlinearity as analyzed, e.g.,
in �6�. Hence, we are looking for the solutions in the form
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Wij � Wij
�0� + �

m,n
Wij

�m,n�Em
� En, �23�

neglecting terms with higher powers of E. Truncating higher-
order nonlinearity corresponds physically to the case with
low field intensities, i.e., just above the lasing threshold.
Hence, at this point the near-threshold expansion is intro-
duced as understood in numerous works �26–28�. We remark
that this expansion is by far a stronger approximation than
the one used in assuming form �5� for the polarization.
Hence, class B and class C models described in Secs. II B
and II C are valid for much stronger pumping, while class A
description that follows is valid for pumping rates only
slightly above threshold. Inserted into Eqs. �21� and �22�, Eq.
�23� yields

Wjj � Rjj −
�2

4�2

1

��
�	E1	2� j j

11 1

�1
+

1

�1
��R11

+ 	E2	2� j j
22 1

�2
+

1

�2
��R22� ,

W12 � −
�2

4�2

1

��
�E1

�E2e2�−�12
12 1

�2
R22 +

1

�1
�R11�

+ E1E2
�e2�+�12

21 1

�2
�R22 +

1

�1
R11�� . �24�

Note that the right-hand side of Eqs. �21� and �22� has terms
of the form Em

� EnWij. Hence the same result could be ob-
tained by solving the equation system Wij =L ·Wij iteratively
as Wij

�k�=L ·Wij
�k−1�, with Wij

�0�=0 up to Wij
�2�, as was done in

�14,17,23�.
Note that the presence of oscillatory exponents e2�� on

the right-hand side of Eq. �14�, induced by beating of the
field intensities, dictates that an adiabatic elimination can
only be performed safely if �� ���. Unfortunately, this as-
sumption is quite restrictive and makes the resulting class A
laser equations hardly applicable for any two-mode system
beyond the case of spectrally overlapping modes unless the
mode Q factors become very high. However, Eq. �24� sug-
gests that W12 should be oscillatory with frequency 2��.
This is indeed the case, as confirmed by numerical solution
of class B or class C equation. These oscillations �also called
population pulsations� are the main reason why the condition
dW12 /dt�0 is valid only for vanishingly small ��. By ac-
counting for these pulsations explicitly, one can build class A
laser equations applicable for a wider range of ��. We in-
troduce oscillatory terms e�2i��t into W12,

W12�t� = W21�t� = W̃a�t�e2�+ + W̃a
��t�e2�−, �25�

where the envelope function W̃a�t� supposedly varies more
slowly than 2�� and on the same time scale as Wjj�t�. We
can then reformulate the condition for adiabatic elimination

of W12 in the form dW̃a /dt�0. The algebraic equation for

W̃a analogous to Eq. �22� is then

W̃a = −
�2

4�2

1

�� + 2i��
�	E1	2�12

12

�2
+

�12
21

�2
� �W̃a + 	E2	2�12

21

�1

+
�12

12

�1
� �W̃a + E1E2

��12
21 1

�2
�W22 +

1

�1
W11�� . �26�

Note that unlike W12, W̃a is explicitly complex due to the
substitution ��→�� +2i��. Also note the disappearance of
oscillatory exponents in Eq. �26�, compared to Eq. �22�. In-
serting Eqs. �25� and �26� into Eq. �22� and following the
same near-threshold expansion as above, we obtain the final
class A equations,

d

dt
E1 � g�1

�1
R1 −

�1

2
�E1 −

g��1

��

1

�1
��11R1L11	E1	2

+ �12R2L22	E2	2�E1 −
g��1

�� + 2i��

�12

�1
R1

�1
+

R2

�2
��

�	E2	2E1 −
g��1

�� − 2i��

�12

�1
R1

�1
� +

R2

�2
��E2�2E1

�e4�−,

d

dt
E2 � g�2

�2
R2 −

�2

2
�E2 −

g��2

��

1

�2
��22R2L22	E2	2

+ �12R1L11	E1	2�E2 −
g��2

�� − 2i��

�12

�2
R1

�1
� +

R2

�2
�

�	E1	2E2 −
g��2

�� + 2i��

�12

�2
R1

�1
+

R2

�2
���E1�2E2

�e4�+,

�27�

where g��2 /2�0��, ���2 /4�2, � j j �� j j
j j, �12�� j j

ii =�ij
ji

��ij
ij, and Lij ��i

−1+ �� j
��−1. Equation �27� retain their appli-

cability for a wide range of �� up to ����� and beyond.
The only limitation is the requirement ����� needed to
obtain class B equations. As was the case with class C to
class B transition, we see that the multimode case needs to
be approached with care since �� represents an additional
dynamical parameter �mode beating�. It can play a significant
part in laser dynamics and render some approximations in-
valid despite their validity in the single-mode case for the
same parameters.

III. BISTABILITY IN CLASS A MICROLASERS

A. Mode competition equations

Now that the dynamics of a two-mode laser has been
reduced to the relatively simple class A Eq. �27�, the mode
dynamics can be analyzed for possible steady-state and
stable solutions. Equation �27� resemble the standard two-
mode competition equations �see �6��,

d

dt
E1 = ��1 − �11	E1	2 − �12	E2	2�E1 − �12� �E2�2E1

�e4�−,
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d

dt
E2 = ��2 − �21	E1	2 − �22	E2	2�E2 − �21� �E1�2E2

�e4�+.

�28�

Here, � j in the linear terms characterize the net unsaturated
gain �minus cavity losses� for the mode j. The coefficients � j j
and �ij�i are self- and cross-saturation coefficients, respec-
tively. These terms are fully similar in form and meaning to
the widely studied case in �6�. The last terms, which are
special to Eq. �28�, also contribute to cross saturation but
contain the phases of the modes, as well as an explicit oscil-
latory time dependence with frequency 4��. The expres-
sions for all the coefficients can be obtained directly from
Eq. �27�.

Since Eq. �28� include the phase of the modes explicitly,
they can be separated into amplitude and phase equations.
Substituting Ej�t�= 	Ej�t�	ei�j�t�, one obtains

d

dt
	E1	 = �Re �1 − Re �11	E1	2 − Re �12	E2	2�	E1	

− Re��12� e2i��2−�1�e4�−�	E2	2	E1	 ,

d

dt
	E2	 = �Re �2 − Re �21	E1	2 − Re �22	E2	2�	E2	

− Re��21� e−2i��2−�1�e4�+�	E1	2	E2	 , �29�

d

dt
�1 = �Im �1 − Im �11	E1	2 − Im �12	E2	2�

− Im��12� e2i��2−�1�e4�−�	E2	2,

d

dt
�2 = �Im �2 − Im �21	E1	2 − Im �22	E2	2�

− Im��21� e−2i��2−�1�e4�+�	E1	2. �30�

The amplitude Eq. �29� now completely coincide in form
with the usual two-mode competition �6� but contain the in-
termode phase difference ��=�2−�1 as a parameter and
have the cross-saturation coefficients explicitly time depen-
dent. We can see that the amplitudes always achieve satura-
tion due to a cubic nonlinearity. The phase difference, how-
ever, may either become stationary, corresponding to phase-
locked solutions, or be allowed to vary, in which case the
solutions are said to be unlocked.

In the limiting case of ��=0 one can show that there are
two phase-locked solutions: one stable with ��=� /2 and
one unstable with ��=0. Without further assumptions as to
the nature of the modes �such as those in some earlier works
�14,26��, the general case is difficult to analyze due to ex-
plicit time dependence in the coefficients for nonzero ��. In
particular, ���0 causes �� to undergo precession even in
the locked regimes. As this precession becomes faster, one
can no longer distinguish between locked and unlocked so-
lutions. For sufficiently large ��, the oscillations e�4i��t oc-
cur fast enough compared to the onset time scale, which
primarily depends on � rather than on ��. In this case the
modes appear always unlocked �mentioned in �26� as a

“natural tendency” for different-frequency modes�, and the
effects of the phase terms can be averaged out. Our numeri-
cal estimations show that this is possible if ���10−2�. The
case ��
�, corresponding to spectrally overlapping modes,
is outside the scope of the present paper anyway as there can
be additional channels of mode coupling �e.g., the Petermann
excess noise �29��. Thus, we will henceforth ignore the phase
terms in Eqs. �28�–�30� and rewrite Eq. �27� as

d

dt
	E1	 � Reg�1

�1
R1 −

�1

2
�	E1	 −

g��1

��
�Re�11

�1
R1L11�	E1	2

+ Re�12

�1
R2L22�	E2	2�	E1	

− Re� g��1

�� + 2i��

�12

�1
R1

�1
+

R2

�2
���	E2	2	E1	 ,

d

dt
	E2	 � Reg�2

�2
R2 −

�2

2
�	E2	 −

g��2

��
�Re�22

�2
R2L22�	E2	2

+ Re�12

�2
R1L11�	E1	2�	E2	

− Re� g��2

�� − 2i��

�12

�2
R1

�1
� +

R2

�2
��	E1	2	E2	 . �31�

B. Conditions for bistable lasing: Mode coupling

With the phase terms dropped, Eq. �31� represented in the
amplitude form analogous to Eq. �29� can be analyzed fol-
lowing the standard procedure �6�. The primary parameter
that determines the nature of mode competition is the mode
coupling constant,

C = Re �12 Re �21/Re �11 Re �22, �32�

which is the ratio of cross-saturation and self-saturation co-
efficients. It is commonly known that the cases of simulta-
neous two-mode lasing and bistable lasing are characterized
by C�1 �weak mode coupling� and C�1 �strong mode cou-
pling�, respectively �6,7�. Assuming that the pumping does
not favor either of the modes so that R1=R2�R, as well as
�1��2�����, we can substitute the explicit form of the
coefficients from Eq. �31� into Eq. �32�. As a result, we have
found that C can be factored as

C = C�C�. �33�

The first factor C�, which originates in the spatial hole
burning, has the form

C� =
�12

2

�11�22
. �34�

In the simplest case when the modes are intensity matched as
in Eq. �18� so that all �ij ��, it follows that C�=1. Other-
wise, it can be proven that C��1. The second factor C�,
which results from population pulsations and becomes iden-
tically unity if those pulsations are neglected, has the form
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C� � �4��21 −
��

��

� + 2��
2

�4��2 + ��
2�

�
2

+ O ��
2

��
2 � . �35�

The dependence of C� is shown in Fig. 2. We can see that
C��4 for ��
�� and C��1 for �� ���
��. The transi-
tion between two limiting cases �C�=1 and C�=4� occurs
rapidly around �����. Note that as �� increases, C� ap-
proaches unity from below, so there is a critical value
���1������� /2 for which C�=1. Hence, in the ideal case
of intensity matched modes �Eq. �18�� bistability is possible
for �� all the way up to ���1�. The limiting case of C=4 is
known to be realized for the ideal case of counterpropagating
modes in ring lasers or modes with orthogonal polarizations,
which are fully intensity matched and have ���0 �6�.

If, however, the modes are considerably mismatched, then
C� must be significantly larger than one to compensate for a
small C� and thus keep the overall mode coupling constant
above unity to achieve bistable lasing. For example, it can be
shown that one-dimensional �1D� harmonic �e.g., longitudi-
nal� modes always have C�=4 /9 for different frequencies.
This means that the line of critical values for ���9/4���� /2
up to where bistability is possible lies much deeper than the
line of ���1� �see Fig. 2�. Taking into account that the fre-
quency shift between longitudinal modes is related to the
cavity length as ���bulk�=�c /L, one easily obtains the “rule
of thumb” for minimum cavity length of a 1D bistable bulk
laser: Lmin�2�c /��. For realistic laser media, Lmin is found
to be prohibitively large, from around 2 m for semiconduc-
tors and up to 200–300 km for Nd:YAG �30�. This explains
why it is so difficult to achieve bistable lasing for different-
frequency modes in a bulk cavity: unless the cavity is ex-
traordinarily big, �� is large enough to bring C� so close to
unity that any intensity mismatch causes C��1 and brings
the laser back into the weak-coupling �simultaneous lasing�
regime. The only notable exception is the case when the
modes are quasidegenerate with ���0, such as counter-
propagating modes in ring lasers or modes with orthogonal
polarization, and it is in these special cases that bistability
could indeed be observed.

In a microcavity, however, the modes can be made very
nearly intensity matched by a carefully chosen resonator de-
sign �e.g., coupled cavity based, see �17��. In addition, many
designs allow one to control the frequency separation be-
tween the modes more or less independently from other
model parameters. This opens up a different frequency range
���9/4��������1� available for bistable laser design,
which can encompass several orders of magnitude for ��
�see Fig. 2�. This range becomes available in microlasers
because the possibility to bring the modes to intensity match-
ing is far greater than in bulk cavities, owing to a greater
variety of cavity shapes and a more complicated nature of the
modes involved.

Finally, from Eq. �31� one can also see the physical
mechanism of bistable lasing in class A case. It is due to the
�oscillatory� component W12 that there is an addition to the
cross-saturation coefficients �ij�i. Without this addition, C
would simply coincide with C� and all possibility for
bistable operation would be excluded. Hence, it is the coher-
ent mode interaction effects such as population pulsations or
four-wave mixing �7� that make bistability possible. Incoher-
ent effects �e.g., spatial hole burning, which is only manifest
in C�� can either allow or suppress it. As a result, an inter-
play between coherent and incoherent mode interaction pro-
cesses is employed to achieve bistable microlaser operation.

As an example, we have plotted the dynamics of mode
amplitudes Ej�t� as a numerical solution of Eq. �31� for bulk-
cavity �C�=4 /9� vs coupled-cavity �C�=0.9� modes �Fig. 3�.
Also shown are the temporal flow diagrams �i.e., projections
of the solutions onto the 	E1	2 vs 	E2	2 plane for different
initial conditions of the cavity �the ratio E1:2

�0�

�	E1�0�	 : 	E2�0�	�. All other parameters are kept constant, as
described in the caption. If the modes are mismatched �Fig.
3�a�� and C�1, the laser saturates to the two-mode simulta-
neous lasing �	E1	= 	E2	=const� regardless of the initial con-
ditions. Only this fixed point is stable. However, if the modes
are well matched �Fig. 3�b�� so that C�1, the laser saturates
to a single-mode lasing as the initially stronger mode
quenches its weaker counterpart and becomes dominant.
There are two stable fixed points on the diagram: 	E1	
=const, 	E2	=0 and 	E1	=0, 	E2	=const. The previously
stable fixed point becomes unstable, and the line 	E1	= 	E2	
marks the separatrix between the stable points’ domains of
attraction. The mode that has an advantage in the beginning
determines the domain of attraction for the system and hence
the fixed point the system will converge to, as the separatrix
cannot be transcended without an external influence. These
examples show that bistable lasing is possible in microlasers
in such cases where only two-mode simultaneous lasing can
be observed for bulk-cavity modes.

C. Conditions for bistable lasing: Mode mismatch

Up to now, we assumed that none of the modes is favored
either by the cavity or by the gain, i.e., �1=�2, R1=R2, �11
=�12, and ��=0. In this case, as seen in Fig. 3, the two-mode
lasing fixed point �labeled FP2�, whether stable or unstable,
is characterized by 	E1	= 	E2	. This means, on the one hand,
that in the simultaneous-lasing case both modes lase with
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Γ� �Γ�
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1

FIG. 2. �Color online� The dependence of C� in Eq. �35� on ��

and ��. The dashed lines are the isolines for C�=1 and C�=9 /4.
The dotted lines approximately mark the applicability limits of class
A equations.
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equal intensity �Fig. 3�a��, and on the other hand, that in the
bistable regime even a slight edge given to either mode in
terms of initial conditions will bring this mode to lase. It is
equally easy to “select” or “switch” either mode by locking
into it �17,18�. This is illustrated in Fig. 3�b� by the fact that
each stable fixed point has an equally large domain of attrac-
tion.

In a more general case, the ratio between mode intensities
at FP2 I1:2�	E1	2 / 	E2	2 will change to reflect an advantage
given to either of the modes. For example, even a slight
mismatch in the mode Q factors causes I1:2 to deviate from
unity �Fig. 4�. Similar to the explanation given above, this
may mean two things. In the simultaneous-lasing case, it
simply means that once the laser achieves saturation, one
mode has a greater amplitude than the other, e.g., 	E1	
� 	E2	 for I1:2�1 �Fig. 4�a��. In the bistable case, it means
that the domains of attraction for the two modes change their
size in phase space �Fig. 4�b��. If for example I1:2�1, then
the domain of attraction for mode 1 becomes larger, so mode
1 is “in favor” as a result. In the bistable regime, a shifted
FP2 means that the mode with a smaller domain of attraction
is out of favor and thus harder to bring to lasing. For ex-
ample, if FP2 is placed symmetrically, initial mode ampli-
tude ratios E1:2

�0� of 3:2 and 2:3 bring the first and the second
modes to lasing, respectively �Fig. 3�b��. For asymmetrically
placed FP2, the same two cases for initial condition both
result in the lasing of the first mode �Fig. 4�b��. To be able to
target the smaller domain, one has to excite the out-of-favor

mode exclusively, which might be difficult experimentally.
Hence we will further aim at finding the manifold of the
system parameters for which I1:2=1.

Whenever C�1, the general expression for the mode in-
tensity ratio at FP2 I1:2 can be written as �6�

I1:2 =
Re �1 Re �22 − Re �2 Re �12

Re �2 Re �11 − Re �1 Re �21
. �36�

By substituting the coefficients in Eq. �31� one can obtain an
explicit analytic expression for I1:2. Unfortunately, this gen-
eral expression is very bulky and we will first investigate its
behavior in several simplified cases. Let us introduce the
perturbations in the form

�1,2 � ��1 � ���, R1,2 � R�1 � ��� , �37�

from where it follows �see Eqs. �9� and �11�� that �11,22
=��1����2. Now if ��=��=0, ���0, and I1:2 is given by

I1:2
��� =

a� + b���

a� − b���

. �38�

Likewise if ��=��=0 and ���0, then the expression is
somewhat more complicated and reads as

I1:2
��� =

�a� + c���
2 + e���

4� + �b� + d���
2���

�a� + c���
2 + e���

4� − �b� + d���
2���

. �39�

Finally, if ��=��=0 and ���0, then

I1:2
��� =

�a� + c���
2 + e���

4 � + �b� + d���
2 + f���

4 ���

�a� + c���
2 + e���

4 � − �b� + d���
2 + f���

4 ���

. �40�

The coefficients in Eqs. �38�–�40� are complicated polyno-
mial functions of the dynamical parameters �� and ��, the
intermode frequency separation ��, the measure of mode

(a)

(b)

FIG. 3. �Color online� Flow diagrams of numerical solutions of
Eq. �31� in the 	E1	2 vs 	E2	2 plane for different initial mode ratios
E1:2

�0� = 	E1�0�	 : 	E2�0�	 for �a� poorly matched modes �C�=4 /9� and
�b� well-matched modes �C�=0.9�. The other parameters are the
same ���=�� =10−2�� and �1=�2=10−4���, chosen such that 1
�C��9 /4. Solid circles and squares denote stable and unstable
fixed points, respectively. The thin dashed line denotes the separa-
trix in the bistable lasing case. The right panels show the example
mode dynamics 	E1,2�t�	2 for two chosen values of E1:2

�0� slightly in
favor of each mode.

(a)

(b)

FIG. 4. �Color online� Same as Fig. 3 for mismatched mode
decay rates ��1��2 and ��=−0.42%� in favor of the first mode.
The dotted arrows show the shift of the two-mode fixed point FP2.
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intensity mismatch ���12 /� �which ranges from 0 to a
maximum value of 1−��

2 so that C��1�, and the pumping
rate normalized to the threshold pumping Rthr
�2Rg� / ����� �31�. Note that � itself does not enter these
equations explicitly. It does, however, impose a limitation
���10−2� so that the phase terms in Eq. �27� can be aver-
aged out.

From the structure of Eqs. �38�–�40� one can see that
I1:2=1 for ��=��=��=0, as should be expected. If any one
of the perturbation parameters ���,�,� collectively referred to
as �� is nonzero, I1:2 deviates from unity. Obviously, chang-
ing the sign of all nonzero � causes I1:2→1 / I1:2. If favoring
one of the modes �by any means� results in a certain asym-
metry in lasing quantified through a nonunity I1:2, then fa-
voring the other mode in the same way and by the same
amount naturally causes the same asymmetry with respect to
the other mode �32�. This suggests that one can choose more
than one � to be nonzero in such a way that the shifts of FP2
caused by individual perturbations would cancel each other
out. As a result, one could achieve the resulting I1:2 equal to
or close to unity, and the restrictions on the initial conditions
would be lifted.

Figure 5 shows the manifold of the points I1:2=1 in the
three-dimensional �3D� perturbation space ��� ;�� ;��� for
different parameters as a numerical solution of Eq. �36�. We
can see that this manifold is an open surface. Hence, if a
mismatch in one respect is unavoidable, it can be compen-
sated for by engineering the other two perturbation param-
eters. Note that in the ��� ;��� plane the mismatch compen-
sation �I1:2=1� is achieved when �����. This is easily
understood if one remembers that the linear terms in Eq. �27�
have the structure � j ��Rj −� j =�R�1����−��1����. On
the other hand, in the ��� ;��� plane, compensation is gener-
ally achieved for the oppositely signed �� and ��. This is in
agreement with an intuitive guess that, e.g., ���0 ��1
��2� and ���0 �the gain frequency �a��0 is closer to �1
than to �2, see Fig. 1� both give an edge to the first mode, so
oppositely signed � are needed to maintain balance. How-
ever, in the vicinity of the origin the surface can be folded so
that it crosses the origin with the opposite slope and com-
pensation is achieved when �� and �� have the same sign.
Since perturbations ��, ��, and �� can have different physi-

cal origin and can be varied more or less independently by a
proper choice of a gain medium and a cavity configuration,
one can deliberately engineer a microlaser to achieve bistable
operation even if the idealized unperturbed case is difficult to
realize experimentally. An example of such compensation is
changing the mode frequencies with respect to gain �which
can be done straightforwardly just by scaling the cavity� to
help offset the difference in mode Q factors, as shown nu-
merically in our earlier work �18�.

To achieve a fully symmetric placement of FP2, one
needs to bring three perturbation parameters into a relation.
Because all these parameters show only an indirect depen-
dency on the cavity design and/or gain medium choice, the
precise control of them may still be a challenging task.
Hence, it is worthwhile to investigate to what extent the re-
lations for ideal compensation can be violated so that
bistable operation is still possible �albeit, as shown above, at
the cost of stricter requirements on the initial conditions�. In
terms of Fig. 5, that means how far one can deviate from the
I1:2=1 surface and still lase into either of the modes on de-
mand.

From Eqs. �38�–�40� one sees that a sufficiently high
value of any � will cause either the numerator or the denomi-
nator in I1:2 to approach zero. On the flow diagram, this
corresponds to the FP2 meeting the coordinate axes. Increas-
ing � further causes I1:2 to become negative. The FP2 van-
ishes and the system finds itself in the single-mode lasing
regime �see �6��. That sets an upper limit for any 	�	 beyond
which no bistable lasing is possible any more.

More generally, the domain in space ��� ;�� ;��� where
I1:2�0 comprises the possible perturbation parameter win-
dow where both modes can lase �either simultaneously or
subject to bistability-induced switching, as depends on C�.
This domain, called the FP2 existence domain, is shown in
Figs. 6 and 7. The existence domain, bounded by the sur-
faces defined by I1:2=0 and I1:2=� is seen to surround the
“perfect matching” surface I1:2=1. The domain boundaries
appear to slide inwards as the pumping rate increases �Fig.
6�, which enlarges the FP2 existence domain around the
point �=0. Also, the domain shrinks rapidly as the bound-
aries close around I1:2=1 when C approaches unity �Fig. 7�.
The latter can be intuitively understood because C�1 repre-
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FIG. 5. �Color online� Manifolds of points I1:2=1 in the 3D perturbation space ��� ;�� ;��� for �a� C=1.10�1, �b� C=2.06�2, and �c�
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ZHUKOVSKY, CHIGRIN, AND KROHA PHYSICAL REVIEW A 79, 033803 �2009�

033803-10



sents a delicately balanced system so that even a slight mis-
match is enough to throw the system heavily out of balance.
Such a property is clearly a misfortune for the microcavity-
specific bistability range reported above, as it relies on the
situation when C� exceeds unity only slightly. However, in-
creasing the pumping appears to counteract this disadvan-
tage, at least for smaller �� �see Fig. 6�. We believe that it is
this effect that enabled us to observe bistability in earlier
numerical simulations �17,18� involving the laser operating
highly above threshold.

The practical conclusion to this section is that there are
two theoretical requirements needed to achieve bistable las-
ing. In the first place, FP2 needs to exist on the flow diagram,
as imposed by I1:2�0. In the second place, once FP2 exists,
the mode coupling constant must exceed unity �C�1�, as
discussed before. First �Sec. III B�, we have shown that in
comparison to bulk-cavity lasers microlasers exhibit a much
wider parameter window characterized by C�1 because the
microcavity modes can better fulfill the intensity matching
condition �18�. Second �Sec. III C�, we have shown that there
is an extended domain in the 3D perturbation space
��� ;�� ;��� where I1:2�0. Inside this domain, the closer I1:2
is to unity, the easier it is to realize bistability-based laser

mode switching experimentally. We have shown that I1:2 can
be brought close to 1 by choosing a combination of pertur-
bation parameters that would compensate each other’s ad-
vantage given to either mode.

IV. CLASS B AND CLASS C MICROLASERS

The elegance of class A case considered in the previous
section is that Eq. �27� can be subject to analytical investi-
gation based on a comparison with Eq. �28� �6�. Once a laser
with a more complicated dynamics needs to be examined,
more complicated systems of equations �six Eqs. �13� and
�14� for class B or eight Eqs. �7�–�10� for class C� need to be
dealt with. Although attempts at analytical investigation of
class B equations are known �e.g., a near-threshold expan-
sion of population inversion as proposed in �26��, only nu-
merical solution seems to be applicable in the general case
when no specific assumptions on the cavity or mode geom-
etry are implied. Since all the equations are ordinary differ-
ential, such a numerical solution can be carried out with
relative ease—the computational demands are far lower than
a direct numerical integration of the Maxwell-Bloch equa-
tions by means of an FDTD-like scheme �25�.
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FIG. 6. �Color online� Boundaries of the FP2 existence domain I1:2�0 �dark gray� and the I1:2=1 surface lying inside that domain �light
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A systematic investigation of class B and class C micro-
lasers would be too lengthy to include in the present paper
and will be the subject of a forthcoming publication. In this
section we will outline the main differences in the behavior
of such lasers compared to the previously studied class A
case as regard to bistable lasing.

We begin with a comparison of the laser classes in the
near-threshold regime. As should be expected, the solutions
for all classes display full coincidence if class A approxima-
tion ����� �� holds �note that this condition is rather re-
strictive in microlasers, requiring a careful choice of the gain
medium as well as the cavity design�. The mode dynamics
Ej�t� start to exhibit differences whenever �� or � are in-
creased out of class A approximation. The differences, how-
ever, are relatively minor, manifesting themselves mainly in
the character of the transition process. In most cases, the
mode coupling constant C as defined for class A in Eqs.
�33�–�35� continues to predict the laser dynamics correctly
�C�1: simultaneous lasing, C�1: bistability� even outside
its strict range of applicability, although the behavior of Ej�t�
can be quite different during the transition period.

As discussed above, class B Eqs. �13� and �14� do not
involve a near-threshold approximation, it becomes possible
to consider a greater range of pumping rates, including re-
gimes far above threshold, which are often left out of the
picture in a construction of a multimode laser model �23�.
Comparison of the numerical results for class B vs class C
equations show that as long as class B prerequisites ��

��� ,� j hold, the results are similar, unless the condition
����� is violated. This agrees well with the earlier discus-
sions in Sec. II C. The differences appear not to be qualita-
tive but quantitative only, manifesting in the exact shape of
the 	Ej�t�	 dependence. The overall outcome of the mode in-
teraction largely remains the same. To summarize, the main
effect of class A to class B transition in the context of study-
ing bistable lasing is the inclusion of larger pumping rates R,
while the main effect of class B to class C transition is the
inclusion of larger frequency mode separations ��.

The increase in the pumping rate in a class B laser is
known to change the saturation character of the mode ampli-
tudes. The noninstantaneous relaxation of the population in-
version with respect to the cavity field gives rise to spiking
�for smaller R� or relaxation oscillations �for greater R� in the
dependence Ej�t�. A still stronger pumping �several orders of
magnitude above threshold� causes the oscillations to vanish,
as reported in an earlier work �25�.

More interestingly, an increase in R can restore bistable
lasing in the cases when simultaneous lasing is observed just
above threshold. Figure 2 suggests that there should be no
bistability in the area around �����. The numerical solu-
tion of class C equations shows that this is indeed the case
for smaller R. However, if the pumping is increased beyond
a certain critical value Rc, a transition from simultaneous to
bistable lasing occurs �Fig. 8�. This effect was reported ear-
lier �25� with the observation that bistability ensues when
pumping becomes so large that relaxation oscillations disap-
pear. Our further investigations have revealed that this obser-
vation was rather a coincidence, and Rc scales with �� �Fig.
8�, bifurcating from threshold at approximately the point
where C�=1 according to Eq. �35�. This falls in line with the

result of Sec. III C that a stronger pumping is capable of
restoring bistability where it has been deteriorated by ad-
verse effects of insufficient mode matching.

Because applicability of expansion �5� and sometimes
even of the SVEA �33� may become questionable far above
threshold, we have carried out a comparison of class B and
class C results with direct numerical simulations. As previ-
ously described in Ref. �25�, a space-time FDTD solver was
coupled to the four-level laser rate equations in order to
model the response of a laser medium. A 2D photonic crystal

FIG. 9. �Color online� The family of structures used in numeri-
cal FDTD simulations based on two coupled defects in a 2D pho-
tonic crystal lattice �17,25�. Placing a different number of lattice
rows between the defects �1–5�, the intermode frequency separation
�� can be changed.
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FIG. 8. �Color online� The dependence of lasing regime on
pumping rate R and intermode frequency separation �� in a class
C laser model. The parameters are � j �0.1�� and �� �10−4��,
as used for numerical simulation in �17�. The density plot shows
the quantity 		E1�t�	− 	E2�t�		 /max�	E1�t�	 , 	E2�t�	� for large t
���
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−1. Near-zero �light� values indicate two-mode �simul-
taneous� lasing while near-unity �dark� values indicate one-mode
�bistable� lasing. The lasing threshold depending on �� is marked
with the dotted line. Numerical results of the FDTD simulations for
coupled-defect structures �Fig. 9� are superimposed over the density
plot. Circles �red� and squares �yellow� show the location of points
where simultaneous and bistable lasing, respectively, was observed
in the mode dynamics during simulations.
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lattice with two coupled defects �17� was used as a model
system �Fig. 9�. Both defects are filled with four-level gain
medium and contain a dipole source in the center. By excit-
ing these sources with varying amplitude and phase relations,
the two modes �symmetric and antisymmetric �25�� can be
excited in any proportion and thus the initial state of the
resonator can be controlled. By changing the number of lat-
tice rows between the defects from 1 to 5, one can change
�� from ��� down to �10−2��. The waveguides coupled
to the defects form the primary channel for the radiation to
leak out of the resonator. Care was taken that the mode Q
factors remain approximately the same across the whole fam-
ily of structures.

The results of the FDTD simulation runs are superim-
posed in the phase diagram in Fig. 8. For all values of ��,
the transition between simultaneous and bistable lasing was
found approximately around Rc as predicted by the analytical
theory. For larger �� the correspondence is better because
smaller �� and R require much longer times to get to the
steady state and there is an increased sensitivity to mode
mismatch �see Fig. 6�. Hence it becomes more difficult to
establish the transition point between simultaneous and
bistable lasing with good accuracy.

In Figs. 10 and 11, temporal laser dynamics in numerical
simulations and class C model are compared. We analyze the
electric field in the center of either defect rc. For FDTD, it is

FIG. 10. �Color online� Comparison between laser field dynamics obtained by �a� class C equations and �b� direct FDTD numerical
simulations for the 2D PhC structure �see Fig. 9� with defects separated by two lattice rows �point 2 in Fig. 8, log10��� /���=−0.481� for
R�Rc �top� and R�Rc �bottom�. For class C coupled mode theory results, the red dashed and blue solid lines show the mode amplitudes
	E1,2�t�	, respectively. Initially both modes are excited and the second mode is given an advantage �E1:2

�0� =2:3�. The gray line shows the
electric field at the mode’s maximum 	Er�t�	=umax	E1�t�e�+ +E2�t�e�−	. For the FDTD results, the field envelope at the center of either defect
	E�rc , t�	 is shown �sampled at local extrema of light oscillations�. The insets show an enlarged portion of the plots to show the 2��
intermodal beating whenever both modes lase at the same time.

FIG. 11. �Color online� Same as Fig. 10 but for the 2D PhC structure with defects separated by four rows �point 4 in Fig. 8,
log10��� /���=−1.301�.
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monitored directly by recording the field at the correspond-
ing point in space E�rc , t�. To reduce the excessive amount of
data, we sample the field only at the local maxima so that an
envelope over the light oscillations is plotted. In the case of
the coupled mode theory, the same quantity is obtained from
the mode amplitudes E1,2�t� using Eq. �4� as Er�t�
=umax�E1�t�e−i�1t+E2�t�e−i�2t�, where umax=max�u�r��, as-
suming the modes are normalized according to Eq. �6�. Tak-
ing the absolute value, light oscillations are also neglected,
so the results can be compared to the simulations.

In all examples of Figs. 10 and 11 �which correspond to
the laser operating way above threshold�, the field dynamics
shows a good qualitative and quantitative correspondence.
Below Rc where simultaneous two-mode lasing is expected,
the in-cavity field envelope shows the characteristic 2��
beat oscillations �see the insets in Figs. 10 and 11�, marking
the presence of both modes in the laser radiation. Above Rc,
the steady-state envelope is flat, indicative of single-mode
lasing, and the beat oscillations are seen to vanish. This cor-
responds to quenching of the weaker mode in agreement
with theoretical expectations in the bistable regime.

Some quantitative discrepancies between the model and
simulation results can be noticed. Some of them �e.g., tem-
poral shifts of the spikes in Fig. 11� result from minor devia-
tions in parameters between the real simulated structure and
an idealized two-mode system considered. These deviations
can be compensated for by fine-tuning the model �25�. Other
discrepancies such as the difference in the field amplitudes
�both at spike maxima and in the steady state� can be attrib-
uted to gain saturation, which may introduce correction to
the form of expansion �5� for the gain medium polarization.
As expected, the deviation between coupled-mode and
FDTD amplitudes is larger for stronger pumping because Eq.
�5� gradually becomes invalid as the pumping rate is in-
creased well above threshold. This is a limitation inherent in
the present coupled-mode model. However, Eqs. �7�–�10�,
�13�, and �14� are clearly seen to provide a valid description
of laser mode dynamics scenario for relatively strong pump-
ing, unlike the near-threshold �third-order nonlinearity� theo-
ries which are reported to fail badly in this regime �see �20��,
just like class A Eq. �31� would. One can overcome this
limitation, e.g., following the approach in Refs. �20,21�
where a generalization of Eqs. �4� and �5� is introduced. A
very good agreement with numerics is reported recently �33�.
However, only the time-independent �steady-state� theory is
formulated so far.

The knowledge that stronger pumping can restore a laser
into the bistable regime for higher �� is important in the
design of a laser that can have its wavelength switched by a
large value �such as several tens of nanometers in Refs.
�17,18��. A rigorous explanation of this result is yet to be
given. Intuitively, stronger pumping rates cause shorter las-
ing onset times compared to the cavity round-trip time so the
domination of the stronger mode can occur before the modes
have a chance to balance themselves through the cavity. In-
deed, it could be noticed that the transition from simulta-
neous to bistable lasing around Rc is accompanied by the
disappearance of 4�� pulsations in the phase of some dy-
namical variables. This suggests that shorter onset due to
stronger pumping allows some of the variables to become

phase locked, which in turn influences the whole character of
the mode interaction �as was seen when the transition from
Eq. �27� to Eq. �31� was discussed�. The detailed investiga-
tion of this effect is a subject for further studies.

V. CONCLUSIONS AND OUTLOOK

In this work, we have addressed the problem of bistability
in a microlaser by systematically formulating the coupled-
mode model without prior assumptions on the mode or cav-
ity geometry, other than the requirement of the mode or-
thogonality in the cavity as well as in the gain region as
described by Eqs. �6� and �15�. The governing equations
have been derived for all laser classes, Eqs. �7�–�10�, �13�,
�14�, and �27� for classes C, B, and A, respectively. The issue
of classifying the laser dynamics in the multimode case has
been revisited taking into account the intermode frequency
separation �� as a parameter influencing the laser dynamics.
The model has been derived for the case of two modes; how-
ever, its extension to the case of several modes can be per-
formed along the same lines.

The simplest case of class A laser equations has been
analytically investigated. It has been shown that coherent
mode interaction processes �population pulsations� can pro-
vide an additional mode coupling channel besides incoherent
mode interaction �spatial hole burning�. This additional cou-
pling is what brings the laser into the bistable regime, allow-
ing the lasing mode to be chosen on demand by the initial
condition of the cavity. This result agrees with the early the-
oretical predictions �6,7�. However, microcavity modes can
have a far better matched intensity distribution inside the
gain region �see Eq. �18�� compared to bulk-cavity modes,
which are usually heavily out of match unless ��=0. As
such, only a moderate amount of pulsation-induced mode
coupling is enough to enter the bistability regime in the case
of a microlaser. This means that microlasers can be bistable
in a far greater parameter range than bulk-cavity lasers, e.g.,
for much larger �� �Fig. 2�. We have also shown that a
sizable mismatch in the system parameters that favors one of
the modes can destroy any chance of bistable operation.
However, a mismatch with respect to one parameter can be
compensated for by a mismatch with respect to another �Fig.
5�. Again, due to better matched intensity distributions of
microcavity modes the bistable regime is more tolerant to
such perturbations �Fig. 7�.

In the more general class B or class C laser model, we
have shown numerically that even when �� is too large to
allow bistability in the near-threshold class A case, it can be
overcome by increasing the pumping rate �Fig. 8�. The re-
sults of the theory are confirmed by direct numerical FDTD
simulations and are shown to be qualitatively valid for
pumping rates several orders of magnitudes above the lasing
threshold. Further results on bistability in class B and class C
microlasers will be available in a forthcoming publication.

Bistable operation of a multimode microlaser can be use-
ful in many respects. Since there is no need for an external
�and potentially slow� cavity-tuning process, ultrafast all-
optical mode switching mechanisms can be imagined. Such
switching, occurring across �20 nm on a picosecond time
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scale had indeed been demonstrated numerically in our ear-
lier work �17�. The fast switching between stable states and
the relatively low power of microlasers can be used in the
design of an optical memory �flip-flop� cell. We believe, that
a compact-sized microlaser capable of multiple-wavelength
operation in a wide wavelength range can find numerous
applications in integrated optics and optical communication.
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